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Captatio benevolentiæ Textbook proofs of Riesz’ theorem “(Lp)′ = Lp′
, 1< p <∞”,

rely: either (a) on the uniform convexity of the Lp spaces with 1 < p <∞, combined with
properties of reflexive spaces (see, e.g., Brezis [2, Chapter IV]), or (b) on uniform con-
vexity, combined with James’ theorem (see, e.g., Lieb and Loss [6, Chapter 2] or Willem
[7, Chapitre V]), or (c) on the Radon-Nikodym theorem, and in this case one has the un-
necessary extra assumption that the underlying measure is σ-finite (see, e.g., Bogachev
[1, Chapter 4]). In turn, uniform convexity is usually established via the well-known
inequalities of Clarkson [4] or Hanner [5] (for the latter ones, Hanner gives credit to
Beurling). The more difficult case is 1 < p < 2, for which other inequalities are available
(see, e.g., Morawetz’ approach, [2, Exercise 4.12]).

Although the above inequalities have now elegant and relatively concise proofs, they
are definitely non-intuitive when 1< p < 2, and still have the appearance of a magic trick.
In addition, they require separate analysis for 1 < p < 2 and p > 2. My main motivation
is to present a cheap, muggle’s, p independent proof of the following result, equivalent to
uniform convexity.

Proposition 1. Let 1< p <∞. For each ε> 0, there exists some δ= δ(ε)> 0 such that

[ f , g ∈ Lp, || f ||p = 1, || f + g||pp +|| f − g||pp ≤ 2+δ] =⇒ ||g||p ≤ ε. (1)

More delicate (and irrelevant for obtaining uniform convexity) is the question of the
value of δopt, the optimal δ in (1), and the characterization of the couples ( f , g) satisfying
the equality case

|| f ||p = 1, ||g||p = ε, || f + g||pp +|| f − g||pp = 2+δopt. (2)

This echoes [4] and [5], where similar questions were raised for related inequalities. Note
that, in principle, δopt depends not only on p and ε, but also on the underlying measured
space (X ,T ,µ). Let us also note that, when p = 2 and L2 6= {0}, the parallelogram identity
yields δopt = 2ε2, and for this δ, equality on the the left- and the right-hand side of (1)
are equivalent. When p > 2, this optimality issue was settled by Hanner, who proved the
following result [5, Theorem 1].

Proposition 2. Let 2< p <∞. Then

[ f , g ∈ Lp, || f ||p = 1, ||g||p = ε] =⇒ || f + g||pp +|| f − g||pp ≥ 2+2εp, (3)

with equality if and only if f g = 0 a.e.
In particular, if (X ,T ,µ) contains two disjoint measurable sets A, B such that 0 <

µ(A),µ(B)<∞, then δopt = 2εp.
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When 1< p < 2, we prove the following counterpart of [5, Theorem 2].

Proposition 3. Let 1< p < 2. Then

[ f , g ∈ Lp, || f ||p = 1, ||g||p = ε] =⇒ || f + g||pp +|| f − g||pp ≥ (1+ε)p +|1−ε|p, (4)

with equality if and only if |g| = ε| f | a.e.
In particular, if (X ,T ,µ) contains a measurable set A such that 0 < µ(A) <∞, then

δopt = (1+ε)p +|1−ε|p −2.

Note that, in Propositions 2 and 3, there is no smallness assumption on ε.

Proofs We start by giving the heuristics of the proof of Proposition 1. When |g| is not
much smaller than | f |, we prove that | f + g|p +| f − g|p −2| f |p dominates |g|p, and then
we are done. On the other hand, when |g|¿ | f | we have ||g||p ¿|| f ||p = 1, and then we are
done again. We conclude by combining the two above arguments. (This dichotomy type
argument is similar, e.g., to the strategy of the proof of the Brezis-Lieb lemma [3].)

Proof of Proposition 1. Consider the function

(0,∞) 3 t 7→ F(t) := (1+ t)p +|1− t|p −2
tp .

Since F > 0 (by strict convexity of x 7→ |x|p) and lim
t→∞F(t)= 2, for each λ> 0 we have

0< Cλ := inf {F(t); λ≤ t <∞}≤ 2. (5)

By (5) and homogeneity when f (x) 6= 0, and inspection of (6) when f (x)= 0, we have

|( f + g)(x)|p +|( f − g)(x)|p −2| f (x)|p ≥ Cλ|g(x)|p if |g(x)| ≥λ| f (x)|. (6)

On the other hand,

|g(x)|p <λp| f (x)|p if |g(x)| <λ| f (x)|. (7)

Combining (6) and (7) and using the fact that (again by convexity) the left-hand side
of (6) is non-negative on the whole underlying space X , we find that

||g||pp ≤ 1
Cλ

(|| f + g||pp +|| f − g||pp −2|| f ||pp)+λp|| f ||pp, ∀ f , ∀ g, ∀λ> 0. (8)

We obtain (1) by letting, e.g., λp = εp/2 and δ= Cλε
p/2.

Proof of Proposition 3. Step 1. Proof when f (x) 6= 0, ∀x ∈ X . By considering the measure
| f |pµ instead of µ and the function g/ f instead of f , we may assume that µ is a probability
measure, that f = 1, and then we have to prove that

||1+ g||pp +||1− g||pp ≥ (
1+||g||p

)p + ∣∣1−||g||p
∣∣p , (9)

with equality if and only if |g| is constant a.e.
With no loss of generality, we may assume that g ≥ 0. Let h := gp ≥ 0 and set

Ψ(t) :=
(
1+ t1/p

)p +
∣∣∣1− t1/p

∣∣∣p
, ∀ t ≥ 0.
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Then (9) amounts to∫
Ψ(h)≥Ψ

(∫
h
)
,∀h ∈ L1, h ≥ 0, (10)

with equality if and only if h is constant a.e. In turn, (10) holds provided Ψ is strictly
convex.

Set

X = X (t) := 1+ t1/p, Y =Y (t) := |1− t1/p|.

When 0< t < 1, we have Y (t)= 1− t1/p and

Ψ′(t)= pX p−1X ′+ pY p−1Y ′ = t1/p−1(X p−1 −Y p−1),

Ψ′′(t)=− p−1
p

t1/p−2(X p−1 −Y p−1)+ p−1
p

t2/p−2(X p−2 +Y p−2)

= p−1
p

t1/p−2
[
(t1/p − X )X p−2 + (t1/p +Y )Y p−2

]
= p−1

p
t1/p−2 [

Y p−2 − X p−2]> 0,

since 0<Y < X and p < 2.
Similarly, when t > 1, we have Y (t)= t1/p −1 and

Ψ′′(t)= p−1
p

t1/p−2Y
[
X p−2 +Y p−2]> 0.

This completes Step 1.
Step 2. Proof in the general case. Let A := {x; f (x) 6= 0}. Set B := X \ A and s := ||g||Lp(A).
By Step 1, we have∫

A
[| f + g|p +| f − g|p]≥ (1+ s)p +|1− s|p, (11)

with equality if and only if |g| = s a.e. on A. On the other hand, we have∫
B

[| f + g|p +| f − g|p]= 2
∫

B
|g|p = 2(εp − sp). (12)

In view of (11) and (12), in order to complete the proof it suffices to prove that

(1+ s)p +|1− s|p +2(εp − sp)> (1+ε)p +|1−ε|p, ∀ε> 0, ∀0≤ s < ε. (13)

In turn, (13) amounts to proving that the function

[0,∞) 3 s 7→Φ(s) := (1+ s)p +|1− s|p −2sp

is (strictly) decreasing. Set α := p−1 ∈ (0,1). When 0< s < 1, we have

Φ′(s)= p
[
(1+ s)α− (1− s)α−2sα)

]
. (14)

Using the inequality

(x+ y)α < xα+ yα, ∀x, y> 0,
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we find that

(1+ s)α = (1− s+ s+ s)α < (1− s)α+2sα, (15)

and thus, by (14) and (15), Φ′ < 0 on (0,1).
When s > 1, the inequality Φ′(s)< 0 amounts to

(1+ s)α+ (s−1)α < 2sα,

which follows from the strict concavity of x 7→ xα, x > 0.
The proof of Proposition 3 is complete.

For the sake of completeness, we also present the

Proof of Proposition 2. It suffices to prove that, when a,b ∈R∗, we have

|a+b|p +|a−b|p > 2|a|p +2|b|p. (16)

By homogeneity, (16) amounts to

Ξ(t) := (1+ t)p +|1− t|p −2tp > 2=Ξ(0), ∀ t > 0. (17)

In order to obtain (16), we prove that Ξ is (strictly) increasing.
Set β := p−1> 1. When 0< t < 1, we have

Ξ′(t)= p
[
(1+ t)β− (1− t)β−2tβ

]
, (18)

and (as in the proof of (15)) the inequality Ξ′(t)> 0 is a consequence of (18) and

(x+ y)β > xβ+ yβ, ∀x, y> 0.

When t > 1, we have

Ξ′(t)= p
[
(1+ t)β+ (t−1)β−2tβ

]
, (19)

and the inequality Ξ′(t)> 0 follows from (19) and the strict convexity of x 7→ xβ, x > 0.
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