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Captatio benevolentiae Textbook proofs of Riesz’ theorem “(L?) = L?', 1< p < o0”,
rely: either (a) on the uniform convexity of the L? spaces with 1 < p < oo, combined with
properties of reflexive spaces (see, e.g., Brezis [2, Chapter IV]), or (b) on uniform con-
vexity, combined with James’ theorem (see, e.g., Lieb and Loss [6, Chapter 2] or Willem
[7, Chapitre V]), or (c) on the Radon-Nikodym theorem, and in this case one has the un-
necessary extra assumption that the underlying measure is o-finite (see, e.g., Bogachev
[1, Chapter 4]). In turn, uniform convexity is usually established via the well-known
inequalities of Clarkson [4] or Hanner [5] (for the latter ones, Hanner gives credit to
Beurling). The more difficult case is 1 < p < 2, for which other inequalities are available
(see, e.g., Morawetz’ approach, [2, Exercise 4.12]).

Although the above inequalities have now elegant and relatively concise proofs, they
are definitely non-intuitive when 1 < p < 2, and still have the appearance of a magic trick.
In addition, they require separate analysis for 1 < p <2 and p > 2. My main motivation
is to present a cheap, muggle’s, p independent proof of the following result, equivalent to
uniform convexity.

Proposition 1. Let 1 < p <oo. For each € > 0, there exists some § = §(¢) > 0 such that

[f,g LP,Ifll, =1, If +glp+If —gly <2+61 = ligl, <e. (1)

More delicate (and irrelevant for obtaining uniform convexity) is the question of the
value of §,pt, the optimal 6 in (1), and the characterization of the couples (f, g) satisfying
the equality case

Ifl,=1,lgl, =& If +gly+If — gl =2+bopt. (2)

This echoes [4] and [5], where similar questions were raised for related inequalities. Note
that, in principle, §,,; depends not only on p and ¢, but also on the underlying measured
space (X, .7, u). Let us also note that, when p =2 and L2 # {0}, the parallelogram identity
yields 6opt = 2¢2. and for this §, equality on the the left- and the right-hand side of (1)
are equivalent. When p > 2, this optimality issue was settled by Hanner, who proved the
following result [5, Theorem 1].

Proposition 2. Let 2 < p <oo. Then
[f,geL?, Ifl,=1,lgl,=¢l = ||f+g||£ +If —glh =2+ 2P, (3)

with equality if and only if fg =0 a.e.
In particular, if (X,.7,u) contains two disjoint measurable sets A, B such that 0 <
p(A), (B) < oo, then §opy = 2€P.



When 1< p <2, we prove the following counterpart of [5, Theorem 2].

Proposition 3. Let 1 < p <2. Then
[f,geL?, Ifl,=1,lgl,=¢l = ||f+g||§+||f—g||§ >(1+e)f +]1-¢l?, (4)

with equality if and only if |g| = €|f] a.e.
In particular, if (X,.7,u) contains a measurable set A such that 0 < u(A) < oo, then
Oopt =(1+€)P +|1—¢lP -2,

Note that, in Propositions 2 and 3, there is no smallness assumption on €.

Proofs We start by giving the heuristics of the proof of Proposition 1. When |g| is not
much smaller than |f|, we prove that |f + g|P + |f — g|? — 2|f|? dominates |g|”, and then
we are done. On the other hand, when |g| < |f| we have ligl,, < Ifl, = 1, and then we are
done again. We conclude by combining the two above arguments. (This dichotomy type
argument is similar, e.g., to the strategy of the proof of the Brezis-Lieb lemma [3].)

Proof of Proposition 1. Consider the function

A+)P+|1-¢tP -2

(0,00)3t— F(t):= 7

Since F' > 0 (by strict convexity of x — |x|P) and tlim F(t)=2, for each A >0 we have
—00

0<Cy:=inf{F(¢); A <t <oo}=<2. (5)

By (5) and homogeneity when f(x) # 0, and inspection of (6) when f(x) =0, we have

I(f + 2P +1(f — )@ =2|f ()P = Crlgx)IP if |g(x)] = Alf (x)]. (6)
On the other hand,
lg()? < AP|f(x)IP if |g(x)l < Alf (x)I. (7)

Combining (6) and (7) and using the fact that (again by convexity) the left-hand side
of (6) is non-negative on the whole underlying space X, we find that

1
I8l < G=(1f +&l +1/ =l ~ 217 1)+ VU1, V£, Vg, ¥ A0, 8)

We obtain (1) by letting, e.g., A = €?/2 and 6§ = C£P/2. O

Proof of Proposition 3. Step 1. Proof when f(x)#0, Vx € X. By considering the measure
|f1? uinstead of u and the function g/f instead of f, we may assume that p is a probability
measure, that f = 1, and then we have to prove that

I1+gl5+11-glh = (1+lgl,)” +[1-lgl,|”, 9)

with equality if and only if |g| is constant a.e.

With no loss of generality, we may assume that g = 0. Let 2 := g =0 and set

P(t):= (1+t1/P)p + ‘1—151/1"”, V0.



Then (9) amounts to
f\}f(h)z\y(fh),VheLl,hzo, (10)

with equality if and only if A is constant a.e. In turn, (10) holds provided ¥ is strictly
convex.

Set
X=X@t):=1+t"P, Y =Y (t):=|1-¢'P|.
When 0 < ¢ <1, we have Y(¢) = 1 — ¢t¥P and
\Pl(t) :po_lX"i'pr_lY, — tl/p—l(Xp—l _Yp—l)’
\Pll(t) - _ l);ltl/p—Q(Xp—l _ Yp—l) + l);]‘t2/p—2(Xp—2 + Yp—z)
p p
p—-1

:_tl/p—2 [(tl/p _X)Xp—2 + (tl/p + Y)yp—2
D

_P—Lp-e [YP72-XP72] >0,
p

since 0<Y <X and p < 2.
Similarly, when ¢ > 1, we have Y (¢) = ¢/ — 1 and

-1
W) = £ 4Vp-2y [xP~2 4 YP2] > .
p

This completes Step 1.

Step 2. Proof in the general case. Let A :={x; f(x) # 0}. Set B:= X\ A and s :=|lglr).-
By Step 1, we have

fAnf+g|P+|f—g|P]z(1+s)P+|1—s|P, (11)

with equality if and only if |[g| = s a.e. on A. On the other hand, we have

[r+gr+ir-gri=2 1gr =2 -5 (12)
In view of (11) and (12), in order to complete the proof it suffices to prove that
(1+8)P+1-51P+2(e? —-sP)>(1+e) +|1—-¢|?, Ve>0,V0<s<e. (13)
In turn, (13) amounts to proving that the function
[0,00) 25— D(s):=(1+s)’ +|1—s|P —2sP
is (strictly) decreasing. Set a := p—1€(0,1). When 0 <s < 1, we have
D'(s)=p[(1+s)*—(1-5)%—-25Y)]. (14)
Using the inequality

(x+y)*<x®+y% Vx,y>0,



we find that
(1+8)*=(1-s+s5+8)*<(1-5)*+2s%, (15)

and thus, by (14) and (15), ®' <0 on (0,1).
When s > 1, the inequality ®'(s) < 0 amounts to

(1+8)%+(s—-1)* <257,

which follows from the strict concavity of x — x%, x > 0.
The proof of Proposition 3 is complete. O

For the sake of completeness, we also present the
Proof of Proposition 2. 1t suffices to prove that, when a,b € R*, we have
la+bl? +|a—-0blP >2|alP +2|b|P. (16)
By homogeneity, (16) amounts to
E@) =1+ +1-¢P -2¢? >2=E5(0), V¢ >0. am

In order to obtain (16), we prove that = is (strictly) increasing.
Set f:=p—-1>1. When 0<¢<1, we have

E@W=p|A+)f-1-t)f -2tF|, (18)
and (as in the proof of (15)) the inequality Z'(¢) > 0 is a consequence of (18) and
(x+yP>xP+4P VY, y>0.
When ¢ > 1, we have
E(t)=p [(1 +8)P +(t—1)P - 2¢P| (19)

and the inequality Z/(z) > 0 follows from (19) and the strict convexity of x — xf, x >0. O
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