ISFA 206-2007 Optimisation

Examen de deuxième session Le jeudi 28 juin 2007 de 14 heures à 15 heures 30

Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^8 + 4x^2 + 2xy + 4y^2 - x$.

a) Montrer que f est coercive.

(On pourra établir l'inégalité $f(x,y) \geq 3 \|(x,y)\|^2 - \|(x,y)\|.)$

b) Montrer que f est 6-convexe.

On pose, pour $a, b \in \mathbb{R}$, $q_a(x) \stackrel{\text{def}}{=} f(x, a)$ et $h_b(y) = f(b, y)$.

- c) Montrer que g_a et h_b sont 8-convexes.
- d) Proposer un algorithme pour trouver, à a fixé, un minimum approché de g_a . Expliquer pourquoi cet algorithme converge.

On se propose de trouver une solution approchée de $(P) \min_{(x,y)\in\mathbb{R}^2} f(x,y).$

e) Montrer que (P) a exactement une solution.

On considère l'algorithme suivant :

Initialisation. On choisit un point $(x_0, y_0) \in \mathbb{R}^2$.

Passage de (x_n, y_n) à x_{n+1} . Une fois le point (x_n, y_n) déterminé, on prend x_{n+1} solution de (P_x) $\min_{x \in \mathbb{R}} f(x, y_n)$. **Passage de** x_{n+1} à y_{n+1} . Une fois x_{n+1} déterminé, on prend y_{n+1}

solution de (P_y) min $f(x_{n+1}, y)$.

f) Montrer que l'algorithme est correct, au sens où à chaque étape les points x_{n+1} et y_{n+1} existent.

g) Montrer que $\frac{\partial f}{\partial x}(x_{n+1}, y_n) = 0$ et $\frac{\partial f}{\partial y}(x_{n+1}, y_{n+1}) = 0$.

- h) En déduire que, si la suite $((x_n, y_n))_{n \in \mathbb{N}}$ converge vers un point (x,y), alors (x,y) est solution de (P).
- i) Montrer que la suite $(f(x_n, y_n))$ décroît, puis (en utilisant e)) qu'elle est convergente.

- **j**) En utilisant **a**) et **i**), montrer que la suite $((x_n, y_n))$ est bornée.
- k) Montrer, en utilisant c) et g), que

$$f(x_n, y_n) \ge f(x_{n+1}, y_n) + 4(x_{n+1} - x_n)^2 \ge f(x_{n+1}, y_{n+1}) + 4(x_{n+1} - x_n)^2$$
.

En déduire que $x_{n+1} - x_n \to 0$.

- 1) La suite $((x_n, y_n))_{n \in \mathbb{N}}$ étant bornée, elle contient une sous-suite (x_{n_k}, y_{n_k}) qui converge vers un $(a, b) \in \mathbb{R}^2$. Montrer que $(x_{n_{k+1}}, y_{n_k}) \to (a, b)$.
- **m)** En déduire que (a,b) = (x,y). Conclusion?