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Randomized Broadcast

The classical randomized broadcast model was first investigated by
Frieze and Grimmett (1985).

Given a graph G = (V ,E), initially a piece of information is placed on one
of the nodes in V . Then in each time step, every informed node sends the
information to another node, chosen independently and uniformly at
random among its neighbors.

The question now is how many time-steps are needed such that all nodes
become informed.

Fountoulakis and Panagiotou (2010) have recently shown that in the case
of random r -regular graphs, the process completes in(

1
log(2(1−1/r)) −

1
r log(1−1/r)

)
logn + o(logn) rounds w.h.p.
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Asynchronous Broadcasting

Each node has a Poisson clock with rate one. ABT(G) denotes the time it
takes to inform the whole population.

Corollary

Let G ∼ G(n, r) be a random r-regular graph with n vertices. We have w.h.p.

ABT(G) = 2

(
r −1
r −2

)
logn + o(logn).
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Figure: Comparison of the time to broadcast in the synchronized version (dashed) and
in the case with exponential random weights (plain)
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Configuration Model

For n ∈ N, let (di)
n
1 be a sequence of non-negative integers such that

∑
n
i=1 di is even.

We define a random multigraph with given degree sequence (di)
n
1,

denoted by G∗(n,(di)
n
1):

I To each node i we associate di labeled half-edges.
I All half-edges need to be paired to construct the graph, this is done by a

uniform random matching.
I When a half-edge of i is paired with a half-edge of j , we interpret this as an

edge between i and j .

Conditional on the multigraph G∗(n,(di)
n
1) being a simple graph, we

obtain a uniformly distributed random graph with the given degree
sequence, which we denote by G(n,(di)

n
1).
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Assumptions on the Degree Sequence

(i) |{i, d(n)
i = r}|/n→ pr for every r ≥ 0 as n→ ∞;

(ii) λ := ∑r rpr ∈ (0,∞);

(iii) ∑
n
i=1 d2

i = O(n).

(iii) ensures that lim infP(G∗(n,(di)
n
1) is simple) > 0. Janson (2009)
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Local Structure
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Branching Process Approximation

The first individual has offspring distribution {pk}.
The other individuals have offspring distribution {qk}:

qk =
(k + 1)pk+1

λ
, and, ν =

∞

∑
k=0

kqk ∈ (0,∞).

The mean of the size of generation k is λνk−1.

The condition ν > 1 is
equivalent to the existence of a giant component, the size of which is
proportional to n (Molloy, Reed 1998, and Janson 2009).
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Typical Graph Distance

Theorem
For a and b chosen uniformly at random in the giant component, we have

dist(a,b)

logn
p−→ 1

logν
.

Van der Hofstad, Hooghiemstra, Van Mieghem 2005 for configuration model
with i.i.d. degrees,
Bollobás, Janson, Riordan 2007 for inhomogeneous ramdom graphs.
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Typical Weighted Distance

Theorem
For a and b chosen uniformly at random in G(n,(di)

n
1) with dmin ≥ 2 and with

i.i.d. exponential 1 weights on its edges, we have

distw (a,b)− logn
ν−1

d−→ V .

Bhamidi, Van der Hofstad, Hooghiemstra 2009 for configuration model with
i.i.d. degrees
Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdős-Rényi random graphs

Recall:

dist(a,b)

logn
p−→ 1

logν
.

Hamed Amini (EPFL) First Passage Percolation May 2014



Typical Weighted Distance

Theorem
For a and b chosen uniformly at random in G(n,(di)

n
1) with dmin ≥ 2 and with

i.i.d. exponential 1 weights on its edges, we have

distw (a,b)− logn
ν−1

d−→ V .

Bhamidi, Van der Hofstad, Hooghiemstra 2009 for configuration model with
i.i.d. degrees
Bhamidi, Van der Hofstad, Hooghiemstra 2010 for Erdős-Rényi random graphs
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Diameter

Generating function of {qk}∞
k=0:

Gq(z) =
∞

∑
k=0

qk zk .

Let Xq be a Galton-Watson Tree (GWT) with offspring distribution q.
The extinction probability of the branching process, β, is the smallest solution
of the fixed point equation

β = Gq(β).
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Diameter

Define

β∗ := G′q(β) =
∞

∑
k=1

kqk β
k−1.

Let X +
q ⊆ Xq be the set of particles of Xq that survive and let D+ denote the

offspring distribution in X +
q .

We have

P(D+ = 1) = G′q(β) = β∗.

The probability that the particles in generation k in X +
q , consists of a single

particle, given that the whole process survives, is exactly βk
∗. This event

corresponds to the branching process staying thin for k generations.
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Diameter

dmin := min{ k |pk > 0} is such that for k < dmin; |{i, di = k}|= 0, for all n
sufficiently large.

Theorem
We have

diam(G(n,(di)
n
1))

logn
p−→ 1

logν
+

1(dmin = 2)

− logq1
+ 2

1(dmin = 1)

− logβ∗
.

Bollobás, de la Vega 1982 for random regular graphs;
Fernholz, Ramachandran 2007 for configuration model;
Riordan, Wormald 2010 for Erdős-Rényi random graphs,
Bollobás, Janson, Riordan 2007 for inhomogeneous ramdom graphs.
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WEIGHTED DIAMETER

Theorem (A., Lelarge)

Consider a random graph G(n,(di)
n
1) with i.i.d. exponential 1 weights on its

edges, then

diamw (G(n,(di)
n
1))

logn
p−→ 1

ν−1
+

2
dmin

1(dmin≥3) +
1(dmin=2)

1−q1

+
2

1−β∗
1(dmin=1).

Ding, Kim, Lubetzky, Peres 2010 (random regular graphs)

Recall:

diam(G(n,(di)
n
1))

logn
p−→ 1

logν
+

1(dmin = 2)

− logq1
+ 2

1(dmin = 1)

− logβ∗
.
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Sketch of Proof

The main idea of the proof consists in growing the balls around each
vertex of the graph simultaneously so that the diameter becomes equal to
twice the time when the last two balls intersect.

Instead of taking a graph at random and then analyzing the balls, we use
a standard coupling argument in random graph theory which allows to
build the balls and the graph at the same time.

There will be three different cases to consider depending on whether
dmin ≥ 3, dmin = 2, or dmin = 1. Let

sn :=

(
1

dmin
1(dmin≥3) +

1
2(1−q1)

1(dmin=2) +
1

1−β∗
1(dmin=1)

)
logn.
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Sketch of Proof

The proof of upper bound will consist in defining the two parameters αn
and βn with the following significance:

(i) two balls of size at least βn intersect almost surely,
(ii) the time it takes for the balls to go from size αn to size βn have all the same

asymptotic for all the vertices of the graph, and the asymptotic is half of the
typical weighted distance in the graph,

(iii) the time it takes for the growing balls centered at a given vertex to reach
size at least αn is upper bounded by (1 + ε)sn for all ε > 0 w.h.p.

To obtain the lower bound, we show that w.h.p.
(iv) there are at least two nodes with degree dmin such that the time it takes for

the balls centered at these vertices to achieve size at least αn is worst than
the other vertices, and is lower bounded by (1− ε)sn, for all ε > 0.
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For a vertex a ∈ V and a real number t > 0, the t-radius neighborhood of a is
defined as

Bw (a, t) :=
{

b, distw (a,b)≤ t
}
.

The first time t where the ball Bw (a, t) reaches size k + 1≥ 1 will be denoted
by Ta(k), i.e.,

Ta(k) := min
{

t : |Bw (a, t)| ≥ k + 1
}
, Ta(0) = 0.

We use Ia to denote the size of the component containing a in the graph minus
one,

Ia := max
{
|Bw (a, t)|, t ≥ 0

}
−1.

so that for all k > Ia, we set Ta(k) = ∞.
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Upper Bound

αn = log3 n, and βn = 3

√
λ

ν−1
n logn.

Proposition

We have w.h.p.

distw (u,v)≤ Tu(βn) + Tv (βn), for all u and v .

Proposition

For a uniformly chosen vertex u and any ε > 0, we have

P
(

Tu(βn)−Tu(αn)≥ (1 + ε) logn
2(ν−1)

| Iu ≥ αn

)
= o(n−1).
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Upper Bound: dmin ≥ 3

Lemma

We have P(Ia ≥ αn)≥ 1−o(n−3/2).

Lemma

For a uniformly chosen vertex a, and any ε, ` > 0, we have

P
(

Ta(αn)≥ ε logn + `
)

= o(n−1 + e−dmin`).
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Upper Bound: dmin = 2

Lemma

For a uniformly chosen vertex a, any x > 0, and any ` = O(logn), we have

P
(

Ta(αn∧ Ia)≥ x logn + `
)
≤ o(n−1) + o(e−2(1−q1)`).
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Upper Bound: dmin = 1

Let Ca the event that a is connected to the 2-core.

The condition ν > 1 ensures that the 2-core has size Ω(n), w.h.p.

We consider the graph G̃n(a) obtained by removing all vertices of degree
one except a until no such vertices exist.

We consider two cases depending on whether both the vertices a and b
are connected to the 2-core (i.e., the events Ca and Cb both hold), or both
the vertices a and b belong to the same tree component of the graph.
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Upper Bound: dmin = 1

Lemma

P
(
T̃a(αn∧ Ĩa)≥ x logn + `

)
≤ o(n−1) + o(e−(1−β∗)`).

Lemma
For two uniformly chosen vertices a,b, and any ε > 0, we have

P
(

1 + ε

1−β∗
logn < distw (a,b) < ∞, C c

a , C c
b

)
= o(n−2).

Hamed Amini (EPFL) First Passage Percolation May 2014



Upper Bound: dmin = 1

Lemma

P
(
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Lower Bound

Denote by Ωa the ball centered at a containing exactly one node (possibly in
addition to a) of degree at least 3.

For two nodes a,b, define the event Ha,b as

Ha,b :=

{
1− ε

ν−1
logn < distw (Ωa,Ωb) < ∞

}
.

Proposition

If u(n)
1 = o(n),

P(Ha,b) = 1−o(1).
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Lower Bound

(i) If the minimum degree dmin ≥ 3, then there are pairs of nodes a and b of
degree dmin such that the event Ha,b holds and in addition all the weights
on the edges adjacent to a or b are at least (1− ε) logn/dmin w.h.p., for
all ε > 0.

(ii) If the minimum degree dmin = 2, then there are pairs of nodes a and b of
degree two such that Ha,b holds and in addition, the closest nodes to
each with forward-degree at least two is at distance at least
(1− ε) logn/(2(1−q1)) w.h.p., for all ε > 0.

(iii) If the minimum degree dmin = 1, then there are pairs of nodes of degree
one such that Ha,b holds and in addition, the closest node to each which
belongs to the 2-core is at least (1− ε) logn/(1−β∗) away w.h.p., for all
ε > 0.
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Hopcount Diameter
Let G ∼ G(n, r) be a random r -regular graph with n vertices.
For a,b ∈ V , π(a,b) denotes the minimum weight path between a and b. Let

f (α) := α log

(
r −2
r −1

α

)
−α +

1
r −2

.

Theorem (A., Peres)

maxj∈[n] |π(1, j)|
logn

p−→ α
∗, and

maxi,j∈[n] |π(i, j)|
logn

p−→ α̂,

where α∗ and α̂ are the unique solutions to f (α) = 0 and f (α) = 1.

Addario-Berry, Broutin and Lugosi 2010, Janson 1999: Complete Graph.

Bhamidi, van der Hofstad and Hooghiemstra 2009: |π(1,2)|−γ logn√
γ logn

d−→ Z , where

Z has a standard normal distribution and γ = r−1
r−2 .

Open question: Hopcount diameter for configuration model?
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Hopcount Diameter
Let G ∼ G(n, r) be a random r -regular graph with n vertices.
For a,b ∈ V , π(a,b) denotes the minimum weight path between a and b. Let

f (α) := α log

(
r −2
r −1

α

)
−α +

1
r −2

.

Theorem (A., Peres)

maxj∈[n] |π(1, j)|
logn

p−→ α
∗, and

maxi,j∈[n] |π(i, j)|
logn

p−→ α̂,

where α∗ and α̂ are the unique solutions to f (α) = 0 and f (α) = 1.
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Bhamidi, van der Hofstad and Hooghiemstra 2009: |π(1,2)|−γ logn√
γ logn

d−→ Z , where

Z has a standard normal distribution and γ = r−1
r−2 .

Open question: Hopcount diameter for configuration model?
Hamed Amini (EPFL) First Passage Percolation May 2014



THANK YOU!

Hamed Amini (EPFL) First Passage Percolation May 2014


