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Population Genetics Models

Model the forces that produce and maintain genetic evolution
within a population.

Mutation: the process by which one individual (gene) changes.
Simulation wants to study the drift of the population: how the
frequency of mutants in the total population evolves.

The Moran Process P. Moran: Random processes in genetics
Cambridge Ph. Soc. 1958

• Start with n individuals. Randomly select one
to mutate.
• Select randomly an individual x to replicate.
• Select randomly another y to die.
• Replace y by a clone of x .

Stochastic process. At time t the number
mutants evolves in {−1, 0,+1}.



Evolutionary graph theory (EGT)

Lieberman, Hauert, Nowak: Evolutionary dynamics on graphs
Nature 2005 (LHN)

EGT studies how the topology of interactions between the
population affects evolution.

Graphs have two types of vertices: mutants and non-mutants.

The fitness r of an agent denotes its reproductive rate.
Mutants have fitness r ∈ Θ(1), non-mutants have fitness 1.

Mutants and non-mutants extend by cloning one of their neighbors.



Moran process on Evolutionary Graphs

Given a graph G = (V ,E ), with |V | = n, and an r > 0, we start
with all vertices non-mutant.

• at t = 0 create uniformly at random a mutant in V
At any time t > 0, assume we have k mutant and (n − k)
non-mutant vertices. Define total fitness at time t by
Wt = kr + (n − k):

• Choose u with probability r
Wt

if u is mutant and 1
Wt

otherwise,

• choose uniformly at random a v ∈ N (u), and replace v with the
clone of u

The process is Markovian, depending on r it tends to one of the
two absorbing states: extinction or fixation.



Example of Moran process
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Moran Process

This random process defines discrete, transient Markov chain, on
states {0, 1, . . . , n − 1, n} with two absorbing states: n fixation (all
mutant) and 0 extinction (all non-mutant).
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The fixation probability fG (r) of G is the probability that a single
mutant will takes over the whole G . The extinction probability of
G is 1− fG (r).



The Markov chain of configurations
A configuration is a set S ⊆ V of mutants.
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Properties of fG (r)

Given G = (V ,E ) connected and a fitness r > 0, for any S ⊂ V
let fG ,r (S) denote the fixation probability, when starting with a set
S of mutants.
Notice fG (r) =

∑
v∈V fG ,r ({v}).

The case r = 1 is denoted neutral drift.

Shakarian, Ross, Johnson, Biosystems 2012
For any r ≥ 1, fG (r) ≥ fG (1)

D́ıaz,Goldberg,Mertzios,Richerby,Serna,Spirakis, SODA-2012
(DGMRSS)
For any undirected G = (V ,E ), fG (1) = 1

n .



Bounding fG (r)

Let G = (V ,E ) be any undirected connected graph, with |V | = n.

(DGMRSS)
For any r ≥ 1, 1

n ≤ fG (r) ≤ 1− 1
n+r , are bounds on the fixation

probability for G .

Merzios, Spirakis: ArXive-2014
For any ε > 0,

fG (r) ≤ 1− 1

n
3
4

+ε
.

Open problem: There are not known upper bounds that don’t
depend on n.
Conjecture: fG (r) ≤ 1− 1

r



Questions to study

Given a connected graph G = (V ,E ) (strongly connected is case
of digraphs), and a fitness r :
1.- Is it possible to compute exactly the fixation probability fG (r)?

Difficult for some graphs. For a given G the number of constrains
and variables is equal to the number of possible configurations of
mutants/non-mutants in G ∼ 2n.

2.- Given G, is it possible to compute the expected number of
steps until arriving to absorption?



Isothermal graphs (LHN)

Given a directed ~G = (V , ~E ), ∀i ∈ V let deg+(i) be its outgoing
degree:
Define the stochastic matrix W = [wij ], where wij = 1/deg+(i) if
~(i , j) ∈ ~E and wij = 0 otherwise.

The same definition of W applies to undirected G , with
wij = 1/deg(i).

The temperature of i ∈ V is Ti =
∑

j∈V wji

A graph ~G is isothermal if ∀i , j ∈ V , Ti = Tj .
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Computing the fixation probability

If ~G is a digraph with a single
source then f~G (r) = 1

n .
n + 1
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Isothermal Theorem (LHN)
For a strongly connected graph ~G s.t. ∀i , j ∈ V we have Ti = Tj

(i.e. W is bi-stochastic) then

f~G (r) =
1− 1

r

1− 1
rn
≡ ρ



Undirected graphs

The isothermal theorem also applies to undirected graphs.
Given G undirected and connected, then
G is ∆-regular iff W is bi-stochastic.

If G is undirected and connected then
fG (r) = ρ = 1−1/r

1−1/rn iff G is ∆-regular.

For example, if G is Cn or Kn then fG (r) = ρ.

Notice:
• if r > 1 then limn→∞ fG (r) = 1− 1

r .

• if r < 1 then fG (r) = rn−rn−1

rn−1 → exponentially small.



Amplifiers and suppressors

Given G (directed or undirected) and r , G is said to be an
amplifier if fG (r) > ρ. G is said to be a suppressor if fG (r) < ρ.

The star
(LHN), (Broom, Rychtá. Proc.R. Soc. A 2008)

For r > 1 fG (r) =
1− 1

r2

1− 1
r2n

> ρ

The star is an amplifier



Suppressors

The directed line and the burst have fixation probability 1
n < ρ,

therefore they are examples of suppressors.

How about non-directed graphs as suppressors?
Mertzios, Nikoletseas,Ratopoulos,Spirakis, TCS 2013
The urchin

For < r < 4/3
limn→∞ fG (r) = 1

2 (1− 1
r ) < ρ n-clique

The urchin is an undirected graph suppressor



Absorption time for undirected graphs

Given undirected connected G = (V ,E ), with |V | = n, run a
Moran process {St}t≥0, where {St} set of mutants at time t.

Define the absorption time τ = min{t | St = ∅ ∨ St = V }.

Theorem DGMRSS
Given G undirected, for the Moran process {St} starting with
|S1| = 1:

1. If r < 1, then E [τ ] ≤ r
r−1 n3,

2. if r > 1, then E [τ ] ≤ r
r−1 n4,

3. if r = 1, then E [τ ] ≤ n6.



Sketch of the proof

We bound E [τ ] using a potential function that decreases in
expectation until absorption.

Define the potential function φ(S) =
∑

v∈S
1

deg(v)

Notice φ({v}) ≥ 1/n and 0 ≤ φ(Sτ ) ≤ n

Use the following result from MC (Hajek, Adv Appl. Prob. 1983)

If {Xt}t≥0 is a MC with state space Ω and there exist constants
k1, k2 > 0 and a φ : Ω→ R+ ∪ {0} s.t.
(1) φ(S) = 0, ∃S ∈ Ω,
(2) φ(S) ≤ k1,
(3) E [φ(Xt)− φ(Xt+1) | Xt = S ] ≥ k2, ∀t ≥ 0 s.t. φ(S) > 0,
then E [τ ] ≤ k1/k2, where τ = min{t | φ(S) = 0}.



Sketch of the proof

To compute evolution of
E [φ(St+1)− φ(St)].
To show that the potential decreases
(increases) monotonically for r < 1 (r > 1),
consider the contribution of each (u, v) in
the cut for St+1 = St ∪ {v} and to
St+1 = St\{v} .

G

v
u

S̄t

St

1. For r < 1, E [φ(St+1)− φ(St)] < r−1
n3 < 0.

2. For r > 1, E [φ(St+1)− φ(St)] ≥ (1− 1
r ) 1

n3 .

3. For r = 1, E [φ(St+1)− φ(St)] = 0.



Domination argument for r < 1

For any fixed initial S ⊂ V :

Let {Yi}i≥0 be a stochastic process as Moran’s,
except if it arrives to state V , u.a.r. choose v
and exit to state V \{v}.
Let τ ′ = min{i |Yi = ∅}

V

V − v

Then,

E [τ |X0 = S ] ≤ E
[
τ ′ |Y0 = S

]
≤ 1

1− r
n3φ(S)

⇒ E [τ ] ≤ 1
1−r n3.



Domination argument for r > 1

For any fixed initial S ⊂ V :
Define a process {Yi}i≥0 as in Moran’s, except if
arrives to state ∅, u.a.r. choose v and exit to
state {v}.
Let τ ′ = min{i |Yi = V }

{v}

∅

Then,

E [τ |X0 = S ] ≤ E
[
τ ′|Y0 = S

]
≤ rn3

r − 1
(φ(G )− φ(S))

⇒ E [τ ] ≤ r
r−1 n4.



Proof for r = 1

For undirected G = (V ,E ) with r = 1,

E [τ ] ≤ φ(V )2n4 ≤ n6.

In this case E [φ(St)− φ(St−1)] does not change
⇒ Use a martingale argument

At each t, the probability that φ changes is ≥ 1/n2, and it changes
by ≤ 1/n.
Dominate by process Zt(φt), which increases in expectation until
stopping time, when the process absorbs.

Then E [Zτ ] ≥ E [Z0] and we get a bound for E [τ ].



Aproximating fG (r)

A FPRAS for a function f : A randomized algorithm A such that,
given a 0 ≤ ε ≤ 1, for any input x ,

Pr [(1− ε)f (x) ≤ A(x) ≤ (1 + ε)f (x)] ≥ 3

4
,

with a running time ≤ poly(|x |, 1/ε).

Corollary to absorption bounds

I There is an FPRAS for computing the fixation probability, for
any fixed r ≥ 1.

I There is an FPRAS for computing the extinction probability,
for any fixed r < 1.



Absorption time ∆-regular graphs, r > 1

D́ıaz,Goldberg,Richerby,Serna. ArXive 2014
Recall the upper bound for absorption time undirected G is r

r−1 n4.

Theorem If G = (V ,E ) is a connected ∆-regular graph with
|V | = n, the upper bound to the expected absorption time is

E [τ ] ≤ r

r − 1
n2∆.

Sketch of proof
For any ∅ ⊆ S ⊆ V , use φ(S) =

∑
v∈S

1
deg(v) = |S |

∆

and φ(V ) = n
∆ .

E [φ(St+1)− φ(St)] = r−1
Wt+1

1
deg(u)deg(v) = Θ( 1

∆2n
)



∆-regular digraphs

∆-regular digraph: ∀v , deg−(v) = deg+(v) = ∆.

Recall for regular digraphs:
• Fixation probability is ρ, independent of
the particular topology of the graph.

• As n→∞, ρ→ 1− 1
r ,

therefore the expected number of active
steps → n(1− 1

r ), independently of the
graph.



Expected absorption time for regular digraphs, r > 1

The expected absorption time does depend on the graph.

Theorem Let G be a strongly connected ∆-regular n-vertex
digraph. Then the expected absorption time is

(
r − 1

r 2
)nHn−1 ≤ E [τ ] ≤ n2∆,

where Hn is the nth. Harmonic number.

Corollaries

• For Kn (∆ = n − 1) ⇒ E [τ ] = Ω(n log n) and E [τ ] = O(n3).

• For Cn ⇒ E [τ ] = Ω(n log n) and E [τ ] = O(n2).



Glimpse of proof

Dominate the process by a Markov chain:

1

n+1

n20

Solve difference equation to find the expected number of active
steps going from state j to state n + 1.

Compute bound on the time you spend in each state j .



Undirected ∆-regular and isoperimetric inequality

Given an undirected graph G = (V ,E ), the isoperimetric number
(Harper, J. Comb. Theory 1966) is defined as

i(G ) = min
S

{ |δS |
S
| S ⊂ V , 0 < |S | ≤ |V |/2

}
,

where δS is the set of edges in the cut between S and V \S .

Proposition If G is ∆-regular undirected (good expander)

E [τ ] ≤ 2∆nHn

i(G )
.

For some ∆-reg. G the isoperimetric bound improves the general
theorem.



Applications of the isoperimetric result

• The Kn has i(G ) = Θ(1/
√

n) ⇒
E [τ ] = Θ(n log n) (E [τ ] = O(n3)).

• The
√

n ×√n-grid has i(G ) = Θ(1/
√

n) ⇒
E [τ ] = O(n3/2 log n) (E [τ ] = O(n2)).

• The Cn has i(G ) = 4/n ⇒
E [τ ] = O(n2 log n) (E [τ ] = O(n2)).

Bolobás, Eur. J. Comb. 1988: For ∆ ≥ 3 there is a number
0 < ν < 1 such that, as n→∞, for almost all undirected
∆-regular G, i(G ) = ν∆/2.

• Bollobás result ⇒ for almost all undirected ∆-regular G ,
E [τ ] = O(n log n).



Worst absorption time for directed graphs

Recall the absorption time of undirected graphs E [τ ] ≤ O(n4).

Theorem There is an infinite family of strongly connected digraphs
such that the expected absorption time for an n vertex graph is

E [τ ] = 2Ω(n).

u1 u2

· · ·
uN

v0 v1
· · ·

v4dre
· · ·

v8dre
· · · · · ·

v4dreN

KN



Domination

Given a Moran’s process {Xt} on G , intuition says that for any S
and any S ′ ⊂ S , fS(r) > fS ′(r) and τ(S) < τ(S ′).

∴ To analyze {Xt}, we can couple it with a process {Yt}, which is
easier to analyze (for instance by allowing transitions that create
new mutants but forbidding some of the transitions removing
mutants).

Then we must ensure that for every t > 1, if X1 ⊆ Y1 ⇒ Xt ⊆ Yt .

NOT ALWAYS TRUE for discrete Moran’s processes



Counterexample

3 ~G

X1

X2

py =
r

2(2r+2)px =
r

2(r+2)

Y1

Y2

1 2

Coupling {Xi} and {Yi} fails as for r > 1,

Pr [X2 6⊆ Y2] > 0



Continuous time process

To use domination for the discrete processes {Xi} and {Yi},
consider the continuous versions X̃ [t] and Ỹ [t], where vertex v
with fitness rv ∈ {1, r} waits an amount of time which follows an
exponential distribution with parameter rv .

The discrete Moran process is recovered by taking the sequence of
configurations each time a vertex reproduces.

Notice: in continuous time, each v reproduces at a rate given by
rv , independently of the other vertices, while in discrete time the
population ”coordinates” before deciding who is next to reproduce.



Coupling Lemma and consequences

Coupling Lemma For ~G = (V , ~E ), let X ⊆ Y and 1 ≤ r ≤ r ′. Let
X̃ [t] and Ỹ [t] (t ≥ 0) be the continuous-time Moran process on G
with mutant fitness r and r ′, and with X̃ [0] = X and Ỹ [0] = Y .
There is a coupling between the two processes s. t. X̃ [t] ⊆ Ỹ [t],
∀t ≥ 0.

Theorem For any ~G , if 0 < r ≤ r ′ and S ⊆ S ′ then

f~G ,r (S) ≤ f~G ,r ′(S ′).

Corollary (Monotonicity)
For any ~G and 0 < r ≤ r ′ then, f~G (r) ≤ f~G (r ′).

Corollary (Subset domination)
For any ~G and 0 < r then, if S ⊆ S ′ then f ~G ,r (S) ≤ f ~G ,r ′

(S ′).



Thank you for your attention


