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Population Genetics Models

Model the forces that produce and maintain genetic evolution
within a population.
Mutation: the process by which one individual (gene) changes.

Simulation wants to study the drift of the population: how the
frequency of mutants in the total population evolves.

The Moran Process P. Moran: Random processes in genetics
Cambridge Ph. Soc. 1958

e Start with n individuals. Randomly select one

to mutate.

e Select randomly an individual x to replicate.
e Select randomly another y to die.

e Replace y by a clone of x.

Stochastic process. At time t the number
mutants evolves in {—1,0,+1}.



Evolutionary graph theory (EGT)

Lieberman, Hauert, Nowak: Evolutionary dynamics on graphs
Nature 2005 (LHN)

EGT studies how the topology of interactions between the
population affects evolution.
Graphs have two types of vertices: mutants and non-mutants.

The fitness r of an agent denotes its reproductive rate.
Mutants have fitness r € ©(1), non-mutants have fitness 1.

Mutants and non-mutants extend by cloning one of their neighbors.



Moran process on Evolutionary Graphs

Given a graph G = (V, E), with |V| = n, and an r > 0, we start
with all vertices non-mutant.

e at t = 0 create uniformly at random a mutant in V

At any time t > 0, assume we have k mutant and (n — k)
non-mutant vertices. Define total fitness at time t by

W = kr + (n — k):

e Choose u with probability ﬁt if uis mutant and ﬁt otherwise,

e choose uniformly at random a v € N (u), and replace v with the
clone of u

The process is Markovian, depending on r it tends to one of the
two absorbing states: extinction or fixation.



Example of Moran process
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Ph = 30
PE =3
dab = 2J:2r

Abc = (n—D+r

NI= NI



Moran Process

This random process defines discrete, transient Markov chain, on
states {0,1,...,n— 1, n} with two absorbing states: n fixation (all
mutant) and 0 extinction (all non-mutant).

1 S So S3 1

n ' 3 8
ps
OO GPO
\ 1
IR - )

"= ~-- Absorving states

The fixation probability f¢(r) of G is the probability that a single
mutant will takes over the whole G. The extinction probability of
Gis1—fg(r).



The Markov chain of configurations
A configuration is a set S C V of mutants.




Properties of fg(r)

Given G = (V, E) connected and a fitness r > 0, for any S C V
let g ,(S) denote the fixation probability, when starting with a set
S of mutants.

Notice fo(r) = > ,cv fe,r({v})

The case r = 1 is denoted neutral drift.

Shakarian, Ross, Johnson, Biosystems 2012
Forany r > 1, fg(r) > f5(1)

Diaz,Goldberg,Mertzios,Richerby,Serna,Spirakis, SODA-2012
(DGMRSS)
For any undirected G = (V, E), fg(1) = L.



Bounding f;(r)

Let G = (V, E) be any undirected connected graph, with |V| = n.

(DGMRSS)
For any r > 1, % < fe(r) <1 — -1, are bounds on the fixation

n+r’
probability for G.
Merzios, Spirakis: ArXive-2014
For any € > 0,
1
fg(r) S 1-— n%JrG‘

Open problem: There are not known upper bounds that don’t
depend on n.
Conjecture: fg(r) <1—1



Questions to study

Given a connected graph G = (V, E) (strongly connected is case
of digraphs), and a fitness r:
1.- Is it possible to compute exactly the fixation probability fg(r)?

Difficult for some graphs. For a given G the number of constrains
and variables is equal to the number of possible configurations of
mutants/non-mutants in G ~ 2".

2.- Given G, is it possible to compute the expected number of
steps until arriving to absorption?



Isothermal graphs (LHN)

Given a directed G = (V, E), Vi € V let deg™ (/) be its outgoing
degree:

Define the stochastic matrix W = [w;], where w; = 1/deg™ (i) if
(i,j) € E and wjj = 0 otherwise.

The same definition of W applies to undirected G, with

wij = 1/deg(i).

The temperature of i € Vis T; =3\, wji

A graph G is isothermal if Vi,jeV, Ti=T;.
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Computing the fixation probability

If G is a digraph with a single
source then fz(r) = 1

Isothermal Theorem (LHN)
For a strongly connected graph G s.t. Vi,j € V we have T; = T;

(i.e. W is bi-stochastic) then
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Undirected graphs

The isothermal theorem also applies to undirected graphs.
Given G undirected and connected, then
G is A-regular iff W is bi-stochastic.

If G is undirected and connected then
fe(r)=p= % iff G is A-regular.

For example, if G is C, or K, then fg(r) = p.

Notice:
o if r > 1 then limp o0 fg(r) =1 — 1.

e if r <1 then fg(r) = o

1~ — exponentially small.



Amplifiers and suppressors

Given G (directed or undirected) and r, G is said to be an
amplifier if fg(r) > p. G is said to be a suppressor if fg(r) < p.

The star
(LHN), (Broom, Rychtd. Proc.R. Soc. A 2008)
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Forr>1f(;(r):11 = > p /O
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The star is an amplifier




Suppressors

The directed line and the burst have fixation probability % < p,
therefore they are examples of suppressors.

How about non-directed graphs as suppressors?
Mertzios, Nikoletseas,Ratopoulos,Spirakis, TCS 2013
The urchin

For <r<4/3
limpoo fo(r) = 2(1— 1) < p

The urchin is an undirected graph suppressor



Absorption time for undirected graphs

Given undirected connected G = (V/, E), with |[V| =n, run a
Moran process {S;}+>0, where {S;} set of mutants at time t.

Define the absorption time 7 = min{t|S; =0V S; = V}.

Theorem DGMRSS
Given G undirected, for the Moran process {S;} starting with
|S1| =1

1. If r <1, then E[7] < rTr1”3'

2. if r>1, then E[r] < L:n*,

3. if r=1, then E[7] < n°.
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Sketch of the proof

We bound E [7] using a potential function that decreases in
expectation until absorption.

Define the potential function ¢(S

) ZVES deg(v)
Notice ¢({v}) > 1/nand 0 < ¢(S;) <

Use the following result from MC (Hajek, Adv Appl. Prob. 1983)

If {X¢}e>0 is @ MC with state space Q2 and there exist constants
ki,ko >0and a ¢:Q — RT U{0} s.t.

(1) ¢(S) =0, 3S € Q,
(2) ¢(S) < k,
(3) E[o(Xt) — ¢(Xeq1) | Xe = S] > ko, YVt > 0s.t. $(S) >0

then E[7] < k]_/k2, where 7 = min{t | ¢(S) = 0}.



Sketch of the proof

To compute evolution of

E[6(5e:1) — 6(5)].

To show that the potential decreases

(increases) monotonically for r < 1 (r > 1),

consider the contribution of each (u, v) in

the cut for S¢11 = S¢ U {v} and to a

Sey1 = Se\{v} .

1. For r <1, E[¢(Ser1) — ¢(Se)] < 55 < 0.
2. Forr>1, E[¢(Se+1) — ¢(Se)] = (1 — 1) 5.
3. For r=1, E[¢(S¢+1) — #(S¢)] = 0.



Domination argument for r < 1

For any fixed initial S C V:

Let {Yi}i>0 be a stochastic process as Moran's,

except if it arrives to state V/, u.a.r. choose v ‘ a
and exit to state V\{v}.

Let 7/ = min{i | Y; = 0} O ‘
Then,
n*¢(S)

E[r|Xo =S| <E[|Yo=S5] < 11

1 3



Domination argument for r > 1

For any fixed initial S C V:
Define a process {Y;}i>o as in Moran's, except if
arrives to state (), u.a.r. choose v and exit to

state {v}. @{/
Let 7/ = min{i| Y; = V}
Then,

rn3

-1

E[r1Xo = S] < E[r']Yo = S| < —=(&(C) = 6(5))

= E[r] < Ln*



Proof for r =1

For undirected G = (V, E) with r =1,

E[r] < ¢(V)*n* < n®.

In this case E [¢(S:) — ¢(S¢—1)] does not change

= Use a martingale argument

At each t, the probability that ¢ changes is > 1/n?, and it changes
by <1/n.

Dominate by process Z:(¢¢), which increases in expectation until
stopping time, when the process absorbs.

Then E[Z;] > E[Z] and we get a bound for E[7].



Aproximating f(r)

A FPRAS for a function f: A randomized algorithm A such that,
given a 0 <€ < 1, for any input x,

Prl(1 - f(x) < AR) < (1 +F(] > .

with a running time < poly(|x|,1/¢).

Corollary to absorption bounds
» There is an FPRAS for computing the fixation probability, for
any fixed r > 1.
> There is an FPRAS for computing the extinction probability,
for any fixed r < 1.



Absorption time A-regular graphs, r > 1

Diaz,Goldberg,Richerby,Serna. ArXive 2014

Recall the upper bound for absorption time undirected G is -“5n®.

Theorem If G = (V, E) is a connected A-regular graph with
|V| = n, the upper bound to the expected absorption time is

r

E[r] < n?A.

r—1

Sketch of proof
Forany D €S C V, use ¢(S) =3 cs ﬁ(v) =
and (V) = 2.

E[0(St41) — ()] = Wk desrormar) = © (a5



A-regular digraphs

A-regular digraph: Vv, deg™ (v) = deg™t(v) = A.

Recall for regular digraphs:
e Fixation probability is p, independent of
the particular topology of the graph.

oAsn—>oo,p—>1—l

rl
therefore the expected number of active
steps — n(1 — %) independently of the

graph.



Expected absorption time for regular digraphs, r > 1

The expected absorption time does depend on the graph.

Theorem Let G be a strongly connected A-regular n-vertex
digraph. Then the expected absorption time is

-1
(rr2 )nHo_1 < E[7] < n?A,

where H, is the nth. Harmonic number.

Corollaries

e For K, (A =n—1) = E[r] = Q(nlogn) and E [r] = O(n%).
e For C, = E[7] = Q(nlog n) and E[r] = O(n?).



Glimpse of proof

Dominate the process by a Markov chain:

© /@:‘ eoe ~(1)

Solve difference equation to find the expected number of active
steps going from state j to state n+ 1.

Compute bound on the time you spend in each state j.



Undirected A-regular and isoperimetric inequality

Given an undirected graph G = (V, E), the isoperimetric number
(Harper, J. Comb. Theory 1966) is defined as

i(G):mSin{’(SSSI |SCV,0<|S5]< |V|/2},

where ¢S is the set of edges in the cut between S and V\S.

Proposition If G is A-regular undirected (good expander)

2AnH,
i(G)

E[r] <

For some A-reg. G the isoperimetric bound improves the general
theorem.



Applications of the isoperimetric result

e The K, has i(G) = ©(1//n) =

E[r] = ©(nlogn) (E [1] = O(n%)).
e The \/n x \/n-grid has i(G) = ©(1//n) =

E[r] = O(n®?logn) (E[r] = O(n?)).
e The C, has i(G) =4/n =

E[r] = O(n?log n) (E [r] = O(n?)).

Bolobas, Eur. J. Comb. 1988: For A > 3 there is a number
0 < v < 1 such that, as n — oo, for almost all undirected
A-regular G, i(G) =vA/2.

e Bollobas result = for almost all undirected A-regular G,
E[7] = O(nlogn).



Worst absorption time for directed graphs

Recall the absorption time of undirected graphs E [r] < O(n%).

Theorem There is an infinite family of strongly connected digraphs
such that the expected absorption time for an n vertex graph is

E [r] = 29",




Domination

Given a Moran's process {X:} on G, intuition says that for any S
and any S’ C S, fs(r) > fs/(r) and 7(S) < 7(5').

.. To analyze {X;}, we can couple it with a process {Y;}, which is
easier to analyze (for instance by allowing transitions that create
new mutants but forbidding some of the transitions removing
mutants).

Then we must ensure that forevery t > 1, if X1 C Y1 = X; C Y;.

NOT ALWAYS TRUE for discrete Moran's processes



Counterexample

F—eF—) ¢
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j Pr = 357g) j Py = 573

x, @@ -0 -9

Coupling {Xi} and {Y;} fails as for r > 1,

Pr[Xz Z Yo] >0



Continuous time process

To use domination for the discrete processes {X;} and {Y;},
consider the continuous versions X[t] and Y[t], where vertex v
with fitness r, € {1, r} waits an amount of time which follows an
exponential distribution with parameter r,.

The discrete Moran process is recovered by taking the sequence of
configurations each time a vertex reproduces.

Notice: in continuous time, each v reproduces at a rate given by
r,, independently of the other vertices, while in discrete time the
population " coordinates” before deciding who is next to reproduce.



Coupling Lemma and consequences

Coupling Lemma For G = (V,E), let X C Y and 1< r <. Let
X[t] and Y[t] (t > 0) be the continuous-time Moran process on G
with mutant fitness r and r/, and with X[0] = X and Y[0] = Y.
There is a coupling between the two processes s. t. X[t] C Y[t],
vt > 0.

Theorem For any G,if0<r<r and SCS then

e () < fz (8.

Corollary (Monotonicity)
For any G and 0 < r < r’ then, fz(r) < fz(r").

Corollary (Subset domination)
For any G and 0 < r then, if S C &' then f~ (S) < f-,(5').



Thank you for your attention



