Rigidity percolation on random graphs

J. Barré + results from many other people

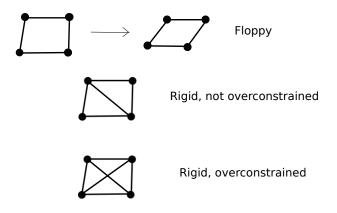
¹Laboratoire JA Dieudonné, U. de Nice-Sophia Antipolis.

May 2014

Rigidity

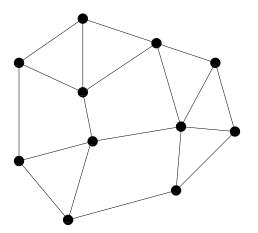
• Consider bars, which have a fixed length, linked together by "joints". Is the system rigid or floppy?

Example in 2 dimensions; bar lengths are fixed, not the angles:



Rigidity

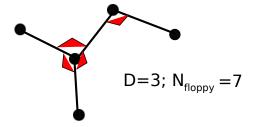
• When there are only a few joints and bars, it is easy... What about this network, with 11 sites?



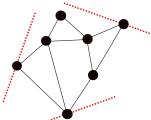
• Is it floppy? Rigid? How many floppy modes? Where?

Related problems

ullet Bond bending constraints: angles between two adjacent bonds have to be kept fixed (D=3)



• Rigidity with "gliders": some joints constrained to move on a line



Constraint counting

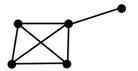
Maxwell's idea: constraint counting

- each joint starts with 2 degrees of freedom
- each bar removes one degree of freedom
- \rightarrow formula for the number of floppy modes (N joints, M bars):

$$N_{floppy} = 2N - M$$
 if $M < 2N - 3$; $N_{floppy} = 3$ if $M \ge 2N - 3$

• Counting redundant constraints:

$$N_{floppy} = 2N - M + N_{redundant}$$



$$N=5; M=7$$
 $N_{redundant} = 1$
 $N_{floppy} = 4$

From geometry to graph theory

• Power of constraint counting: replace a geometrical problem by a discrete, graph theoretical one.

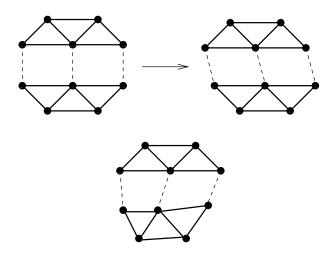
Question: is it possible to keep this desirable feature, correcting the approximations of constraint counting?

• Generic rigidity in 2D can be characterized in a purely graph theoretical way (Laman 1970):

G has no redundant constraint \iff there is no subgraph with *n* vertices, *m* edges and m > 2n - 3.

→ constraint counting on each subgraph

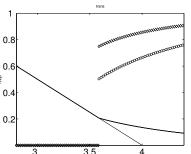
Generic rigidity



Top: a non generic realization; Laman theorem does not apply. Bottom: a generic realization of the same graph.

Large networks: rigidity percolation

- Physical applications: very large networks (covalent glasses; proteins). Relevant question: Is there a macroscopic rigid cluster?
 → rigidity percolation (M. Thorpe).
- Example: Erdös-Rényi random graph $\mathcal{G}(n, c/n)$. Vary c; is there a threshold for a macroscopic rigid cluster? Yes, very sharp!



Number of floppy modes and size of the biggest rigid and stressed clusters, as functions of the mean connectivity

Note: Straight line at low connectivity = constraint counting; discontinuous transition.

Results

- ullet Physics literature: random graphs locally look like trees \to heuristic computation possible for the threshold, number of floppy modes, etc... (C. Moukarzel, P. Duxbury, D. Jacobs, M. Thorpe 97-99)
- Pushing the heuristic computations further: obtain large deviation functions for the redundant constraints (O. Rivoire, JB 2006).
- \bullet A theorem for the threshold $c\simeq 3.588\ldots$ V. Kasiviswanathan, C. Moore and L. Théran, 2011.

Method: show that the threshold for rigidity percolation is the same as 2-orientability (is there a way to orient all edges of a graph such that no vertex has more than two incoming edges?)

Rigidity percolation with gliders

• Consider a structure with n_1 sites within gliders, n_2 free sites and m bars.

A Laman-type theorem (I. Streinu, L. Théran, 2010). Difficulty: gliders "pin" the rigidity components to the plane → Distinguish between free, partly pinned, and pinned rigid clusters

 $redundant\ constraint\ \Longleftrightarrow\ subgraph\ with$

$$n_1' + 2n_2' - m' - \max(3 - n_1', 0) < 0$$

 \rightarrow A graph theoretical approach possible (under a genericity condition, as usual)

Rigidity percolation with gliders

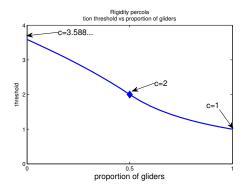
- Erdös-Renyi random graph $\mathcal{G}(n,c/n)$, with $n=n_1+n_2$ $n_1=qn,\ n_2=(1-q)n.$ q= proportion of sites with gliders
- q = 1: ordinary percolation = well known; continuous
- q = 0: rigidity percolation, discontinuous
- What happens in between?

Moukarzel 2003 (heuristic): some vertices are "pinned"

→ The transition remains discontinuous, and disappears when too many sites are pinned (physics jargon: first order transition and critical point)

Work in progress (with D. Mitsche and M. Lelarge)

percolation threshold vs proportion of gliders

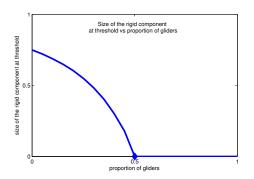


Conjecture:

- $c^* = 1/q$ for $q \ge 1/2$
- $c^* = \dots$ (implicit expression) for q > 1/2

Work in progress (with D. Mitsche and M. Lelarge)

• Size of the largest component at threshold: jump for q < 1/2.



Conjecture:

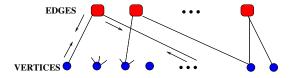
- ullet Continuous transition for $q \geq 1/2$: \sim connectivity percolation
- ullet Discontinuous transition for q < 1/2

Strategy

- A "tree-like" heuristic tells us what to expect
- Make the link with an orientability problem: uses density arguments (presence of small rigid components unlikely)

Sites on gliders: at most one incoming edge Free sites: at most two incoming edges

Analyze a message passing algorithm as in Lelarge 2012



→ compute the probability distributions of messages

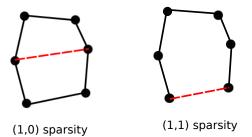
A more general framework

• Laman's theorem: no redundancy \iff every subgraph with n vertices has $m \le 2n-3$ edges.

2= number of degrees of freedom of one point in 2D; 3=number of degrees of freedom of a solid body in 2D.

One may ask the same questions with $(k, l) \neq (2, 3)!$

 \rightarrow Graph theoretical concept of (k, l) sparsity (l < 2k): a graph is (k, l) sparse if every subgraph with n vertices has $m \le kn - l$ edges



Physical meaning

Some (k, l) have a physical meaning

- (k, l) = (2,3): 2D bars-joints rigidity
- ▶ (k, l) = (3, 3): 2D bodies-bars rigidity (more generally (k, k))
- (k, l) = (1, 1): ordinary percolation
- (k, l) = (2, 0): "2-orientability"
- ▶ gliders: interpolate between k = 1 and k = 2!

Remark: there is a large mathematical literature on this subject (graph theory, combinatorics, matroids theory...); not much on percolation however.

Conclusions

- ► A family of new percolation problems with an interesting physical meaning
- With gliders: interpolate between connectivity and rigidity percolation; a tricritical point (physics jargon again). Complete proof hopefully available soon...
- Physics literature: tree-like heuristics give access to much more detailed results (Large Deviation Cavity Method); could these be transformed into theorems? A general question, beyond rigidity.
- ▶ Much more difficult problem: on lattices...