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A simple question. . .

“What is the chromatic number of G(n,m)?” [ER 60]

Ï n vertices

Ï m = dn/2 random edges



. . . that lacks a simple answer

Ï Early work: a factor two approximation
Ï the greedy algorithm [GMcD ’75; BE ’76]
Ï sparse case [SU ’84]

Ï Getting the asymptotics right
Ï factor 4

3 approximation [M’87]
Ï factor 1+o(1) for d À n2/3. . . [B’88]
Ï . . . and indeed for d À 1 [Ł’91]

Ï Concentration results
Ï Concentration within O(

p
n). [SS 1987]

Ï Two-point concentration for d ¿ n1/6. . . [Ł 1991]
Ï . . . and in fact for d ¿ n1/2. [AK 1997]



Two moments do not suffice

The k-colorability threshold [ER’60]

Ï consider G = G(n,m) with 2m/n ∼ d

Ï let Zk (G) = #k-colorings

Ï 1st moment dk−col ≤ (2k −1)lnk

Ï 2nd moment dk−col ≥ (2k −2)lnk [AN’05]

Ï improved bound dk−col ≤ (2k −1)lnk −1+o(1) [CO’13]



The “cavity method”

The “cavity method”

Ï A generic but “recipe”. [“Belief/Survey Propagation”]

Ï A precise prediction as to the k-colorability threshold.
Ï A variety of “predictions” in

Ï mathematical physics,
Ï information theory,
Ï probabilistic combinatorics,
Ï compressive sensing.



The “cavity method”

Conjectures [KMRTSZ’07]

Ï the k-colorability threshold is

dk−col = (2k −1)lnk −1+o(1)

Ï there occurs a condensation phase transition at

dk,cond = (2k −1)lnk −2ln2+o(1)

Ï non-rigorous calculations based on Belief Propagation



“Replica symmetry breaking”

k lnk dk,cond

“Replica symmetry”

Ï Can walk from one coloring to any another.

Ï Only short-range effects matter.

Ï Simple coloring algorithms succeed.



“Replica symmetry breaking”

k lnk dk,cond

“Dynamic replica symmetry breaking”

Ï The set of k-colorings shatters into tiny clusters.[ACO’08, M’12]

Ï Long-range effects emerge, stalling algorithms.

Ï Yet pairs of solutions “look uncorrelated”.



“Replica symmetry breaking”

k lnk dk,cond

“Condensation”

Ï A bounded number of clusters dominate.

Ï Pairs of solutions are heavily correlated.

Ï A second “phase transition”.



The “entropy crisis”

dk-cond

Ï as d → dk,cond, both E n
√

Zk (G) and the cluster size drop

Ï at dk,cond they equalise



Chasing the k-colorability threshold

Theorem [BCOHRV ’13]

We have dk−col ≥ dk,cond.

Ï dk,cond = (2k −1)lnk −2ln2+εk .

Ï Within 2ln2+ok (1) ≈ 1.39 of the first moment.



The condensation phase transition

Theorem [BCOHRV’14]

Assume k > k0 and d > (2k −1)lnk −2. Define

BP : P ([k])γ→P ([k]), BP[µ1, . . . ,µγ](·) ∝ ∏
h∈[γ]

1−µh(·)

T : P 2([k]) →P 2([k]),

π 7→
∞∑
γ=0

dγ exp(−d)

γ!Zγ(π)

∫ [ ∑
h∈[k]

∏
i∈[γ]

1−µi (h)

]
δBP[µ1,...,µγ]d

⊗
j∈[γ]

π(µ j )

Then T has a unique frozen fixed point π∗
d ,k .



The condensation phase transition
B(π) =Be (π)+ 1

k

∑
i∈[k]

∞∑
γ1,...,γk=0

Bv (π; i ;γ)
∏

h∈[k]

(
d

k −1

)γh exp(−d/(k −1))

γh !

Be (π) =− d

2k(k −1)

k∑
h1=1

∑
h2∈[k]\{h1}

∫
ln

[
1− ∑

h∈[k]
µ1(h)µ2(h)

]
d

2⊗
i=1

πhi (µi )

Bv (π; i ;γ) =
∫

ln

[
k∑

h=1

∏
h′∈[k]\{i }

γh′∏
j=1

1−µ( j )
h′ (h)

]
d

⊗
h′∈[k]

γh′⊗
j=1

πh′(µ( j )
h′ )

Theorem (ctd.) [BCOHRV’14]

Further,
d 7→ k(1−1/k)d/2 −exp(B(π∗

d ,k ))

has a unique zero dk,cond.

Ï d < dk,cond ⇒ limE n
√

Zk (G) = k(1−1/k)d/2

Ï d > dk,cond ⇒ limsupE n
√

Zk (G) < k(1−1/k)d/2

Implies that dk−col ≥ dk,cond ≈ (2k −1)lnk −2ln2



Random regular graphs

Theorem [COEH’13]

For large k there is dk−reg s.t. the random regular graph

Ï is k-colorable w.h.p. if d < dk−reg

Ï fails to be k-colorable w.h.p. if d > dk−reg

Ï about 61% of the time dk−reg is not an integer

Ï “small subgraph conditioning” [KPGW’10]



The second moment method

Ï Let Z (G) ≥ 0 and Z (G) > 0 only if G is k-colorable.

Ï Suppose

0 < E[Z 2] ≤C ·E[Z ]2 with C =C (k) > 0.

Ï By the Paley-Zygmund inequality,

P[G is k-col] ≥P
[

Z > 0
]
≥ E[Z ]2

E[Z 2]
> 0.

Lemma [AF ’99]

If liminfP[G is k-col] > 0 for some d , then dk−col ≥ d −o(1).



The Birkhoff polytope

Ï Call σ : [n] → [k] balanced if |σ−1(i )| = n
k for all i .

Ï Let Zk,bal = #balanced k-colorings of G.

Ï Then
1

n
lnE[Zk,bal] ∼ lnk + d

2
ln(1−1/k).

Ï Define the k ×k overlap matrix %(σ,τ) by

%i j (σ,τ) = k

n
· ∣∣σ−1(i )∩τ−1( j )

∣∣ .

Ï Doubly-stochastic because σ,τ are balanced.



Balanced colorings

Ï Let R = {all possible overlap matrices} and

Z%,bal = #
{
(σ,τ) balanced k-colorings with overlap %

}
.

Ï Then
E[Z 2

k,bal] =
∑
%∈R

E[Z%,bal]

and thus
lnE[Z 2

k,bal] ∼ max
%∈R

lnE[Z%,bal]



Balanced colorings

Ï We have
lnE[Z 2

k,bal] ∼ max
%∈R

lnE[Z%,bal].

Ï Furthermore,

1

n
lnE[Z%,bal] ∼ f (%) = H(%)+E(%), where

H(%) = lnk − 1

k

k∑
i , j=1

%i j ln(%i j ) [“entropy”]

E(%) = d

2
ln

[
1− 2

k
+ 1

k2

k∑
i , j=1

%2
i j

]
[“probability”]



Balanced colorings

Ï As n →∞, R is dense in the Birkhoff polytope

D = {
doubly-stochastic k ×k matrices

}
.

Ï Hence,
1

n
lnE[Z 2

k,bal] ∼ max
%∈D

f (%).

Ï At the barycenter %̄= 1
k 1 we have

f (%̄) ∼ 2

n
lnE[Zk,bal].

Ï E[Z 2
k,bal] ≤C ·E[Zk,bal]

2 ⇔ max%∈D f (%) is attained at %̄.



The singly-stochastic bound

Theorem [AN’05]

Let
S = {

singly-stochastic k ×k matrices
}

.

For d ≤ dk,AN = 2k lnk −2lnk −2 we have

max
%∈D

f (%) ≤ max
%∈S

f (%) ≤ f (%̄).

Proof

Ï Optimisation over a product of simplices.

Ï Going to the 6th derivative. . .



Singly vs. doubly-stochastic








Ï For d > dk,AN, max%∈S f (%) is attained near %half with

%half,i j =
{

1i= j if i ≤ k/2,
1
k if i > k/2.

Ï %half fails to be doubly-stochastic.



Singly vs. doubly-stochastic








Ï For d > dk,cond − (1+ ln2)

%stable = (1−1/k)id+k−21 satisfies f (%stable) > f (%̄).

Ï Thus, max%∈D f (%) > f (%̄).



Clustering

Ï Assume k lnk < d < dk,cond.

Ï Clusters C1, . . . ,CN .

Ï maxi≤N |Ci | ≤ exp(−Ω(n)) ·Zk,bal.

Ï Clusters are well-separated.

Key idea

Add constraints to the maximisation problem to reflect clustering.



Tame colorings

Definition

A balanced k-coloring σ is tame if

Ï its cluster

C (σ) = {
τ : %i i (σ,τ) > 0.51 for all i = 1, . . . ,k

}
has size |C (σ)| ≤ E[Zk,bal],

Ï for any balanced k-coloring τ and any 1 ≤ i , j ≤ k we have

%i j (σ,τ) > 0.51 ⇒ %i j (σ,τ) ≥ 1− ln2 k

k
.



The first moment

Proposition

Let Zk,tame = #good k-colorings. Then for d < dk,cond,

E[Zk,tame] ∼ E[Zk,bal].

Proof

Ï Consider the planted model.

Ï Exhibit a frozen core.

Ï Cluster size???



The second moment

Proposition [“second moment”]

For d < dk,cond, E[Z 2
k,tame] ≤C ·E[Zk,tame]2.

Ï Call a doubly-stochastic % separable if

%i j > 0.51 ⇒ %i j ≥ 1− ln2 k

k
for all i , j .

Ï Call % s-stable if s = #
{
(i , j ) : %i j > 0.51

}
.

Ï Let

Ds,tame =
{
all s-stable separable %

}
and Dtame =

k−1⋃
s=0

Ds,tame.



The second moment








Ï We have
1

n
lnE[Z 2

k,tame] ∼ max
%∈Dtame

f (%).

Ï Note that %stable 6∈Dtame.



The second moment










Key insight

Let d ≤ dk,cond and 0 ≤ s < k. On Ds,tame the maximiser has the form

µi j (s) =


1−α if i = j ≤ s,
β if i 6= j , i , j ≤ s
γ if i , j > s,
ζ otherwise.



The cluster size

The planted model

Ï choose a random map σ̂ : [n] → [k]

Ï choose a random graph Ĝ given that σ̂ is a k-coloring



The cluster size

The cluster

Ï assuming d > (1+ε)k lnk, define

C (Ĝ,σ̂) =
{
τ : min

j∈[k]

|τ−1( j )∩ σ̂−1( j )|
|σ̂−1( j )| ≥ 0.99

}
Ï equivalent to other natural definitions [M’12]



The cluster size

Lemma [COV’13]

We have E n
√

Zk (G) ∼ n
√
E[Zk (G)] iff with high probability

n
√

C (Ĝ,σ̂) ≤ n
√
E[Z ] ∼ k(1−1/k)d/2

Ï Hence, we need to calculate
n
√

C (Ĝ,σ̂)



Belief Propagation

μv→w 

v w
μw→v 

 

Messages

Ï messages µ(t )
v→w ( · ) ∈P ([k]) for any adjacent pair (v, w)

Ï initialise µ(0)
v→w ( j ) = 1{σ̂(v) = j }



Belief Propagation

μv→w 

v

w

μu→v 

 
u

The update rule

Ï define for t ≥ 0 and adjacent (v, w)

µ(t+1)
v→w ( j ) ∝ ∏

u∈∂v\w
1−µ(t )

u→v ( j )

Ï let
µ∗

v→w ( · ) = lim
t→∞µ

(t )
v→w ( · )



Belief Propagation

The Bethe free energy

Ï define

µ∗
v ( j ) ∝ ∏

u∈∂v
1−µ∗

u→v ( j ),

µ∗
(v,w)(i , j ) ∝ 1{i 6= j }µ∗

v→w (i )µ∗
w→v ( j ),

B(µ∗) =∑
v

(1−d(v))H(µ∗
v )+ 1

2

∑
(v,w)

H(µ∗
(v,w))

Ï Physics prediction:
n
√

C (Ĝ,σ̂) ∼ exp(B(µ∗))



Warning Propagation

λ v→w 

v

w

λ u→v 

u

Discrete messages

Ï λ(t )
v→w ( j ) ∈ {0,1} for any (v, w), j ∈ [k]

Ï initialise λ(0)
v→w ( j ) = 1{σ̂(v) = j }



Warning Propagation

λ v→w 

v

w

λ u→v 

u

Discrete updates

Ï define for t ≥ 0 and adjacent (v, w)

λ(t+1)
v→w ( j ) = min

h 6= j
max

u∈∂v\w
λ(t )

u→v (h)

Ï let
λ∗

v→w ( j ) = lim
t→∞λ

(t )
v→w ( j )



Warning Propagation

λ v→w 

v

w

λ u→v 

u

Frozen vertices

Ï define
λ∗

v ( j ) = 1− max
u∈∂v\w

λ∗
u→v ( j )

Ï then
λ∗

v ( j ) = 0 ⇔µ∗
v ( j ) = 0



List coloring

Lemma

W.h.p. C (Ĝ,σ̂) is the set of all colorings such that for all v ,

τ(v) ∈Λ∗(v) = {
j ∈ [k] :λ∗

v ( j ) = 1
}

Lemma

Obtain G̃ ⊂ Ĝ by deleting all edges {v, w} such that

Λ∗(v)∩Λ∗(w) =;.

Then τ is a list coloring of Ĝ iff τ is a list coloring of G̃.



A branching process

v

The local structure of G̃

Ï pick a random vertex v and consider ∂ω
G̃

v . . .

Ï . . . including the color lists

Ï most likely acyclic



A branching process
v

A random tree

Ï set of types L = {(i ,`) : i ∈ `⊂ [k]}

Ï define a suitable distribution q = (qi ,`) on L

Ï specifically,

q(i ,`) =
(1−exp(−%d/(k −1)))k−|`|

k exp(%d/(k −1))|`|−1
, where

%= (1−exp(−%d/(k −1)))k−1



A branching process
v

A random tree

Ï set of types L = {(i ,`) : i ∈ `⊂ [k]}

Ï choose the type of the root vertex from q

Ï a vertex of type (i ,`) spawns

Po(d qi ′,`′)

children of type (i ′,`′), provided i 6= i ′, `∩`′ 6= ;
Ï T = resulting tree



A branching process

v

Lemma

Ï T captures the local structure of G̃

Ï T is finite almost surely

Ï E |T |pZ (T ) = exp(B(π∗
d ,k ))

Corollary

With high probability we have
n
√

C (Ĝ,σ̂) ∼ exp(B(π∗
d ,k ))



Upper bounding the k-colorability threshold

Theorem [CO’13]

We have dk−col ≤ (2k −1)lnk −1−o(1)

Ï first moment over Warning Propagation fixed points

Ï vanilla first moment dk−col ≤ (2k −1)lnk



Long-range vs short-range

Local structure

Ï fix t > 0 and choose v randomly ⇒ ∂t (G, v) is a tree w.h.p.

Ï the local structure converges to a Galton-Watson tree



Long-range vs short-range

Questions

Ï A random probability measure on [k]n

Ï Are there “forbidden” local colorings?



The Boltzmann distribution

Ï let Sk (G) = {k-colorings of G} and Zk (G) = |Sk (G)|
Ï define a probability measure

µk,G : [k]V (G) → [0,1], σ 7→ 1 {σ ∈Sk (G)}

Zk (G)

Ï for U ⊂V (G) define a distribution on [k]U by

µk,G|U (σ0) =µk,G
{
σ ∈ [k]V (G) : ∀x ∈U :σ(x) =σ0(x)

}
Ï letting σ1,σ2, . . . be independet samples from µk,G , write

〈X (σ1, . . . ,σl )〉 = 1

Zk (G)l

∑
σ1,...,σl∈Sk (G)

X (σ1, . . . ,σl )



Correlation decay

Theorem [COEJ’14]

Let d < dk,cond and fix t > 0. Then

lim
n→∞

1

n

∑
v∈[n]

E
∥∥µk,G|∂t (G,v) −µk,∂t (G,v)

∥∥= 0.

Ï “The coloring induced on the depth-t neighborhood of v is
asymptotically uniform.”



Correlation decay

Theorem [COEJ’14]

Let d < dk,cond and fix l > 0. Then

lim
n→∞

1

nl

∑
v1,...,vl

E

∥∥∥∥∥µk,G|{v1,...,vl } −
l⊗

i=1
µk,G|{vi }

∥∥∥∥∥= 0.

Ï “asymptotic l-wise independence”

Ï earlier work: d < 2(k −1)ln(k −1) [MRT’11]



Correlation decay

Theorem [COEJ’14]

Let d < dk,cond and fix l , t > 0. Then

lim
n→∞

1

nl

∑
v1,...,vl

E

∥∥∥∥∥µk,G|∂t (G,v1)∪···∪∂t (G,vl ) −
l⊗

i=1
µk,∂t (G,vi )

∥∥∥∥∥= 0.

Ï “asymptotic l-wise independence and uniformity”



Reconstruction

Corollary [COEJ’14]

Assume that d < dk,cond. Then

non-reconstruction in G ⇔ non-reconstruction in T(d ,k).

Ï previously known for d < 2(k −1)ln(k −1) [MRT’11]

Ï reconstruction threshold in T(d ,k) is ∼ k lnk [E’14]



Bicolored graphs

The random replica model

Ï Generate a random graph G.

Ï Sample two k-colorings σ1,σ2 uniformly and independently.



Bicolored graphs

The planted replica model

Ï Choose σ′
1,σ′

2 : [n] → [k] uniformly and independently.

Ï G′ = random graph given that σ′
1,σ′

2 are k-colorings.

Ï Easy to analyse: local structure converges to branching process



Bicolored graphs

Key lemma [COEJ’15]

If d < dk,cond, then random replica / planted replica.



Bicolored graphs

Completing the proof

Ï study the statistics of bicolored trees in the planted model

Ï the result carries over to the random replica model

Ï the theorem follows from an averaging argument



Bicolored graphs

Averaging replicas [GM’07]

To show
E
∥∥µk,G|{v1,v2} −µk,G|{v1} ⊗µk,G|{v2}

∥∥→ 0,

use

E
[〈

1 {σ(v1) = c1}1 {σ(v2) = c2}−k−2〉2
]

= E
〈

2∏
j=1

(
1

{
σ j (v1) = c1

}
1

{
σ j (v2) = c2

}−k−2)〉



Summary

Ï physics-inspired rigorous proofs

Ï thorough understanding for d < dk,cond

Ï techniques generalise to other problems

Ï open problem: dk−col


