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A simple question...

“What is the chromatic number of G(n, m)?” [ER 60]

» nvertices

» m=dn/2random edges



...that lacks a simple answer

» Early work: a factor two approximation

> the greedy algorithm [GMcD ’'75; BE '76]

> sparse case [SU ’84]
» Getting the asymptotics right

» factor ‘3—1 approximation [(M’87]

» factor 1+ 0(1) for d > n?/3... [B’88]

> ...and indeed for d > 1 [£91]
» Concentration results

» Concentration within O(y/n). [SS 1987]

» Two-point concentration for d < n'/6. .. [£.1991]

» ...and in fact for d < nl/?. [AK 1997]



Two moments do not suffice

The k-colorability threshold [ER’60]

» consider G = G(n,m) with2m/n ~ d

let Z.(G) = #k-colorings

» 1st moment di—col < 2k—1)Ink

2nd moment di_col=2k—-2)Ink [AN’05]
improved bound  dg_co1< 2k—-1)Ink—-1+0(1) [CO’13]
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The “cavity method”

The “cavity method”

» A generic but “recipe’. [“Belief/Survey Propagation”]

» A precise prediction as to the k-colorability threshold.
» Avariety of “predictions” in

» mathematical physics,

> information theory,

> probabilistic combinatorics,

> compressive sensing.



The “cavity method”

Conjectures [KMRTSZ’07]
> the k-colorability threshold is
ie—col = Ck— 1D Ink -1+ o(1)
» there occurs a condensation phase transition at
di,cond = 2k—1)Ink—2In2 + o(1)

» non-rigorous calculations based on Belief Propagation



“Replica symmetry breaking”

“Replica symmetry”

» Can walk from one coloring to any another.
» Only short-range effects matter.

» Simple coloring algorithms succeed.

L 2



“Replica symmetry breaking”

L 2

kln k dk,cond

“Dynamic replica symmetry breaking”

» The set of k-colorings shatters into tiny clusters.[ACO’08, M’12]
» Long-range effects emerge, stalling algorithms.

» Yet pairs of solutions “look uncorrelated”.



“Replica symmetry breaking”

“Condensation”

» A bounded number of clusters dominate.
» Pairs of solutions are heavily correlated.

» Asecond “phase transition”.

v



The “entropy crisis”

dk-cond

> as d — dj cond, both E{/ Z;(G) and the cluster size drop
> at d cond they equalise



Chasing the k-colorability threshold

Theorem [BCOHRV '13]

We have dk—col = dk,cond'

» dicond=(2k—1)Ink—2In2+¢;.
» Within 2In2 + 0;(1) = 1.39 of the first moment.



The condensation phase transition

Theorem [BCOHRV’14]
Assume k > kg and d > 2k —1)In k — 2. Define

BP: 2 (k)Y — 2([k]), BP[p1, ..., iyl (o [] 1= pn()
hely]

T : (k) — 2% ([k)),
X dVexp(—d)

T

& rz,m

O | R EITHCD

helk] i€lyl

Jelyl

Then ™ has a unique frozen fixed point 77, , .



The condensation phase transition
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Theorem (ctd.) [BCOHRV’14]

Further,
d— k(1-1/k)"* - exp(B(n; )

has a unique zero dj cond-
> d < di.cond = IME {/Z;(G) = k(1 - 1/k)%'?
> d > di.cond = limsupE{/Z(G) < k(1 —1/k)%?

Implies that dy._co) = dj,cond = 2k—1)Ink —2In2



Random regular graphs

N
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Theorem [COEH’13]

For large k there is di_reg s.t. the random regular graph

> is k-colorable w.h.p. if d < d_reg
> fails to be k-colorable w.h.p. if d > dj_reg

» about 61% of the time d._eg is not an integer

» “small subgraph conditioning” [KPGW’10]



The second moment method

» Let Z(G) = 0and Z(G) > 0 only if G is k-colorable.
» Suppose

0<E[Z*]|<C-E[Z]* with C=C(k)>0.
» By the Paley-Zygmund inequality,

E[Z]?
E[Z2]

P[G is k-col] = P[Z> 0] >

Lemma [AF '99]
IfliminfP[G is k-col] > 0 for some d, then dj_.q1 = d — o(1).



The Birkhoff polytope

\4

Call ¢ : [n] — [k] balanced if |71 (i)| = % forall i.
Let Zy pa1 = #balanced k-colorings of G.
Then

v

v

1 d
— ln[E[Zk,bal] ~Ink+ E In(1-1/k).
n
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Define the k x k overlap matrix p(o, 7) by

k 1, 1, -
Qij(U,T):E‘la @nt ().

v

Doubly-stochastic because o, T are balanced.



Balanced colorings

> Let Z = {all possible overlap matrices} and

Zo bal = #{(0,7) balanced k-colorings with overlap p} .

» Then

ElZ; .= Y, ELZ;pal
0ER

and thus
ln[E[Zkb il = rnaxln[E[ Zp,ball



Balanced colorings

» We have
2
ln[E[Zk’baI] ~ glezgdn[E[Zg,bal]-

» Furthermore,

1
EIU[E[Zp,baI] ~ f(@)=H(p)+E(p), where

1 k
H) = lnk—E Z eijIn(p;;) [“entropy”]
i,j=1
E(p) = < i 2| [“probability”]




Balanced colorings

v

As n — oo, Z is dense in the Birkhoff polytope

2 = {doubly-stochastic k x k matrices}.

» Hence,

1
—InE[ZZ, ] ~ :
. In (Z b r;leag}f(p)

v

At the barycenter g = %1 we have

2
f@~ ;ln[E[Zk,bal]-

\4

[E[Z,f,bal] < C-E[Zy,pall® © maxyey f(0) is attained at g.



The singly-stochastic bound

Theorem

Let

& = {singly-stochastic k x k matrices} .

Ford < dyan =2kInk —2Ink — 2 we have

Iglegf (o) = Igga;f (0 = f(0).

Proof

» Optimisation over a product of simplices.

» Going to the 6th derivative...

[AN’05]



Singly vs. doubly-stochastic

» For d > dj an, maxpe # f () is attained near ppqf with

li:j ifi<k/2,

Ohalf,ij = { % ifi > k/2.

> Ohalf fails to be doubly-stochastic.



Singly vs. doubly-stochastic

pstable

» For d > dj cong— (1+1n2)
Ostable = (1 —1/k)id + k721 satisfies [ (Ostable) > f(0).

» Thus, maxpeq f(0) > f(0).



Clustering
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Assume klnk < d < dj,cond-
Clusters 61, ...,6N.
max;<n |6l < exp(—=Q(n)) - Z par-

\4
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Clusters are well-separated.

Key idea

Add constraints to the maximisation problem to reflect clustering.



Tame colorings

Definition
A balanced k-coloring o is tameif

» its cluster
€(0)={r:pii(0,7)>051 foralli=1,...,k}

has size |€ (0)| < E[Zg pall,

» for any balanced k-coloring 7 and any 1 < i, j < k we have

In® k
0ij(0,7)>0.51 = 0j(0,1) =1~ ——.



The first moment

Proposition

Let Zk tame = #goo0d k-colorings. Then for d < dj. cond,

E[Zk tamel ~ E[Zk ball-

Proof

» Consider the planted model.
» Exhibit a frozen core.

» Cluster size???



The second moment

Proposition [“second moment”]

Ford < dk,condy [E[Zi I=C- [E[Zk,tame]z-

,tame

» Call a doubly-stochastic p separable if

In? k ..
pij>0.51 391-]-21—7 forall i, j.

» Call p s-stableif s =#{(i, j) : ij > 0.51}.
> Let

k-1
D tame = {all s-stable separable p} and Diame = | Ds,tame-
s=0



The second moment

» We have ]
2
Eln[E[Zk,tame] ~ Qlegax f ().

tame

» Note that Psiapie € Zrame-



The second moment

pslable

Key insight

Let d < dj,cond and 0 < s < k. On YD tame the maximiser has the form

l-a ifi=j<s,
ifi#ji,j<s
ifi,j>s,
otherwise.

Hij(s) =

~N=<= |



The cluster size

The planted model

» choose arandom map 4 : [n] — [k]

» choose a random graph G given that § is a k-coloring



The cluster size

The cluster

» assuming d > (1 +¢€)kInk, define

=iy P
%(G,é’):{r:minlr Lino (])|zo.99}
jelkl 161

» equivalent to other natural definitions [M’'12]



The cluster size

Lemma [COV’13]
We have E{/Zy(G) ~ {/E[Z(G)] iff with high probability

\/€(G,6) < VEIZ] ~ k(1 —-1/k)%?

» Hence, we need to calculate /€ (G, )



Belief Propagation

Messages

> messages u(,f)_,w(-) € P([k]) for any adjacent pair (v, w)

» initialise p. , (j) = 1{6 (v) = j}




Belief Propagation
w (O

v—w
\%

o5

The update rule

> define for ¢ = 0 and adjacent (v, w)

ptnMoc T 1-ply()
ueov\w
> let

My () = lim 2, ()



Belief Propagation

The Bethe free energy
» define

(o< T 1=pi, (),

ueov

o) (o J) o< 1i #j}/-l;_,w(i)ﬂ;/ﬁv(j)'
B =Y - d(v))H(u,,)+ 2 Hg, )

(v,w)

» Physics prediction: V/€(G, &) ~ exp(B(u*))



Warning Propagation

A vV—w

b8

Discrete messages

» AP (j) € 10,1} for any (v, w), j € [K]

> initialise A%, ,(j) = 1{6'(v) = j}



Warning Propagation

w (O

A vV—w

\Y

b8

Discrete updates

> define for ¢ = 0 and adjacent (v, w)

t+1)

U_,w(]) min max /1(_,,,(11)

h#j uedv\w

> let
(j) = hm AD ()

v—»w v—w



Warning Propagation

w (O

AV‘)W
%
Au—v
u
Frozen vertices
» define
A:(]) =1- max AZ—»V(].)
ueov\w
» then

A5()=0e p5(j)=0



List coloring

Lemma
Wh.p. € (G, 0) is the set of all colorings such that for all v,

TW) e N () ={jelkl: A5() =1}
Lemma
Obtain G c G by deleting all edges {v, w} such that
AN W) NA*(w) = .

Then 7 is a list coloring of G iff 7 is a list coloring of G.



A branching process

The local structure of G

» pick arandom vertex v and consider ag v...
» ...including the color lists

» most likely acyclic



A branching process

A random tree

» setoftypes £ ={(i,¢):ielclk]}
» define a suitable distribution g = (g; ) on £
» specifically,

(1 - exp(—pd/ (k- 1))k
kexp(pd/(k—1))1¢I-1
0= (1-exp(—pd/(k—1))*!

,  Where

qa,0 =



A branching process

A random tree

» setoftypes £ ={(i,¢):ielclk]}
» choose the type of the root vertex from g

» avertex of type (i, ¢) spawns
PO(dqir,(r)

children of type (i’, ¢'), provided i #i’, ¢ Nl # @

» T =resulting tree



A branching process

Lemma

» T captures the local structure of G

» T is finite almost surely

» E'VZ(T) = exp(.%(n;’k))

Corollary

With high probability we have \/ € (G, ) ~ exp(%B(r; )



Upper bounding the k-colorability threshold

Theorem [CO’13]
We have dj_co1 < 2k—1)Ink—-1-0(1)

» first moment over Warning Propagation fixed points

» vanilla first moment dj_.q < 2k—1)Ink



Long-range vs short-range

Local structure

» fix £ > 0 and choose v randomly = 8! (G, v) is a tree w.h.p.

» the local structure converges to a Galton-Watson tree



Long-range vs short-range

Questions

» A random probability measure on [k]”

» Are there “forbidden” local colorings?



The Boltzmann distribution

v

let #(G) = {k-colorings of G} and Zy(G) = |.%(G)|
define a probability measure

v

1{o € #(G)}

k1Y@ = 0,11,
i, - [k [0,1], o Z:(G)

\4

for U c V(G) define a distribution on [k]V by

Lk,Glu(00) = prcio e (K1Y Yxe Ui o(x) = o9(x)}

v

letting 01, 07,... be independet samples from p ;, write

1
(X((T],...,U]))Z Z X(Ul)---yal)

Z(G) 4. oG



Correlation decay

Sm——

Theorem [COEJ’14]
Let d < dj,cong and fix ¢ > 0. Then

» “The coloring induced on the depth-¢ neighborhood of v is
asymptotically uniform.”



Correlation decay

——————
- -~

1:‘ ____ “\\ AN
:;’ '\\ N \
é--Q-0-0-9
~ \\ f, /‘
\\.\.__—--__ —:,’
Theorem [COEJ’14]

Let d < dj cond and fix [ > 0. Then

1
Bk,Glivy,vi} — ®#k Gl{v}

=

=0.

hm— Z E

n—»oon Uiy U1

» “asymptotic [-wise independence”
» earlier work: d <2(k—1)In(k-1) [MRT’11]



Correlation decay

Theorem [COEJ’14]
Let d < dj,cond and fix [, ¢ > 0. Then

l

Hk,Glo! (G, vy)u--0d! (G,v)) — ®Mk 0" (G,v;)
i=1

hrni Z E =[()}

n—»oon Uy U1

» “asymptotic [-wise independence and uniformity”



Reconstruction

deceed
Corollary [COEJ’14]

Assume that d < dj, ¢ong- Then

non-reconstruction in G & non-reconstruction in T(d, k).

» previously known for d < 2(k—1)In(k—1) [MRT’11]
» reconstruction threshold in T(d, k) is ~ kln k [E’'14]



Bicolored graphs

The random replica model

» Generate a random graph G.

» Sample two k-colorings o1, 0> uniformly and independently.



Bicolored graphs

The planted replica model

» Choose 0,07 : [n] — [k] uniformly and independently.

» G’ = random graph given that ¢}, 0, are k-colorings.

» Easy to analyse: local structure converges to branching process



Bicolored graphs

Key lemma [COEJ’15]
If d < dy cond, then random replica < planted replica.



Bicolored graphs

Completing the proof

» study the statistics of bicolored trees in the planted model
> the result carries over to the random replica model

> the theorem follows from an averaging argument



Bicolored graphs

Averaging replicas [GM’07]
To show
E | k610,000 = BGiton) ® B Gliws) | — 0,

use

E[(Lio () = i} 1o () = e} - k2]



Summary

» physics-inspired rigorous proofs
» thorough understanding for d < dj. cond
» techniques generalise to other problems

» open problem: dj_co



