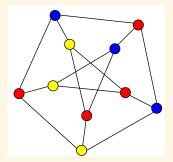
Random Graph Coloring

Amin Coja-Oghlan

Goethe University Frankfurt

A simple question...



"What is the chromatic number of G(n, m)?"

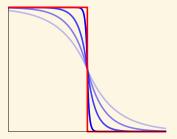
[ER 60]

- ► *n* vertices
- m = dn/2 random edges

... that lacks a simple answer

Early work: a factor two approximation	
 the greedy algorithm 	[GMcD '75; BE '76]
 sparse case 	[SU '84]
Getting the asymptotics right	
• factor $\frac{4}{3}$ approximation	[M'87]
• factor $1 + o(1)$ for $d \gg n^{2/3}$	[B'88]
• and indeed for $d \gg 1$	[Ł'91]
Concentration results	
• Concentration within $O(\sqrt{n})$.	[SS 1987]
• Two-point concentration for $d \ll n^{1/6}$	[Ł 1991]
• and in fact for $d \ll n^{1/2}$.	[AK 1997]

Two moments do not suffice



The *k*-colorability threshold

[ER'60]

- consider $\mathbf{G} = \mathbf{G}(n, m)$ with $2m/n \sim d$
- let $Z_k(\mathbf{G}) = \#k$ -colorings
- ► 1st moment $d_{k-col} \le (2k-1)\ln k$
- ► 2nd moment $d_{k-col} \ge (2k-2)\ln k$ [AN'05]
- ▶ improved bound $d_{k-col} \le (2k-1)\ln k 1 + o(1)$ [CO'13]

The "cavity method"

The "cavity method"

- ► A generic but "recipe". ["Belief/Survey Propagation"]
- A precise prediction as to the *k*-colorability threshold.
- A variety of "predictions" in
 - mathematical physics,
 - information theory,
 - probabilistic combinatorics,
 - compressive sensing.

Conjectures

[KMRTSZ'07]

• the *k*-colorability threshold is

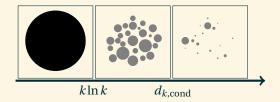
 $d_{k-\text{col}} = (2k-1)\ln k - 1 + o(1)$

there occurs a condensation phase transition at

 $d_{k,\text{cond}} = (2k-1)\ln k - 2\ln 2 + o(1)$

non-rigorous calculations based on Belief Propagation

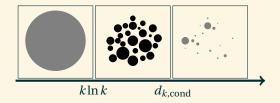
"Replica symmetry breaking"



"Replica symmetry"

- Can walk from one coloring to any another.
- Only *short-range* effects matter.
- Simple coloring algorithms succeed.

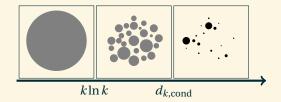
"Replica symmetry breaking"



"Dynamic replica symmetry breaking"

- ▶ The set of *k*-colorings shatters into tiny clusters.[ACO'08, M'12]
- ► *Long-range* effects emerge, stalling algorithms.
- Yet pairs of solutions "look uncorrelated".

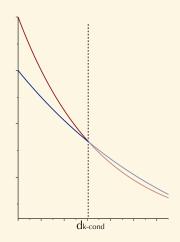
"Replica symmetry breaking"



"Condensation"

- A *bounded* number of clusters dominate.
- Pairs of solutions are *heavily correlated*.
- A second "phase transition".

The "entropy crisis"



- ▶ as $d \to d_{k,\text{cond}}$, both $\mathbb{E}\sqrt[n]{Z_k(\mathbf{G})}$ and the cluster size drop
- at $d_{k,\text{cond}}$ they equalise

Chasing the *k*-colorability threshold

Theorem

[BCOHRV'13]

We have $d_{k-\text{col}} \ge d_{k,\text{cond}}$.

- $d_{k,\text{cond}} = (2k-1)\ln k 2\ln 2 + \varepsilon_k$.
- Within $2\ln 2 + o_k(1) \approx 1.39$ of the first moment.

The condensation phase transition

Theorem

[BCOHRV'14]

Assume $k > k_0$ and $d > (2k - 1) \ln k - 2$. Define

$$\begin{split} & \mathrm{BP} : \mathcal{P}([k])^{\gamma} \to \mathcal{P}([k]), \qquad \mathrm{BP}[\mu_1, \dots, \mu_{\gamma}](\cdot) \propto \prod_{h \in [\gamma]} 1 - \mu_h(\cdot) \\ & \mathcal{T} : \mathcal{P}^2([k]) \to \mathcal{P}^2([k]), \\ & \pi \mapsto \sum_{\gamma=0}^{\infty} \frac{d^{\gamma} \exp(-d)}{\gamma! Z_{\gamma}(\pi)} \int \left[\sum_{h \in [k]} \prod_{i \in [\gamma]} 1 - \mu_i(h) \right] \delta_{\mathrm{BP}[\mu_1, \dots, \mu_{\gamma}]} \mathbf{d} \bigotimes_{j \in [\gamma]} \pi(\mu_j) \end{split}$$

Then \mathcal{T} has a unique frozen fixed point $\pi^*_{d,k}$.

The condensation phase transition

G

$$\begin{aligned} \mathscr{B}(\pi) &= \mathscr{B}^{e}(\pi) + \frac{1}{k} \sum_{i \in [k]} \sum_{\gamma_{1}, \dots, \gamma_{k}=0}^{\infty} \mathscr{B}^{\nu}(\pi; i; \gamma) \prod_{h \in [k]} \left(\frac{d}{k-1}\right)^{\gamma_{h}} \frac{\exp(-d/(k-1))}{\gamma_{h}!} \\ \mathscr{B}^{e}(\pi) &= -\frac{d}{2k(k-1)} \sum_{h_{1}=1}^{k} \sum_{h_{2} \in [k] \setminus \{h_{1}\}} \int \ln \left[1 - \sum_{h \in [k]} \mu_{1}(h) \mu_{2}(h)\right] d \bigotimes_{i=1}^{2} \pi_{h_{i}}(\mu_{i}) \\ \mathscr{B}^{\nu}(\pi; i; \gamma) &= \int \ln \left[\sum_{h=1}^{k} \prod_{h' \in [k] \setminus \{i\}} \prod_{j=1}^{\gamma_{h'}} 1 - \mu_{h'}^{(j)}(h)\right] d \bigotimes_{h' \in [k]} \sum_{j=1}^{\gamma_{h'}} \pi_{h'}(\mu_{h'}^{(j)}) \end{aligned}$$

Theorem (ctd.)

[BCOHRV'14]

Further,

$$d \mapsto k(1-1/k)^{d/2} - \exp(\mathscr{B}(\pi_{d,k}^*))$$

has a unique zero $d_{k,\text{cond}}$.

- $d < d_{k,\text{cond}} \Rightarrow \lim \mathbb{E} \sqrt[n]{Z_k(\mathbf{G})} = k(1 1/k)^{d/2}$
- $d > d_{k,\text{cond}} \Rightarrow \limsup \mathbb{E} \sqrt[n]{Z_k(\mathbf{G})} < k(1 1/k)^{d/2}$

Implies that $d_{k-\text{col}} \ge d_{k,\text{cond}} \approx (2k-1)\ln k - 2\ln 2$

Random regular graphs

Theorem

[COEH'13]

For large *k* there is $d_{k-\text{reg}}$ s.t. the random regular graph

- is *k*-colorable w.h.p. if $d < d_{k-\text{reg}}$
- fails to be *k*-colorable w.h.p. if $d > d_{k-\text{reg}}$

- about 61% of the time $d_{k-\text{reg}}$ is not an integer
- "small subgraph conditioning"

[KPGW'10]

The second moment method

- Let $Z(\mathbf{G}) \ge 0$ and Z(G) > 0 only if *G* is *k*-colorable.
- Suppose

$$0 < \mathbb{E}[Z^2] \le C \cdot \mathbb{E}[Z]^2 \quad \text{with } C = C(k) > 0.$$

By the Paley-Zygmund inequality,

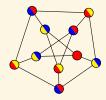
$$\mathbb{P}[\mathbf{G} \text{ is } k\text{-col}] \ge \mathbb{P}\Big[Z > 0\Big] \ge \frac{\mathbb{E}[Z]^2}{\mathbb{E}[Z^2]} > 0.$$

Lemma

[AF '99]

If $\liminf \mathbb{P}[\mathbf{G} \text{ is } k\text{-col}] > 0$ for some *d*, then $d_{k-\text{col}} \ge d - o(1)$.

The Birkhoff polytope



- Call $\sigma: [n] \to [k]$ balanced if $|\sigma^{-1}(i)| = \frac{n}{k}$ for all *i*.
- Let $Z_{k,\text{bal}} = \#$ balanced *k*-colorings of **G**.
- Then

$$\frac{1}{n}\ln\mathbb{E}[Z_{k,\text{bal}}] \sim \ln k + \frac{d}{2}\ln(1-1/k).$$

• Define the $k \times k$ overlap matrix $\rho(\sigma, \tau)$ by

$$\varrho_{ij}(\sigma,\tau) = \frac{k}{n} \cdot \left| \sigma^{-1}(i) \cap \tau^{-1}(j) \right|.$$

• Doubly-stochastic because σ , τ are balanced.

Balanced colorings

• Let $\Re = \{ all possible overlap matrices \}$ and

 $Z_{\varrho,\text{bal}} = \# \{ (\sigma, \tau) \text{ balanced } k \text{-colorings with overlap } \varrho \}.$

Then

$$\mathbb{E}[Z_{k,\text{bal}}^2] = \sum_{\varrho \in \mathscr{R}} \mathbb{E}[Z_{\varrho,\text{bal}}]$$

and thus

$$\ln \mathbb{E}[Z_{k,\text{bal}}^2] \sim \max_{\varrho \in \mathscr{R}} \ln \mathbb{E}[Z_{\varrho,\text{bal}}]$$

Balanced colorings

We have

$$\ln \mathbb{E}[Z_{k,\text{bal}}^2] \sim \max_{\varrho \in \mathscr{R}} \ln \mathbb{E}[Z_{\varrho,\text{bal}}].$$

► Furthermore,

$$\frac{1}{n} \ln \mathbb{E}[Z_{\rho,\text{bal}}] \sim f(\rho) = H(\rho) + E(\rho), \text{ where}$$

$$H(\rho) = \ln k - \frac{1}{k} \sum_{i,j=1}^{k} \rho_{ij} \ln(\rho_{ij}) \quad \text{["entropy"]}$$

$$E(\rho) = \frac{d}{2} \ln \left[1 - \frac{2}{k} + \frac{1}{k^2} \sum_{i,j=1}^{k} \rho_{ij}^2 \right] \quad \text{["probability"]}$$

Balanced colorings

• As $n \to \infty$, \mathscr{R} is dense in the Birkhoff polytope

 $\mathcal{D} = \{ \text{doubly-stochastic } k \times k \text{ matrices} \}.$

► Hence,

$$\frac{1}{n} \ln \mathbb{E}[Z_{k,\text{bal}}^2] \sim \max_{\varrho \in \mathcal{D}} f(\varrho).$$

• At the barycenter $\bar{\varrho} = \frac{1}{k} \mathbf{1}$ we have

$$f(\bar{\varrho}) \sim \frac{2}{n} \ln \mathbb{E}[Z_{k,\text{bal}}].$$

► $\mathbb{E}[Z_{k,\text{bal}}^2] \le C \cdot \mathbb{E}[Z_{k,\text{bal}}]^2 \Leftrightarrow \max_{\varrho \in \mathcal{D}} f(\varrho) \text{ is attained at } \bar{\varrho}.$

The singly-stochastic bound

Theorem

[AN'05]

Let

 $\mathscr{S} = \{ \text{singly-stochastic } k \times k \text{ matrices} \}.$

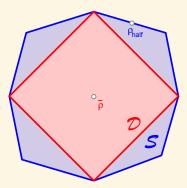
For $d \le d_{k,AN} = 2k \ln k - 2 \ln k - 2$ we have

$$\max_{\varrho \in \mathcal{D}} f(\varrho) \le \max_{\varrho \in \mathcal{S}} f(\varrho) \le f(\bar{\varrho}).$$

Proof

- Optimisation over a product of simplices.
- Going to the 6th derivative...

Singly vs. doubly-stochastic

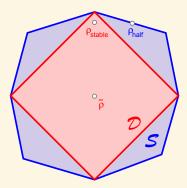


► For $d > d_{k,AN}$, $\max_{\rho \in \mathscr{S}} f(\rho)$ is attained near ρ_{half} with

$$\rho_{\text{half},ij} = \begin{cases} \mathbf{1}_{i=j} & \text{if } i \le k/2, \\ \frac{1}{k} & \text{if } i > k/2. \end{cases}$$

• ρ_{half} fails to be doubly-stochastic.

Singly vs. doubly-stochastic



• For $d > d_{k,cond} - (1 + \ln 2)$

 $\rho_{\text{stable}} = (1 - 1/k)\text{id} + k^{-2}\mathbf{1}$ satisfies $f(\rho_{\text{stable}}) > f(\bar{\rho})$.

• Thus,
$$\max_{\varrho \in \mathcal{D}} f(\varrho) > f(\bar{\varrho})$$
.

Clustering

- Assume $k \ln k < d < d_{k,\text{cond}}$.
- Clusters $\mathscr{C}_1, \ldots, \mathscr{C}_N$.
- $\max_{i \le N} |\mathscr{C}_i| \le \exp(-\Omega(n)) \cdot Z_{k,\text{bal}}.$
- Clusters are well-separated.

Key idea

Add constraints to the maximisation problem to reflect clustering.

Tame colorings

Definition

A balanced *k*-coloring σ is *tame* if

► its *cluster*

$$\mathscr{C}(\sigma) = \left\{ \tau : \varrho_{ii}(\sigma, \tau) > 0.51 \text{ for all } i = 1, \dots, k \right\}$$

has size $|\mathscr{C}(\sigma)| \leq \mathbb{E}[Z_{k,\text{bal}}]$,

▶ for any balanced *k*-coloring τ and any $1 \le i, j \le k$ we have

$$\varrho_{ij}(\sigma,\tau) > 0.51 \implies \varrho_{ij}(\sigma,\tau) \ge 1 - \frac{\ln^2 k}{k}.$$

The first moment

Proposition

Let $Z_{k,\text{tame}} = \# \text{good } k$ -colorings. Then for $d < d_{k,\text{cond}}$,

 $\mathbb{E}[Z_{k,\text{tame}}] \sim \mathbb{E}[Z_{k,\text{bal}}].$

Proof

- Consider the planted model.
- Exhibit a frozen core.
- Cluster size???

The second moment

Proposition For $d < d_{k,\text{cond}}$, $\mathbb{E}[Z_{k,\text{tame}}^2] \le C \cdot \mathbb{E}[Z_{k,\text{tame}}]^2$.

► Call a doubly-stochastic *ρ separable* if

$$\varrho_{ij} > 0.51 \Rightarrow \varrho_{ij} \ge 1 - \frac{\ln^2 k}{k} \quad \text{for all } i, j.$$

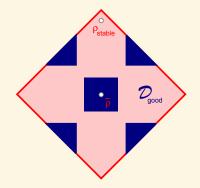
["second moment"]

• Call ρ *s-stable* if $s = \#\{(i, j) : \rho_{ij} > 0.51\}$.

Let

 $\mathcal{D}_{s,\text{tame}} = \{ \text{all } s \text{-stable separable } \varrho \} \text{ and } \mathcal{D}_{\text{tame}} = \bigcup_{s=0}^{k-1} \mathcal{D}_{s,\text{tame}}.$

The second moment

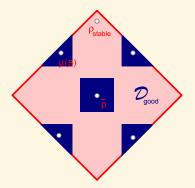


► We have

$$\frac{1}{n}\ln\mathbb{E}[Z_{k,\text{tame}}^2] \sim \max_{\varrho\in\mathscr{D}_{\text{tame}}} f(\varrho).$$

• Note that $\rho_{\text{stable}} \notin \mathcal{D}_{\text{tame}}$.

The second moment



Key insight

Let $d \le d_{k,\text{cond}}$ and $0 \le s < k$. On $\mathcal{D}_{s,\text{tame}}$ the maximiser has the form

$$\mu_{ij}(s) = \begin{cases} 1 - \alpha & \text{if } i = j \le s, \\ \beta & \text{if } i \ne j, i, j \le s \\ \gamma & \text{if } i, j > s, \\ \zeta & \text{otherwise.} \end{cases}$$

The planted model

- choose a random map $\hat{\sigma} : [n] \rightarrow [k]$
- choose a random graph $\hat{\mathbf{G}}$ given that $\hat{\boldsymbol{\sigma}}$ is a *k*-coloring

The cluster

• assuming $d > (1 + \varepsilon)k \ln k$, define

$$\mathscr{C}(\hat{\mathbf{G}}, \hat{\boldsymbol{\sigma}}) = \left\{ \tau : \min_{j \in [k]} \frac{|\tau^{-1}(j) \cap \hat{\boldsymbol{\sigma}}^{-1}(j)|}{|\hat{\boldsymbol{\sigma}}^{-1}(j)|} \ge 0.99 \right\}$$

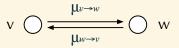
equivalent to other natural definitions [M'12]

The cluster size

Lemma [COV'13] We have $\mathbb{E}\sqrt[n]{Z_k(\mathbf{G})} \sim \sqrt[n]{\mathbb{E}[Z_k(\mathbf{G})]}$ iff with high probability $\sqrt[n]{\mathscr{C}(\hat{\mathbf{G}}, \hat{\boldsymbol{\sigma}})} \leq \sqrt[n]{\mathbb{E}[Z]} \sim k(1 - 1/k)^{d/2}$

• Hence, we need to calculate $\sqrt[n]{\mathscr{C}(\hat{\mathbf{G}}, \hat{\boldsymbol{\sigma}})}$

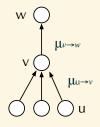
Belief Propagation



Messages

- ▶ messages $\mu_{\nu \to w}^{(t)}(\cdot) \in \mathscr{P}([k])$ for any adjacent pair (ν, w)
- initialise $\mu_{\nu \to w}^{(0)}(j) = \mathbf{1}\{\hat{\boldsymbol{\sigma}}(\nu) = j\}$

Belief Propagation



The update rule

• define for $t \ge 0$ and adjacent (v, w)

$$\mu_{\nu \to w}^{(t+1)}(j) \propto \prod_{u \in \partial \nu \setminus w} 1 - \mu_{u \to \nu}^{(t)}(j)$$

► let

$$\mu_{v \to w}^*(\cdot) = \lim_{t \to \infty} \mu_{v \to w}^{(t)}(\cdot)$$

Belief Propagation

The Bethe free energy

► define

$$\mu_{\nu}^{*}(j) \propto \prod_{u \in \partial \nu} 1 - \mu_{u \to \nu}^{*}(j),$$

$$\mu_{(\nu,w)}^{*}(i,j) \propto \mathbf{1}\{i \neq j\} \mu_{\nu \to w}^{*}(i) \mu_{w \to \nu}^{*}(j),$$

$$\mathscr{B}(\mu^{*}) = \sum_{\nu} (1 - d(\nu)) H(\mu_{\nu}^{*}) + \frac{1}{2} \sum_{(\nu,w)} H(\mu_{(\nu,w)}^{*})$$

• *Physics prediction:* $\sqrt[n]{\mathscr{C}(\hat{\mathbf{G}}, \hat{\boldsymbol{\sigma}})} \sim \exp(\mathscr{B}(\mu^*))$

Warning Propagation



Discrete messages

- ► $\lambda_{v \to w}^{(t)}(j) \in \{0, 1\}$ for any $(v, w), j \in [k]$
- initialise $\lambda_{\nu \to w}^{(0)}(j) = \mathbf{1}\{\hat{\boldsymbol{\sigma}}(\nu) = j\}$

Warning Propagation



Discrete updates

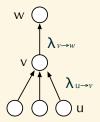
• define for $t \ge 0$ and adjacent (v, w)

$$\lambda_{\nu \to w}^{(t+1)}(j) = \min_{h \neq j} \max_{u \in \partial \nu \setminus w} \lambda_{u \to \nu}^{(t)}(h)$$

let

$$\lambda_{v \to w}^*(j) = \lim_{t \to \infty} \lambda_{v \to w}^{(t)}(j)$$

Warning Propagation



Frozen vertices

► define

$$\lambda_{\nu}^{*}(j) = 1 - \max_{u \in \partial \nu \setminus w} \lambda_{u \to \nu}^{*}(j)$$

► then

$$\lambda_v^*(j) = 0 \Leftrightarrow \mu_v^*(j) = 0$$

List coloring

Lemma

W.h.p. $\mathscr{C}(\hat{\mathbf{G}}, \hat{\boldsymbol{\sigma}})$ is the set of all colorings such that for all v,

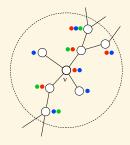
$$\tau(v) \in \Lambda^*(v) = \left\{ j \in [k] : \lambda_v^*(j) = 1 \right\}$$

Lemma

Obtain $\tilde{\mathbf{G}} \subset \hat{\mathbf{G}}$ by deleting all edges {v, w} such that

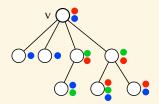
 $\Lambda^*(v)\cap\Lambda^*(w)=\emptyset.$

Then τ is a list coloring of $\hat{\mathbf{G}}$ iff τ is a list coloring of $\tilde{\mathbf{G}}$.



The local structure of $\tilde{\textbf{G}}$

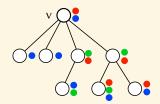
- pick a random vertex \boldsymbol{v} and consider $\partial_{\tilde{\boldsymbol{c}}}^{\omega} \boldsymbol{v} \dots$
- ... including the color lists
- most likely acyclic



A random tree

- set of types $\mathcal{L} = \{(i, \ell) : i \in \ell \subset [k]\}$
- define a suitable distribution $q = (q_{i,\ell})$ on \mathcal{L}
- specifically,

$$q_{(i,\ell)} = \frac{(1 - \exp(-\rho d/(k-1)))^{k-|\ell|}}{k \exp(\rho d/(k-1))^{|\ell|-1}}, \text{ where}$$
$$\rho = (1 - \exp(-\rho d/(k-1)))^{k-1}$$



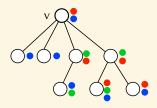
A random tree

- set of types $\mathcal{L} = \{(i, \ell) : i \in \ell \subset [k]\}$
- choose the type of the root vertex from q
- a vertex of type (i, ℓ) spawns

 $\operatorname{Po}(dq_{i',\ell'})$

children of type (i', ℓ') , provided $i \neq i', \ell \cap \ell' \neq \emptyset$

► *T* = resulting tree



Lemma

- T captures the local structure of $\tilde{\mathbf{G}}$
- ► *T* is *finite* almost surely
- $\blacktriangleright \mathbb{E} \sqrt[|T|]{Z(T)} = \exp(\mathscr{B}(\pi_{d,k}^*))$

Corollary

With high probability we have $\sqrt[n]{\mathscr{C}(\hat{\mathbf{G}}, \hat{\boldsymbol{\sigma}})} \sim \exp(\mathscr{B}(\pi_{d,k}^*))$

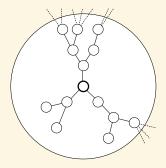
Upper bounding the *k*-colorability threshold

Theorem

We have $d_{k-col} \le (2k-1)\ln k - 1 - o(1)$

- first moment over Warning Propagation fixed points
- vanilla first moment $d_{k-col} \leq (2k-1) \ln k$

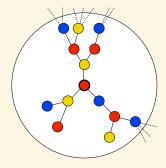
Long-range vs short-range



Local structure

- ▶ fix t > 0 and choose v randomly $\Rightarrow \partial^t(\mathbf{G}, v)$ is a tree w.h.p.
- ▶ the local structure converges to a Galton-Watson tree

Long-range vs short-range



Questions

- A random probability measure on $[k]^n$
- Are there "forbidden" local colorings?

The Boltzmann distribution

- ▶ let $\mathscr{S}_k(G) = \{k \text{-colorings of } G\}$ and $Z_k(G) = |\mathscr{S}_k(G)|$
- define a probability measure

$$\mu_{k,G}: [k]^{V(G)} \to [0,1], \quad \sigma \mapsto \frac{\mathbf{1}\{\sigma \in \mathscr{S}_k(G)\}}{Z_k(G)}$$

• for $U \subset V(G)$ define a distribution on $[k]^U$ by

$$\mu_{k,G|U}(\sigma_0) = \mu_{k,G} \left\{ \sigma \in [k]^{V(G)} : \forall x \in U : \sigma(x) = \sigma_0(x) \right\}$$

• letting $\sigma_1, \sigma_2, \ldots$ be independet samples from $\mu_{k,G}$, write

$$\langle X(\boldsymbol{\sigma}_1,\ldots,\boldsymbol{\sigma}_l)\rangle = \frac{1}{Z_k(G)^l} \sum_{\sigma_1,\ldots,\sigma_l \in \mathscr{S}_k(G)} X(\sigma_1,\ldots,\sigma_l)$$

Correlation decay

[COEJ'14]

Theorem

Let $d < d_{k,cond}$ and fix t > 0. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{\nu\in[n]}\mathbb{E}\left\|\mu_{k,\mathbf{G}\mid\partial^{t}(\mathbf{G},\nu)}-\mu_{k,\partial^{t}(\mathbf{G},\nu)}\right\|=0.$$

"The coloring induced on the depth-t neighborhood of v is asymptotically uniform."

Correlation decay

Theorem

[COEJ'14]

Let $d < d_{k,\text{cond}}$ and fix l > 0. Then

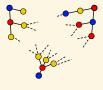
$$\lim_{n \to \infty} \frac{1}{n^l} \sum_{\nu_1, \dots, \nu_l} \mathbb{E} \left\| \mu_{k, \mathbf{G} | \{\nu_1, \dots, \nu_l\}} - \bigotimes_{i=1}^l \mu_{k, \mathbf{G} | \{\nu_i\}} \right\| = 0.$$

"asymptotic *l*-wise independence"

• earlier work: $d < 2(k-1)\ln(k-1)$

[MRT'11]

Correlation decay



Theorem

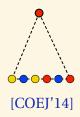
[COEJ'14]

Let $d < d_{k,\text{cond}}$ and fix l, t > 0. Then

$$\lim_{n\to\infty}\frac{1}{n^l}\sum_{\nu_1,\ldots,\nu_l}\mathbb{E}\left\|\mu_{k,\mathbf{G}\mid\partial^t(\mathbf{G},\nu_1)\cup\cdots\cup\partial^t(\mathbf{G},\nu_l)}-\bigotimes_{i=1}^l\mu_{k,\partial^t(\mathbf{G},\nu_i)}\right\|=0.$$

"asymptotic *l*-wise independence and uniformity"

Reconstruction

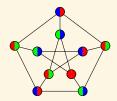


Corollary

Assume that $d < d_{k,cond}$. Then

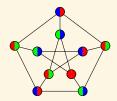
non-reconstruction in **G** \Leftrightarrow non-reconstruction in **T**(*d*, *k*).

- ► previously known for $d < 2(k-1)\ln(k-1)$ [MRT'11]
- ► reconstruction threshold in $\mathbf{T}(d, k)$ is ~ $k \ln k$ [E'14]



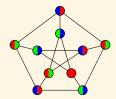
The random replica model

- Generate a random graph **G**.
- Sample two *k*-colorings σ_1, σ_2 uniformly and independently.

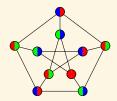


The planted replica model

- Choose $\sigma'_1, \sigma'_2 : [n] \to [k]$ uniformly and independently.
- $\mathbf{G}' =$ random graph given that $\boldsymbol{\sigma}'_1, \boldsymbol{\sigma}'_2$ are *k*-colorings.
- Easy to analyse: local structure converges to branching process

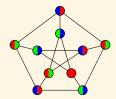


Key lemma[COEJ'15]If $d < d_{k,cond}$, then random replica \triangleleft planted replica.



Completing the proof

- study the statistics of bicolored trees in the *planted model*
- the result carries over to the *random replica model*
- the theorem follows from an averaging argument



Averaging replicas [GM'07] To show $\mathbb{E} \| \mu_{k,\mathbf{G}|\{v_1,v_2\}} - \mu_{k,\mathbf{G}|\{v_1\}} \otimes \mu_{k,\mathbf{G}|\{v_2\}} \| \to 0,$ use

$$\mathbb{E}\left[\left\langle \mathbf{1}\left\{\boldsymbol{\sigma}(v_{1})=c_{1}\right\}\mathbf{1}\left\{\boldsymbol{\sigma}(v_{2})=c_{2}\right\}-k^{-2}\right\rangle^{2}\right]$$
$$=\mathbb{E}\left\langle\prod_{j=1}^{2}\left(\mathbf{1}\left\{\boldsymbol{\sigma}_{j}(v_{1})=c_{1}\right\}\mathbf{1}\left\{\boldsymbol{\sigma}_{j}(v_{2})=c_{2}\right\}-k^{-2}\right)\right\rangle$$

Summary

- physics-inspired rigorous proofs
- thorough understanding for $d < d_{k,cond}$
- techniques generalise to other problems
- open problem: d_{k-col}