SPECTRA OF SPARSE RANDOM GRAPHS
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FRAMEWORK

Take a finite, simple, non-oriented graph G = (V, E).
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(GRAPH MATRICES

Natural matrices are associated to G.

They are matrices built from the local neighborhood of the
vertices.



ADJACENCY MATRIX

The adjacency matrix is indexed by V x V' and defined by

Ay =1({z,y} € E).

For integer k > 0,

Aﬁy = nb of paths from z to y of length k.

A is symmetric : it has real eigenvalues
Avi(A) < -+ < A (A)

and an orthonormal basis of eigenvectors.
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ADJACENCY MATRIX




PERRON-FROBENIUS THEOREM

Assume that the graph G is connected. Then A is irreducible:
for any z,y in V, there exists k such that A’;y > 0.

Then, the largest eigenvalue is positive and it is a simple
eigenvalue. Its left and right eigenvector have positive
coordinates.



DEGREE MATRIX

The degree matrix is the diagonal matrix indexed by V x V
such that

D, = deg(z) = ZAW'
y
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INCIDENCE MATRIX

Define the set of oriented edges as

E={(z,y): {z,y} € B}
and the incidence matrix as the matrix on B x V

Vaye =1 Vi =—1 and V¢, =0 otherwise.

Observe for x #£ y
(V'V)ax = D [Veal = 2deg(x).

(V'V)ay = D VeaVey=-2x1({z,y} € E).

V*V = 2(D — A).



PosiTivity

Hence, for any vector f,

2(D—-A)f ) =(VLEV) = > (flz) = f(y)* =0

(z.y)€E

In other words,

We get

—maxdeg(z) < Ay ((4) < - < A (4) < maxdeg(x).



MARKOV TRANSITION MATRIX

The transition matrix of the simple random walk on G is

A
P, = —
Y deg(x)
We have
P=D1A.

P has real eigenvalues :

P—D14=p-1/2 (D*1/2AD’1/2>D1/2.

Google matrix : for a € (0,1], P + (1 — a)11%/|V].



MARKOV TRANSITION MATRIX

L1

-0.2



MARKOV TRANSITION MATRIX

Define the left vector
v(z) = deg(z).

We have

vP = .

v is a left eigenvector with eigenvalue 1 and

_ (e)  deg(a)
S, - 2E]

is the invariant probability measure of the random walk.




MARKOV TRANSITION MATRIX

The symmetry

is called reversibility.

It asserts that the matrix P is symmetric in L?(7) with scalar
product

(f,9)n =Y _m(@)f(x)g(),

T

ie. (Pf,g)x = (f,Pg)r.

It follows that P has real eigenvalues in [—1,1] and an
orthonormal basis of eigenvectors in L2(r) .



LAPLACIAN MATRIX

L=D-A.

—L is the infinitesimal generator of the countinuous time
random walk:

d

SE(X)| = —Li(@)

It is symmetric, L > 0 with eigenvalues in

0,2 max deg(z)].

Moreover
L1=A1—-D1=0.

The invariant probability measure of the process is the uniform
measure.



LAPLACIAN MATRIX




COMBINATORIAL LAPLACIAN MATRIX

Matrix on V x V|

DY2Lp=1%2 = pY2(1 — p)D~1/2,

It is symmetric and has eigenvalues in [0, 2].

There are other interesting local matrices . ..



REGULAR GRAPHS

If G is d-regular, then D = dI commutes with A : all these
matrices have the same eigenspace decomposition.



TYPICAL VS EXTREMAL EIGENVALUES

There are essentially two types of information encoded in the
spectrum.

- PART 1I : the largest eigenvalues (and their eigenspaces) give
some information on global graph properties (expansion,
clustering, chromatic number, maximal cut, etc...),

- PART I : the typical eigenvalues give information on local
graph properties (typical degree, partition function of
spanning trees, matchings, percolation, etc...).



LARGE SPARSE RANDOM GRAPHS

We will study the spectrum of classical random graphs in the
regime :

- Large
V| — oo.

- Sparse / Dilute
[E]=O(V]).



PART I: TyPICAL EIGENVALUES

Spectral Measures




EIGENVALUES

For M € M, (R) is a symmetric matrix, we denote its real

eigenvalues by
A (M) < oo < A (M).



SPECTRAL MEASURE

The spectral measure / empirical distribution of the eigenvalues
/ density of states is the probability measure on R,

1 n
M= Z O, (M)
=1
i.e. for any set I C R

~ LSt

i=1

3\*—‘

is the proportion of eigenvalues in I or equivalently, the
probability that a typical eigenvalue is in [.

[ = 2> fou(
=1



KIRCHOFF MATRIX-TREE THEOREM

If G is a connected graph then the number of spanning trees of
G is equal to
H i,

where )\z = )\Z(L)

In particular,

1 oo 1
—logt(G) = / log Adpp(\) — — logn.
n o+ n



CLOSED PATHS

For t integer, let
Sy = [{closed paths of length ¢ in G}

We have

=Tr{A"} =) N(4) = n//\tduA()\).
=1

In particular, for z € C, Jm(z) > 0,

1
Zt+1 Z / 1 / d'“A
0

t> t>0

is the Cauchy-Stieltjes transform of 4.



RETURN TIMES

If X, is the Markov chain with transition matrix P,

%ZP(Xt = 0| Xp=v) = %Tr{Pt} = /Atd/ﬁp()\)-

v=1

Similarly, for ¢t > 0 real, if X is the Markov process with
generator L,

%ZP(Xt =v|Xo =) = /e_tAdML()\)-

v=1



SPECTRAL MEASURE AT A VECTOR

Let M € M,(R) be a symmetric matrix. Let 11, ..., be an
orthonormal basis of eigenvectors :

M =" ity
k
For ¢ € R™ with ||¢||2 = 1, we define the probability measure,
n
W =Y (k)20
k=1

We have
[ ity = (0. %6).



SPECTRAL MEASURE AT A VECTOR

We recover the spectral measure from the spatial average

n

S = L S @R, = 36 3 @ = o
k=1 =1

=1 =1 k=1

While 15 depends on the eigenvectors, its spatial average iy
does not.



SPECTRAL MEASURE AT A VECTOR

This local notion of spectrum will be used to define the spectral
of a possibly infinite graph.
We will restrict ourselves to the adjacency matriz and set

pe i=pa and  p =

It works the same for P or L.



ADJACENCY OPERATOR

Let G = (V, E) be a locally finite graph : for all x € V|

deg(x) = Z 1{z,y} € E) < o0.
yeVv

Let (2(V) = {v: >,y ¥(z)* < oo} and (3(V) as the subspace
of vectors with finite support : i.e. the subspace spanned by
finite linear combinations of e,,x € V.

Adjacency operator : defined for vectors ¢ € £2(V)
Ap(x) = D W),
y{z,y}eE

equivalently, with matrix notation :

Ay = (eq, Aey) = 1({z,y} € E).



ADJACENCY OPERATOR

Under mild assumptions, A is essentially self-adjoint (e.g. for all
veV,deg(v) <0).

The spectral measure with vector ¢ € £2(V), ||#b|l2 = 1, is the
probability measure Mé on R such that

Vk > 1, /Akdug = (1, A¥2p).

As a consequence,

/)\kduif = |{closed paths of length k starting from z}|.



TRANSITIVE GRAPHS

If G is vertex-transitive (e.g. a Cayley graph associated to a
transitive group I' with a finite symmetric generating set
S cTI'), the measure

1 = 1

does not depend on z.

Plancherel measure, Kesten-von Neumann-Serre spectral
measure.

(If G is finite, then the two definitions coincide).



LATTICES

Cycle

1
Kz/nz = E ;52608(2’:“)'

Bi-infinite path

1

pz(dx) = m

l‘xlggdl‘.

Regular lattice
fizd = Pz % - % iz




INFINITE REGULAR TREE

T, infinite d-regular tree

dy/Ad=1) = 22
pr, (dz) = 2(d — 22) 1, 1<oya=1dz.

Kesten (1959)




LAMPLIGHTER

Consider a vertex-transitive graph G = (V, F) and a colored
lamp in L = Z/nZ on each vertex. A vertex of the lamplighter

graph is

v=(n,z)
where n: V — L is the configuration of the lamps and x € V' is
the position of the walker.




LAMPLIGHTER

A switch edge (S) {v,v'} is an edge between two vertices which
differ only by the lamp at the position of the walker.

A walk edge (W) {v,v'} is an edge s.t. n =17/, {z,y} € E.

The WS lamplighter graph is the graph with edge set
{{v,v'} : {v,u} € W, {u,v'} € S for some u}.

Similarly for SW and SWS graphs.



LAMPLIGHTER

Let G, be the site percolation with parameter p € [0, 1] and
oeV.

Theorem (Lehner, Neuhauser and Woess (2008))

For p =1/n, we have

psw(-/n) = pws(-/n) = psws(-/n?) = Epg, ().



LAMPLIGHTER

For G = 7Z, n = 2, for some explicit (wy,),

n

psw = anz54cos( )

n=0 k=1 (n+1)

Grigorchuk and Zuk (2001)

Connectivity and homogeneity do not guarantee a density for the
spectral measure !



SKETCH OF PROOF

Let p = E,ué?p and v = pps(-/n). We compare moments.

Let Wy, be the set of closed walks v = (79, -+ ,7) in G of
length k starting at o.

k
/)\kd,ug’p (N = Z H 1(~; is open) = Z H 1(x is open)

~yeEW)}, t=0 YEWE z€V ()

/A’“du(A) =3 Vo,

YEW



SKETCH OF PROOF

The graph G is d-regular. If S; = (1, x;) is a random walk on
the WS-lampighter graph and € = (0, 0),

/ Nedy = d*P*(S), = ¢).

We have
ne(xe) = ne—1(z¢) + 4,
where /¢, is independent of (z,m,—1) and uniform on Z/nZ.

For any ¢ € Z/nZ.

P(l;+q=0)=—=p.

1
n
If 7, is the last passage time of (z4)o<i<k at x,

P(Sp=e) = d* ) PNVzeV():n,(@)+L, =0)
YEWK

= kY VO

~cTA



RANDOM ROOTED GRAPHS

So far : pg well defined for finite graphs and vertex-transitive
graphs :

e[y Yun (Enite)
% (transitive)

We want to extend the notion to a large class of "stationary"
random graphs.

For a random (unlabeled) connected rooted graph (G, o) with
law p, we define

tp = Eppuc.



PART I: TyPICAL EIGENVALUES

Spectral measures and BS convergence




BENJAMINI-SCHRAMM CONVERGENCE

BS convergence of finite graph sequences = convergence of
typical local neighborhood.

For integer k : (G, 0) is the rooted (connected) graph spanned
by vertices at distance at most k from o.

Gy, = (Vp, Ey,) has BS limit p = L((G, 0)) if for any integer k
and unlabeled rooted graph g of diameter k,

W 3 UG =) > Bl(Go0i = ).



BS LiMmITS

Gy = 241 [0,n]" has BS limit ? 674

T, =TsN{x: |z| < n} has BS limit ?



BS LiMmITS

Uniform d-regular graph : a.s. the limit is the (Dirac mass at)
T4 rooted somewhere.

Erdos-Rényi graph, G(n,«/n) : a.s. the limit is the law of
(T, 0) where T is a Galton-Watson tree with offspring
distribution Poi(a).

Random graphs : many random graphs have random rooted
trees as BS limit.



UNIMODULAR GRAPHS

Unimodular random rooted graphs : subclass which contains
Cayley graphs and all BS limits of finite graphs.

A law p on (unlabeled) rooted graphs is unimodular if for any
non-negative functions f(G,z,y) invariant by
graph-isomorphisms,

pzz:f (G,o0,1) piz:f (G, x,0)

zeV zeV

Bengjamini/Schramm (2001), Aldous/Steele (2004)



UNIFORM ROOTING IS UNIMODULAR

For finite G, U(G) the law of (G(0),0), where o is uniform on V'
and G(o) is the c.c. of o, is unimodular

G)Zf(GvO’:E) = |Z Z f

eV Yy zeV(y)

- |sz

T yeV(x

- |sz

T yeV(x

= EU(G)ZfG7‘T70'

zeV



CONTINUITY OF SPECTRAL MEASURE

Theorem
Let G,, be a sequence of finite graphs with BS-limit p. Then

dxs(pa, » o) = Sup |G, (—00,t] — pp(—00,t]| = 0.
te

Consequently, for any real A\, ua, ({\}) = p,({A}).

Veseli¢ (2005), Thom (2008), Bordenave/Lelarge (2010),
Abért/Thom/Virag (2013)



CONTINUITY OF SPECTRAL MEASURE

Corollary (Thom (2008))
Let G,, be a sequence of finite graphs with BS-limit p. Then

tp({A}) >0

implies that X\ is a totally real algebraic integer.



SKETCH OF PROOF

Assume for simplicity that degg () < 0.

Weak convergence is easy :

1
//\kd,ugn = A Z |{closed paths of length k starting from x}|.
™ zev,

is bounded by #* and it depends only on (G, 0).



SKETCH OF PROOF

Convergence in KS-distance = weak convergence + cv of atoms.

From liminf i, (O) = p(O), limsup pp, (C) < p(C'), we should
prove that

liminf g, ({A}) > p({A}):

Since
liminf pug, (A =&, A +€)) = pp(A =, A +¢€)) = pp({A}),

the theorem follows from

Lemma (Liick)

Let A € R, 6 > 0. There exists a continuous function
d:R — [0,1] with 6(0) = 0 depending on (\,0) s.t. for any
finite graph G with degrees bounded 0, € > 0,

He((A =&, A +2)) < na({A}) + 6(e).



SKETCH OF PROOF

For AZO’ €€ (071)7

pal(—e,2)) < nal{0}) + 1:;%
reads, with n = |V|, k= [{i: 0 < |\;| < e},

log(6)
k< nlog(l/g)'

We observe

[T »i €z\{o}.

Hence

Ai#0 0<|Ail<e ni>e



KESTEN-McKAY Law

Theorem
Fix integer d > 2. If G,, has BS limit T4, then for any I C R,

MGn(I) — /’LTd(I)7
where

d \/4(d—1) — 22
pr, (da) = I A2 — 22 1|x\<2mdx‘

We have pgar(IvVd) — pse(I), the semi-circular distribution,
when d — oc.



KESTEN-McKAY Law

Take d = 4, n = 2000 and G a uniformly sampled d-regular
graph.
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ERDOS-RENYI

Theorem
Fix a > 0. Let G,, be an Erdds-Rényi graph with parameter
p = a/n. Then, with probability one, for any interval I C R,

pG, (1) = pp(I).

where p is the law of a Galton-Watson tree with Poi(a)
offspring distribution.



ERDOS-RENYI

Histogram of eigenvalues for o = 4 and n = 500.
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ERDOS-RENYI

There is no explicit expression for ji,.

Let A = {\;,i > 1}, be the atoms of 1, i.e.
A=A p({A}) > 0},

A is the set totally real algebraic integers and

Z pe({A}) <1

AEA

if and only if a > 1.

Also, 11,({0}) has a closed-form expression.

Bordenave/Lelarge/Salez (2012), Salez (2013), Bordenave/Virdg/Sen
(2014)



PART I: TyPICAL EIGENVALUES

Spectral percolation




REGULARITY OF THE SPECTRAL MEASURE

Any probability measure on R can be decomposed as

M= fpp + fe = Hpp + Hac + Msc-

For |V| = oo, the decompositions of
pe and op, = Epg
reveal deep information on the graph.

In the context of random Schrédinger operators, called quantum
percolation, De Gennes, Lafore, Millot (1959).



RESOLUTION OF THE IDENTITY

For finite graphs, the decomposition

A= Newty
k

induces a projection-valued measure, for Borel I C R,

E(I) =Y 1(\ € Dty

k

E({\}) is the orthogonal projection on the vector space of
A-eigenvectors and

pe) = (E(D), 4) = |3,

This p.v.m. exists also for infinite graphs.



LOCALIZATION/DELOCALIZATION OF EIGENVECTORS

What are the nature of the probability vectors,

(Ien(@)?zeV) 7

Localization is related to the atomic part of p¥

pE (A = IE{A el

Delocalization is related to the continuous part of p¢i. If

Y (@) = pg (1) < e,

€T

then [y (x)|> < c|I] for all Ay, in I.



ATOMS

Finite pending graphs create atoms (e.g. percolation graphs)
Kirkpatrick/Eggarter (1972).

If G1 ~ Gy and Ag,p = M, ||¢||2 = 1/4/2, then

g () = 1E{ADeoll3 = (9, ¢0)* = (0)*.

=Y — Y,

Warning : recoll lamplighter graphs !!



RANDOM ROOTED TREES

Topological end of a rooted tree : semi-infinite self-avoiding
path starting from the root.

Theorem

Let (T, 0) be a unimodular tree with law p. If, with positive
probability, T has 2 or more topological ends then ji, has a
continuous part.

0 end : finite trees.

lend 7

2 ends : 7Z.

oo ends : all others, e.g. supercritical Galton-Watson trees.

Bordenave/Virdg/Sen (2014)



INVARIANT LINE ENSEMBLE

Let (T, 0) be a unimodular tree with law p.

An invariant line ensemble L is a subset of non intersecting
doubly infinite lines in 7" which does not depend on the choice
of the root o.

P(o € L) is the density of the invariant line ensemble.



INVARIANT LINE ENSEMBLE

Theorem
Let (T, 0) be a unimodular tree with law p.

If L is an invariant line ensemble of (T, 0) then the total mass of
atoms of i, is bounded above by P(o ¢ L).

Moreover, for each real A,
tp({A}) <Plo ¢ L)py ({A})

where, if P(o ¢ L) > 0, p' is the law of the rooted tree (T'\ L, 0)
conditioned on the root o ¢ L.



INVARIANT LINE ENSEMBLE

There are explicit lower bounds on the density P(o € L).

For example, if (7T, 0) is a unimodular random tree, there exists
an invariant line ensemble L such that

1 (Edegr(o) — 2)%

6 Edegy(o)?

Poe L) >



WATTS-STROGATZ RANDOM GRAPH

G, is obtained by superposing the graphs of Z/nZ +
Erdgs-Rényi graph G(n,a/n).

Then pg, converges and it is continuous.



PROOF BY AN EXAMPLE : VERTICAL PERCOLATION

Consider the following n x n graph.

S = eigenspace associated to eigenvalue A.
R = vector space spanned by red vertices.

dim(S N R*) > dim(S) — dim(R) = dim(S) — n.



PROOF BY AN EXAMPLE : VERTICAL PERCOLATION

If feSNRY, we write

0=(A=Nf(x)=>_ fy)

yra

For x red vertex, we get that f is also 0 on the green vertices.

By iteration, SN R+ = ) and
n*ug({\}) = dim(S) < n = o(n?).



OTHER QUESTIONS

Works also for supercritical percolation on Z? (other method).
No criterion for existence of ac part in p, = E,ucs.

The same questions for p¢¢ are essentially open, Keller (2013),
Bordenave (2014).

Their are finite volume versions of these questions.



QUANTUM PERCOLATION ON A REGULAR TREE

Consider T}, the bond percolation on T; with parameter p.

Then, for any 0 < p < 1, E,u%; has dense atomic part on its

support [—2v/d — 1,2v/d — 1].

For all p > pg, conditioned on non-extinction, ,u;“p has
non-trivial ac part.

Bordenave (2014)



PART II: EXTREMAL EIGENVALUES

Convergence to Equilibrium




SPECTRAL GAP

Take a connected graph on n vertices.

The spectral gap

in \(L
A
1 —max A\(P)
A£L

is closely related to the rate convergence of the Markov
chain/process.

For simplicity we only consider L.



SPECTRAL GAP

Let X; be the Markov process with generator —L,
PF =e e,
is the probability distribution of X; given Xy = x.

Let A1 =0 < Xo < -+ < A\, the eigenvalues of L and
1 =1/y/n,..., 1, an orthogonal basis of eigenvectors.

From the spectral theorem

n

_tL Y
et = Y ey

i=1

1 i,
b= ﬁJrZ@ i)
=2



SPECTRAL GAP

Recall that IT = 1/n is the invariant distribution. We get
n
1BF = T3 = 3 e M) < e,
i=2

Recall
lzll2 < lail < vl

7

So,

[a(2)le ™2 < 2| B —Hlrv < vne™".

where the total variation norm is

= vlry = 5 3 () — v(@)]



SPECTRAL GAP

The mixing time of a Markov process is usually defined as
inf max | PF — 17y < »

7 = inf max — =.

t>0 = t V= 2

maxg |2 ()| logn
A2 2o

//
\]
N

(Note that max, [1a(x)| = 1/y/n).

There are similar developments for reversible Markov chains.

Levin/Peres/Wilmer (2009)



PART II: EXTREMAL EIGENVALUES

Expanders



CHUNG’S DIAMETER INEQUALITY

Let
I=M>X2- 2 2>-1

be the eigenvalues of P.

Set
Ay = Ig?lx |\l

Theorem
If G connected,

. log (2| E])
diam(G) < Lguwl '



PROOF

Since

P—Dlx — D_1/2(D_1/2AD_1/2)D1/2,
the \; ’s are also the eigenvalues of S with S = D~Y/2AD~1/2,
Since P1 =1,
D'Y/?21

P = 2E]

is the normalized eigenvector of S associated to A\; = 1.

= i + > N

E>2
Hence, from Cauchy—Schwartz
(SNay = V1(@)r(y) — AL [k (@) vk (y
k>2

> Gi@)ly) - X, \/Z ()2 \/Z ey 2

k>2 k>2



PROOF

Since

D lk@)? =141 (2)? < 1

k>2

We find
(SY)zy > 1(2)¢1(y) — A

This is positive if

log (1 (x)i(y)) 108 (2!E!/ deg(z) deg(y)>

t> =
log [ A log (1/]A«])



CHEEGER'S CONSTANT

For X C V, define
vol(X) = Z deg(x).

zeX

area(0X) = Z 1(zy € E).
reX,yeXe

Isoperimetric / Expansion constant :

. area(0X)
WG) = )I(ncl% min (vol(X), vol(X¢))’



CHEEGER'S INEQUALITY

Again
I1=M>X >N\, =1

be the eigenvalues of P.

1 — A9 is the spectral gap of P.

Theorem




PROOF (EASY HALF)

The ); ’s are also the eigenvalues of S with S = D~1/24D~1/2,
x = D'/?1 is the eigenvector of S associated to A\; = 1.

From Courant-Fisher variational formula,

(Sg,9)

Ao = .
g:(g,x)=0 HQH%

Or equivalently,

1—Xy= min w
g:(9,x)=0 gl



PROOF (EASY HALF)

Recall, for the incidence matrix,

D71/2

I-S=DY*D-A)D V?= D,WV*TV

Set 7(x) = deg(z) = (D1)(z) and f = D~/2g,

| g— min U@ =S
2T plim=o >, deg(a) f(2)?

Let X be such that

B area(0X)
ME) = in (vol(X), vol (X))
We take 1 X 1 X
flay = Heel) A LD

vol(X) vol(X¢)



PROOF (EASY HALF)

We have
B deg(x) deg(z)
(fom) = erX vol(X) acEZXC vol(X¢) 0
and
Loy« ZelU@ - fw)?

2o deg(z) f(z)?
(1/vol(X) — 1/vol(X¢))?
1/vol(X) + 1/vol(X¢)
area(0X)
min(vol(X), vol(X¢))
< 20(G).

= 2area(0X)




RANDOM GRAPHS ARE EXPANDERS

Consider the configuration model with degree sequence
dy,- -+ ,d, such that

mind; > 3 and Zdi < nb/4,

Then, with high probability,

h(G) > 0.01.

Abdullah/Cooper/Frieze (2012)



PART II: EXTREMAL EIGENVALUES

Qutliers



BS CONVERGENCE

Theorem
Take A, L or P. Let G,, be a sequence of graphs on n vertices
with BS limit p. Then for any k = o(n),

A= b+o(l) and N <a+o(1).

where [a, b] is the convex hull of the support of p, = E,u¢;
(with the corresponding operator).

|a] V b is the spectral radius of the operator.



PROOF

We know already that
dis (16 1p) = SUD |16, (=00, 1] = (=00, ] = 0.
te

Hence, for I = (b —¢,0),

lim pg, (I) = pp(I) =n > 0.

In words : the nb of eigenvalues larger than b — ¢ is at least
n(n+o(1)) > k.

We get that for n large enough, A\ > b —e.



OUTLIERS

Assume G,, has BS limit p.

Eigenvalues/Eigenvectors of G,, outside the support of 1,
contain a global information on Gy, : they are not seen in the
local limit.

e.g. \1 = —A, equivalent to G bipartite.

Spectral clustering try to exploit this information (usually low
rank).



OUTLIERS

A large locally tree-like 12-regular graph.
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PART II: EXTREMAL EIGENVALUES

Regular graphs




ALON-BOPPANA BOUND

Theorem
If G is a d-regular graph on n vertices, then \i(A) = d and

No(A) = 2vd -1

logn’

Since P = A/d,

1—A2(P)<1—2”dd_1+o(1).




COVER AND UNIVERSAL COVERING TREE

Assume G is connected.

A graph C' is a covering graph of G if there is a surjective
function f : Vo — Vg which is a local isomorphism
(1-neighborhood is mapped bijectly).

The universal covering of G is a covering which is a tree (unique
up to isomorphism). It covers any covering of G.



COVER AND UNIVERSAL COVERING TREE

A construction of T = (Vp, Ep) : take o € G. Vp is the set of
all non-backtracking paths (vg, -+ ,vg) starting from o = vy
(vi—1 # vi+1)- Two paths share an edge if one is the largest
prefix of the other.

o

a b oa ob

0aC



SKETCH OF PROOF OF ALON-BOPPANA

Weaker result on A\, = max;>2 |A\i| = A2 V (= Ap).
T, is the universal covering tree of G.

Hence, the nb of closed walks starting from x in G of length k is
at least the nb of closed walks starting from the root in Ty of

length k:
Tr(AF) = N = n/)\kduG > n/)\k’dwd
J

2v/d — 1 is the spectral radius of the adjacency operator of Ty
(Kesten) : for k even,

/)\kdmrd > k?fp(m/d—ﬁ)k.



SKETCH OF PROOF

For even k,
Tr(AF) =Y "M < db +nal,
J
So finally,

532 (”ﬁ) j AL

Take k = log,n.

Replacing \x by Ao requires another strateqy (without trace).



RAMANUJAN GRAPHS

Let G be a d-regular graph on n vertices. Consider its adjacency
matrix A.

An = —d is equivalent to G bipartite.

The largest non-trivial eigenvalue is

A = max{|A;| 1 |A\i| # d}.

G is Ramanujan if
A < 2vd — 1.

They are the best possible expanders.



EXISTENCE OF RAMANUJAN GRAPHS

Sequence of (bipartite) Ramanujan graphs Gp,Go, - -, with
|V (G,)| growing to infinity, are known to exist when

- d=q+1 with ¢ = p* and p prime number Lubotzky,
Phillips, Sarnak (1988), Morgenstern (1994).

- any d > 3, Marcus, Spielman, Srivastava (2013).



ALON’s CONJECTURE (1986)

Theorem (Friedman (2007))
Fix integer d > 3. Let G, is a sequence of uniformly distributed
d-regular graphs on n vertices, then with high probability,

Xy =2Vd— 1+ 0(1) = —A,.

Most regular graphs are nearly Ramanujan !!



HASHIMOTO’S NON-BACKTRACKING MATRIX

Oriented edge set :

B = {(u,v) : {u,v} € B},
hence, m = |E| = 2|E|.
If e =wuv, f = xy are in E,

Bep =1(v =2)1(u # y),

defines a |E| x |E| non-symmetric matrix on the oriented edges.

Y



PERRON EIGENVALUE

Complex eigenvalues, m = 2|E],
pn = |p2l = o = il

A non-backtracking path (vy...v,) is a path such that
Vi1 # Uiyl

Bﬁf = nb of NB paths from e to f of length ¢+ 1.

If G is connected and |F| > |V| then B is irreducible and

1 = elim ||B£(56H}/£ = growth rate of the universal cover of G.
—00



IHARA-BASS’ IDENTITY

With Q=D — I,

det(z — B) = (22— 1D)FIVlget(22 — Az + Q)

If G is d-regular, then Q) = (d — 1)I and

o(B) = {1} U{p:p® =+ (d—1)=0with A € o(A)}.

Kotani & Sunada (2000), Angel, Friedman € Hoory (2007), Terras
(2011), ...



NON-BACKTRACKING MATRIX OF REGULAR GRAPHS

For a d-regular graph, u1 =d — 1,
% Alon-Boppana bound : maxy; Re(u) = /i1 — o(1).
*» Ramanujan (non bipartite) : |ux| = /1 for k =2,...,n.

* Friedman’s thm : |us| < /i1 + o(1) if G random uniform.




IHARA-BAss FORMULA

Theorem (IThara-Bass Formula)
Let (g be the Thara’s zeta function. We have

CG’l(Z) = det(I — BZ) = (1 — 22)|E|_|V| det(] — Az + QZ2)

The poles of the zeta function are the reciprocal of eigenvalues
of B.



[HARA’S ZETA FUNCTION (1966)

A closed non-backtracking walk without tail p = (vy,--- ,v,) is
a closed path such that v;—; # v;+1 mod(n).

A closed non-backtracking walk without tail is prime if it cannot
be written as p = (q,q,- - ,q) with ¢ closed non-backtracking
walk .



[HARA’S ZETA FUNCTION (1966)

If Ny is the number of closed non-backtracking paths without
tails of length ¢ in G and |z| small,

Ca(z) = exp ( ]\g%) = I (1 - z‘p|>_1 .

p: prime

Stark & Terras draw a parallel between Riemann hypothesis
and Ramanujan property.



SKETCH OF PROOF OF IHARA-BASS IDENTITY

det(I,, — Bz) = (1 — 22)FI=Vldet(1,, — Az + Qz?).

Introduce the matrices

J: RE — RE Je(%y) = €(y,z)
S : RE — ]RV Se(%y) = €y
T:RFE 5RY  Tey, = ey

J? = I,, and J has m/2 = |E| eigenvalues equal to 1 and —1.

We have

SJ=T A=S5T*
D=Q+1=85=TT* B+ J=T*S.



SKETCH OF PROOF OF IHARA-BASS IDENTITY

We check the identity

I, 0\ [((1-2)I, 28
T I 0 I, — 2B

(L, —zA+ 22Q zS I, 0
a 0 Iy 4+ 2J ) \T* —z5* I,

Take determinant and observe,

det(Iy, 4+ 2J) = (14 2)™2(1 — 2)™? = (1 — 22)|#I,



PART II: EXTREMAL EIGENVALUES

Sketch of proof of Friedman’s Theorem




ALON’S CONJECTURE (1986)

Theorem (Friedman (2007))
Fix integer d > 3. Let G, is a sequence of uniformly distributed
d-regular graphs on n vertices, then with high probability,

Ay =2Vd— 1+ 0(1) = —A,.

We should prove Ag V |\,| < 2vd -1+ o(1).



'TRACE METHOD

If A is the adjacency matrix of G,, we would like to prove for
even k,

? k
4" 1+ \E Ak < Te(AR) < dF 4 n(?x/d 1+ 0(1)) .

No real hope to do better since, for any ¢ > 0,
k
Tr(AF) = n/)\kduA > cn<2\/d— 1-— E) ,

with ¢ = pa(2v/d —1—¢,00) = p,(2v/d — 1 —€,00) +0(1) > 0.



'TRACE METHOD

Then,
k
A< n(Z\/d— 1+ 0(1)> .
or
Ao < nl/k (2\/d 14 0(1)>.

If £ > logn then
n'k =1+ 0(1),

and Friedman’s Theorem follows.

It is wiser to project orthogonally on 1t

Tr(AR) — db = Tr(A - Zu*)k < n(z\/ﬁ+ 0(1))k.



'TRACE METHOD

For a first moment estimate, we would aim at

koo k
ETr(A") — d* = ETt <A - d11*> < n(Q\/d “1+ 0(1))
n
for k > logn.
This is wrong !

The probability that the graph contains K4, as subgraph is at
least n~¢. On this event Ay = d. Hence, for even k > logn,

d F k
IETr(A - nll*) >n %" > n<2\/d -1+ 0(1)) .

Subgraphs which have polynomially small probability compromise
the first moment method. Called Tangles.



STRATEGY

. Use B instead of A : |us] < Vd—1+o(1).
. Remove the tangles.
. Project on 1+.

. Use the trace method / first moment method to evaluate
the remainder terms.

Bordenave/Massoulié/Lelarge (2015), Bordenave (2015)



CONFIGURATION MODEL

The oriented edge set E, \E| =m = nd is written as

E={(ui):1<u<n,1<i<d}.

P T % o)

A matching o on E defines a multi-graph with adjacency matrix
A=Q"MQ,
where, M : RE 5 RE Q. RV — RE,
M. =1(o(e) = f) = Mye and Qey = 1(eg = u).

M is the permutation matrix associated to o.



CONFIGURATION MODEL

The non-backtracking matrix with f = (u,1),
By = 1(o(e) = (u, j) for some j # ).

can be written as

B=MN
where
Nef = 1(61 = fl,e 7§ f) = Nfe-
We have
M1=1 and N1=(d-1)1.
Hence,

Bl=DB"1=(d—1)1.



CONFIGURATION MODEL

If By = uyp, u# d— 1, we deduce

For any integer ¢, the second largest eigenvalue of B is thus

bounded by H , H
Bz
2

a. .
z:(1,2)=0 HxHQ

’Nz\é <

We prove if o is a uniform random matching that with high
probability

1B |l

max
z:(1,2)=0 ||1’H2

< (logn)®(d — 1),

with ¢ ~ logn. The theorem follows with
e = O(loglogn/logn).



PATH DECOMPOSITION

Recall Moy = 1(o(e) = f), Ney = 1(e1 = f1,e # f)

k
Bff = ((MN)k>€f = Z HMstl’Yzw

k s=
Vel‘*@fs 1

where F];f is the set of paths v = (71,...,72k+1) such that
M =€ Yokt1 = f and Noy ypy = 1.

V4

Il
~

V5



PATH DECOMPOSITION

ef_ Z HM’YQS 172s9

yerk, s=1
The set of paths F’gf is independent of ¢ : combinatorial part.

The summand is the probabilistic part.



PATH DECOMPOSITION

Bef— (( ) Z H V25—172s)

Verkfs 1
The projection of M on 1+ is
11*
M=M - .
m
Hence, if (z,1) =0, we get
BFyx = BFy

where B = MN and

Bt = ((MN) ) - li[

However, due to the presence of tangles, we will reduce the sum
before doing the projection.



"TANGLES

A multi-graph (or a path) is tangle-free if it contains at most
one cycle.

A multi-graph (or a path) is ¢-tangle-free if all vertices have at
most at most one cycle in their f-neighborhood.

We denote by F e’“f the subset of tangle-free paths F’gf.

Observe that Fff 15 much smaller than F’;f.



PATH DECOMPOSITION

Assume that G = G(0) is (-tangle-free. Then, for 0 < k </,
BF = B,

where

k
(B(k))ef: Z HM”/2571’st'

k5=
YEF), s=1

For 0 < k </, we define the "projected" matrix

k
(E(k))ef: Z H

k s=
VGFefs 1

M’Ystl'YZS '



PATH DECOMPOSITION

Beware that B* #* E(k) and a priori Bk g # E(k)m for
(x,1) = 0. This is only approximately true !

¢ k-1 1\ 4
(B(Z))ef = (b ef + Z Z H Y25—172s <m> H Mooy 1725
k: s=1

k+1

which follows from the identity,

{ k-1

¢
Hxs Hys+ZHysxk_yk Hxs
s=1

k=1 s=1 k+1



PATH DECOMPOSITION

An path v € Fef can be decomposed as the union of

e

'7' € Feka_l, 'y" € Falb and 'y'" c Fik,

bf



PATH DECOMPOSITION

Set
K=(d-1)11* - N

K.5 € {d—1,d— 2} is the cardinal of Féf.

k—1 ¢
Z HM’Y%—WQS H My, iy = (E(kfl)KB(efk)) ; _ (Rl(f)) ;
veFt, s=1 k+1 e e

where (R,(f)) ; counts the extra paths :
e

\f \/ o \ or T N
e\t e\ e
‘, A \\7773,5\/



PATH DECOMPOSITION

So finally, K = (d — 1)11* — N,

BYO = p® 4 ZBk 1) g gle—k) _ ZR(@)

k 1
d—1< 1
_ g %71 (k=1)q1* plt—k) _ (k—1) nr R(¢—F)
BY+— ZQ 11*B mZﬁ NB
k=1 k=1
V4
1 ®)
—EZRk :
k=1

Hence, if (x,1) = 0, since 1*BEF) = (4 — 1)¢-F1*,

14 14
0y - LS pe-unpte-b,; — LS RO,
m m
k=1 k=1

BWg =

sy



PATH DECOMPOSITION

We arrive at

z:(1,2)=0 ”mHQ o mk:O

where |.S]| = maxg|,|,—1 [[S*[|2 is the operator norm.

This inequality holds if G(o) is £ tangle-free : for random o, ok
with ¢ = 0.1log,_(n).



'TRACE METHOD

|1 B]| S

1 0)
2 <[ BY) + 3 (d - 1) HBY |+ Z||R<

k=0

z:(La)=0 ||z,

Our aim is then to prove that w.h.p.

|IBY| < (logn)*(d—1)/* and  |[R}"|| < (logn)(d — 1) ~*/2

By estimating, for S = BY or § = R,(f).
E||S)?* < ETr(SS*)".

with k& ~ logn/(loglogn) : on the overall paths of length
20k > logn.



'TRACE METHOD

For S = B,

2kt
E||S||*F < ETr(SS%)F < (\/d 1+ 0(1)) ,

with k& ~ logn/(loglogn).

The combinatorial part of the proof is made possible thanks to
the tangle-free reduction.

The probabilistic part relies on an estimate of the type

t a a
1 1 41 !
where a is the nb of visited edges {e, f} and a; is the nb of
edges visited exactly once.




PART II: EXTREMAL EIGENVALUES

Random n-Lifts




GRrAPH LIFT/COVER

A graph C' is a covering graph of G if there is a surjective
function f : Vo — Vg which is a local isomorphism
(1-neighborhood is mapped bijectly).

C is a n-cover of G if |[f~1(x)| =n for all x € V.

(®) ©) O

@) ©) @)

The n-lift can encoded by a permutation o. on each edge e € V.



GRrAPH LIFT/COVER

A graph C' is a covering graph of G if there is a surjective
function f : Vo — Vg which is a local isomorphism
(1-neighborhood is mapped bijectly).

C is a n-cover of G if |[f~1(x)| =n for all x € V.

G- o) _.-©
~< 1 -
-~ | -
~.e -
B A
_--" ! T~
_—’—‘ ! Te-
NI ,’®\ ®;\
A - N N
N ~ e N LN
N ~. . N [N
©--12a7, .o RS
T m Il -7
- - T==a
€) & )

The n-lift can encoded by a permutation o. on each edge e € V.



GRrAPH LIFT/COVER




BS LiMIT

Let G, is a uniformly random n-lift of G. Then, as n — oo,
what it is the BS-limit of G 7

The universal covering tree of G rooted uniformly.



NEW EIGENVALUES

Let G = (V, E) be a base graph and Gy, = (V,,, Ey,) a n-lift of G,
Vo =A{(z,i) :x € V)i € [n]}.

We consider for example, the adjacency matrices A and A, of G
and G,,.

Define the vector space
H = {f eRY™ : f(x,i) = f(:v,j)} = span(xz, © € V),
where x5 (y,1) = 1(z = y).

We have
A,HCH

and A,, restricted to H is A.



NEW EIGENVALUES

The eigenvalues of A are also eigenvalues of A,, (counting
multiplicities).

The other eigenvalues of A are called new eigenvalues. They are
the eigenvalues of the matrix A restricted to H=.

The largest new eigenvalue is

Ay = max {|A| : A new eigenvalue of A, }.



NEW EIGENVALUES




(GENERALIZED ALON’S CONJECTURE

Let Gy, is a uniformly random n-lift of G. Then, as n — o0,
with high probability,
A < pto(l),

where p 1s the spectral radius of the adjacency operator of the
universal covering tree of G.

The converse X} > p + o(1) follows from the BS-limit (and also
from a generalized Alon-Boppana bound).



(GENERALIZED ALON’S CONJECTURE

This should hold for any reasonable local operator :
AP L B,...

This is proved for non-backtracking operator B, Friedman,
Kohler (2014), Bordenave (2015). For B, p = \/u, where p; is the
growth rate of the universal cover Angel, Friedman, Hoory (2007).

The bound A5 < v/3p + o(1) is known, Puder (2012).

This is a been used for exact reconstruction of the base graph
Brito, Dumitriu, Ganguly, Hoffman, Tran (2015).
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Stochastic Block Model




STOCHASTIC BLOCK MODEL

Consider a set of labels {1,--- ,r} and assign label o, (v) to
vertex v. We assume that

n

Ta(i) = = 3" Uow(v) = i) = w(i) + O(n™)

v=1

for some probability vector .

If o(u) =1i,0(v) = j, the edge {u, v} is present independently

with probability
Wis

n

A1,

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, ...)



STOCHASTIC BLOCK MODEL

If o(v) = j, mean number of label i neighbors is

m(1)Wi; + O(1/n).

Mean progeny matrix

M = diag(m)W.
We assume that the average degree is homogeneous, for all
-
Z Mij =a>1.
i=1

Assume that M is strongly irreducible and we order its real
eigenvalues

a=p1>|pa| = = |pl.



STOCHASTIC BLOCK MODEL

If r =1, we retrieve G(n, a/n).

Model used in community detection. Notably for r = 2,

11
T= |-, =
2°2

and, with a > b,

Then

a+b a—>b

pr=a= and p2 =



BS LiMIT

The BS limit of SBM is a multi-type Galton-Watson tree with
Poi(W;;) offspring distribution and the root has label ¢ with
proba ().

The growth rate of the random tree conditionned on
non-extinction is a.s. «, i.e. the expected number of offsprings.



"TRANSITION MATRIX

Transition matrix P in an Erdés-Rényi graph G(n,a/n),
n = 2000, a = 1.5.




CLASSICAL LOCAL OPERATORS

The spectral measure of Galton-Watson tree with Poisson
offspring distribution has full support : R for A, [-1,1] for P
and Ry for L.

This is due to high degree vertices (for A) and long line
segments for P, L.

No outliers : the extremal eigenvalues are related to small
subgraphs and not to global graph properties.

Various regularization have been proposed to solve this issue.
Including the non-backtracking matrix,
Krzakala/Moore/Mossel/Neeman/Sly/Zdeborovi/Zhang (2013).



SIMULATION FOR ERDOS-RENYI GRAPH

Eigenvalues of B for an Erdés-Rényi graph G(n,«/n) with
n = 500 and o = 4.




ErRDOS-RENYI GRAPH

> el >

Theorem
Let o > 1 and G with distribution G(n,«/n). With high
probability,

Bordenave/Massoulié/Lelarge (2015)



STOCHASTIC BLOCK MODEL

n=>500, r=2, a=7 b=1, p1=4, py=3.




STOCHASTIC BLOCK MODEL

Let 1 < rg < 7 be such that

a=p1>|pa| = = |prol > /Py = |prosal =0 = |prl.

Theorem
Let o > 1 and G a stochastic block model as above. With high
probability, up to reordering the eigenvalues of B,

pr = pr+o(l) if1<k<rg
el < Va+o(l) ifk>rg.

+ a description of the eigenvectors of A\, 1 < k < 1o, if the g
are distinct, In particular, they are asymptotically orthogonal.



COMMUNITY DETECTION

Spectral redemption : eigenvalues/eigenvectors such that
|| > /11 should contain relevant global information on the

graph.

} Karate =2
Dolphins g=2 :
Qtepr?;p. 17419 Overlap: 1

3
ﬁ
4554\3\’,;

Polbooks q=3
Overtap: 0.7571

Krzakala/Moore/Mossel/Neeman/Sly/Zdeborovd/Zhang (2013)
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