

SPECTRA OF SPARSE RANDOM GRAPHS

Charles Bordenave

CNRS & University of Toulouse

FRAMEWORK

Take a finite, simple, non-oriented graph $G = (V, E)$.

GRAPH MATRICES

Natural matrices are associated to G .

They are matrices built from the **local neighborhood** of the vertices.

ADJACENCY MATRIX

The **adjacency matrix** is indexed by $V \times V$ and defined by

$$A_{xy} = \mathbf{1}(\{x, y\} \in E).$$

For integer $k \geq 0$,

$$A_{xy}^k = \text{nb of paths from } x \text{ to } y \text{ of length } k.$$

A is symmetric : it has **real eigenvalues**

$$\lambda_{|V|}(A) \leq \dots \leq \lambda_1(A)$$

and **an orthonormal basis of eigenvectors**.

ADJACENCY MATRIX

PERRON-FROBENIUS THEOREM

Assume that the graph G is **connected**. Then A is **irreducible**: for any x, y in V , there exists k such that $A_{xy}^k > 0$.

Then, the largest eigenvalue is **positive** and it is a **simple** eigenvalue. Its left and right eigenvector have **positive** coordinates.

DEGREE MATRIX

The **degree matrix** is the diagonal matrix indexed by $V \times V$ such that

$$D_{xx} = \deg(x) = \sum_y A_{yx}.$$

DEGREE

INCIDENCE MATRIX

Define the set of oriented edges as

$$\vec{E} = \{(x, y) : \{x, y\} \in E\}$$

and the incidence matrix as the matrix on $\vec{E} \times V$

$$\nabla_{(xy),x} = 1, \quad \nabla_{(yx),x} = -1 \quad \text{and} \quad \nabla_{e,x} = 0 \quad \text{otherwise.}$$

Observe for $x \neq y$

$$(\nabla^* \nabla)_{xx} = \sum_e |\nabla_{e,x}|^2 = 2 \deg(x).$$

$$(\nabla^* \nabla)_{xy} = \sum_e \nabla_{e,x} \nabla_{e,y} = -2 \times \mathbf{1}(\{x, y\} \in E).$$

$$\nabla^* \nabla = 2(D - A).$$

POSITIVITY

Hence, for any vector f ,

$$2\langle (D - A)f, f \rangle = \langle \nabla f, \nabla f \rangle = \sum_{(x,y) \in \vec{E}} (f(x) - f(y))^2 \geq 0.$$

In other words,

$$D - A \geq 0.$$

We get

$$-\max_x \deg(x) \leq \lambda_{|V|}(A) \leq \dots \leq \lambda_1(A) \leq \max_x \deg(x).$$

MARKOV TRANSITION MATRIX

The transition matrix of the **simple** random walk on G is

$$P_{xy} = \frac{A_{xy}}{\deg(x)}.$$

We have

$$P = D^{-1}A.$$

P has real eigenvalues :

$$P = D^{-1}A = D^{-1/2} \left(D^{-1/2} A D^{-1/2} \right) D^{1/2}.$$

Google matrix : for $\alpha \in (0, 1]$, $\alpha P + (1 - \alpha) \mathbf{1}\mathbf{1}^* / |V|$.

MARKOV TRANSITION MATRIX

MARKOV TRANSITION MATRIX

Define the left vector

$$\nu(x) = \deg(x).$$

We have

$$\nu P = \nu.$$

ν is a left eigenvector with eigenvalue 1 and

$$\pi(x) = \frac{\nu(x)}{\sum_y \nu(y)} = \frac{\deg(x)}{2|E|}$$

is the invariant probability measure of the random walk.

MARKOV TRANSITION MATRIX

The symmetry

$$\pi(x)P_{xy} = \pi(y)P_{yx} = \frac{\mathbf{1}(\{x, y\} \in E)}{2|E|}$$

is called **reversibility**.

It asserts that the matrix P is **symmetric** in $L^2(\pi)$ with scalar product

$$\langle f, g \rangle_\pi = \sum_x \pi(x) f(x) g(x),$$

i.e. $\langle Pf, g \rangle_\pi = \langle f, Pg \rangle_\pi$.

It follows that P has real eigenvalues in $[-1, 1]$ and an orthonormal basis of eigenvectors in $L^2(\pi)$.

LAPLACIAN MATRIX

$$L = D - A.$$

$-L$ is the infinitesimal generator of the continuous time random walk:

$$\frac{d}{dt} \mathbb{E}^x f(X_t) \Big|_{t=0} = -Lf(x).$$

It is symmetric, $L \geq 0$ with eigenvalues in

$$[0, 2 \max_x \deg(x)].$$

Moreover

$$L\mathbf{1} = A\mathbf{1} - D\mathbf{1} = 0.$$

The invariant probability measure of the process is the uniform measure.

LAPLACIAN MATRIX

COMBINATORIAL LAPLACIAN MATRIX

Matrix on $V \times V$,

$$D^{-1/2}LD^{-1/2} = D^{1/2}(I - P)D^{-1/2}.$$

It is symmetric and has eigenvalues in $[0, 2]$.

There are other interesting local matrices . . .

REGULAR GRAPHS

If G is d -regular, then $D = dI$ commutes with A : all these matrices have the same eigenspace decomposition.

TYPICAL VS EXTREMAL EIGENVALUES

There are essentially two types of information encoded in the spectrum.

- **PART II** : the **largest eigenvalues** (and their eigenspaces) give some information on **global graph properties** (expansion, clustering, chromatic number, maximal cut, etc...),
- **PART I** : the **typical eigenvalues** give information on **local graph properties** (typical degree, partition function of spanning trees, matchings, percolation, etc...).

LARGE SPARSE RANDOM GRAPHS

We will study the spectrum of classical random graphs in the regime :

- *Large*

$$|V| \rightarrow \infty.$$

- *Sparse / Dilute*

$$|E| = O(|V|).$$

PART I: TYPICAL EIGENVALUES

Spectral Measures

EIGENVALUES

For $M \in M_n(\mathbb{R})$ is a symmetric matrix, we denote its real eigenvalues by

$$\lambda_n(M) \leq \dots \leq \lambda_1(M).$$

SPECTRAL MEASURE

The **spectral measure** / empirical distribution of the eigenvalues / density of states is the probability measure on \mathbb{R} ,

$$\mu_M = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(M)},$$

i.e. for any set $I \subset \mathbb{R}$

$$\mu_M(I) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\lambda_i(M) \in I)$$

is the proportion of eigenvalues in I or equivalently, the probability that a typical eigenvalue is in I .

$$\int f d\mu_M = \frac{1}{n} \sum_{i=1}^n f(\lambda_i(M)).$$

KIRCHOFF MATRIX-TREE THEOREM

If G is a connected graph then the number of spanning trees of G is equal to

$$t(G) = \frac{1}{n} \prod_{\lambda_i \neq 0} \lambda_i,$$

where $\lambda_i = \lambda_i(L)$.

In particular,

$$\frac{1}{n} \log t(G) = \int_{0^+}^{\infty} \log \lambda d\mu_L(\lambda) - \frac{1}{n} \log n.$$

CLOSED PATHS

For t integer, let

$$S_t = |\{\text{closed paths of length } t \text{ in } G\}|$$

We have

$$S_t = \text{Tr}\{A^t\} = \sum_{i=1}^n \lambda_i(A)^t = n \int \lambda^t d\mu_A(\lambda).$$

In particular, for $z \in \mathbb{C}$, $\Im(z) > 0$,

$$\frac{1}{n} \sum_{t \geq 0} \frac{S_t}{z^{t+1}} = \sum_{t \geq 0} \int \frac{\lambda^t}{z^{t+1}} d\mu_A = \int \frac{1}{z - \lambda} d\mu_A(\lambda)$$

is the Cauchy-Stieltjes transform of μ_A .

RETURN TIMES

If \mathbf{X}_t is the Markov chain with transition matrix \mathbf{P} ,

$$\frac{1}{n} \sum_{v=1}^n \mathbb{P}(X_t = v | X_0 = v) = \frac{1}{n} \text{Tr}\{\mathbf{P}^t\} = \int \lambda^t d\mu_P(\lambda).$$

Similarly, for $t > 0$ real, if \mathbf{X}_t is the Markov process with generator \mathbf{L} ,

$$\frac{1}{n} \sum_{v=1}^n \mathbb{P}(X_t = v | X_0 = v) = \int e^{-t\lambda} d\mu_L(\lambda).$$

SPECTRAL MEASURE AT A VECTOR

Let $M \in M_n(\mathbb{R})$ be a symmetric matrix. Let ψ_1, \dots, ψ_n be an orthonormal basis of eigenvectors :

$$M = \sum_k \lambda_k \psi_k \psi_k^*.$$

For $\phi \in \mathbb{R}^n$ with $\|\phi\|_2 = 1$, we define the probability measure,

$$\mu_M^\phi = \sum_{k=1}^n \langle \psi_k, \phi \rangle^2 \delta_{\lambda_k}.$$

We have

$$\int \lambda^k d\mu_M^\phi = \langle \phi, M^k \phi \rangle.$$

SPECTRAL MEASURE AT A VECTOR

We recover the spectral measure from the spatial average

$$\frac{1}{n} \sum_{x=1}^n \mu_M^{e_x} = \frac{1}{n} \sum_{x=1}^n \sum_{k=1}^n |\psi_k(x)|^2 \delta_{\lambda_k} = \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k} \sum_{x=1}^n |\psi_k(x)|^2 = \mu_M.$$

While $\mu_M^{e_x}$ depends on the eigenvectors, its spatial average μ_M does not.

SPECTRAL MEASURE AT A VECTOR

This **local notion of spectrum** will be used to define the spectral of a possibly infinite graph.

We will restrict ourselves to the adjacency matrix and set

$$\mu_G := \mu_A \quad \text{and} \quad \mu_G^{e_x} := \mu_A^{e_x}.$$

It works the same for P or L .

ADJACENCY OPERATOR

Let $G = (V, E)$ be a **locally finite** graph : for all $x \in V$,

$$\deg(x) = \sum_{y \in V} \mathbf{1}(\{x, y\} \in E) < \infty.$$

Let $\ell^2(V) = \{\psi : \sum_{x \in V} \psi(x)^2 < \infty\}$ and $\ell_c^2(V)$ as the subspace of vectors with finite support : i.e. the subspace spanned by finite linear combinations of $e_x, x \in V$.

Adjacency operator : defined for vectors $\psi \in \ell_c^2(V)$

$$A\psi(x) = \sum_{y: \{x, y\} \in E} \psi(y),$$

equivalently, with matrix notation :

$$A_{xy} = \langle e_x, Ae_y \rangle = \mathbf{1}(\{x, y\} \in E).$$

ADJACENCY OPERATOR

Under mild assumptions, A is essentially self-adjoint (e.g. for all $v \in V$, $\deg(v) \leq \theta$).

The spectral measure with vector $\psi \in \ell_c^2(V)$, $\|\psi\|_2 = 1$, is the probability measure μ_G^ψ on \mathbb{R} such that

$$\forall k \geq 1, \quad \int \lambda^k d\mu_G^\psi = \langle \psi, A^k \psi \rangle.$$

As a consequence,

$$\int \lambda^k d\mu_G^{e_x} = |\{\text{closed paths of length } k \text{ starting from } x\}|.$$

TRANSITIVE GRAPHS

If G is vertex-transitive (e.g. a Cayley graph associated to a transitive group Γ with a finite symmetric generating set $S \subset \Gamma$), the measure

$$\mu_G := \mu_G^{e_x}$$

does not depend on x .

Plancherel measure, Kesten-von Neumann-Serre spectral measure.

(If G is finite, then the two definitions coincide).

LATTICES

Cycle

$$\mu_{\mathbb{Z}/n\mathbb{Z}} = \frac{1}{n} \sum_{k=1}^n \delta_{2 \cos \left(\frac{2\pi k}{n} \right)}.$$

Bi-infinite path

$$\mu_{\mathbb{Z}}(dx) = \frac{1}{\pi\sqrt{4-x^2}} \mathbf{1}_{|x|\leq 2} dx.$$

Regular lattice

$$\mu_{\mathbb{Z}^d} = \mu_{\mathbb{Z}} * \cdots * \mu_{\mathbb{Z}}.$$

INFINITE REGULAR TREE

\mathbb{T}_d infinite d -regular tree

$$\mu_{\mathbb{T}_d}(dx) = \frac{d\sqrt{4(d-1) - x^2}}{2\pi(d^2 - x^2)} \mathbf{1}_{|x| \leq 2\sqrt{d-1}} dx.$$

Kesten (1959)

LAMPLIGHTER

Consider a vertex-transitive graph $G = (V, E)$ and a colored lamp in $L = \mathbb{Z}/n\mathbb{Z}$ on each vertex. A vertex of the lamplighter graph is

$$v = (\eta, x)$$

where $\eta : V \rightarrow L$ is the configuration of the lamps and $x \in V$ is the position of the walker.

LAMPLIGHTER

A **switch edge (S)** $\{v, v'\}$ is an edge between two vertices which differ only by the lamp at the position of the walker.

A **walk edge (W)** $\{v, v'\}$ is an edge s.t. $\eta = \eta', \{x, y\} \in E$.

The WS lamplighter graph is the graph with edge set

$$\{\{v, v'\} : \{v, u\} \in W, \{u, v'\} \in S \text{ for some } u\}.$$

Similarly for SW and SWS graphs.

LAMPLIGHTER

Let G_p be the site percolation with parameter $p \in [0, 1]$ and $o \in V$.

Theorem (Lehner, Neuhauser and Woess (2008))

For $p = 1/n$, we have

$$\mu_{SW}(\cdot/n) = \mu_{WS}(\cdot/n) = \mu_{SWS}(\cdot/n^2) = \mathbb{E}\mu_{G_p}^{e_o}(\cdot).$$

LAMPLIGHTER

For $G = \mathbb{Z}$, $n = 2$, for some explicit (ω_n) ,

$$\mu_{SW} = \sum_{n=0}^{\infty} \omega_n \sum_{k=1}^n \delta_{4 \cos \left(\frac{\pi k}{(n+1)} \right)},$$

Grigorchuk and Żuk (2001)

Connectivity and homogeneity do not guarantee a density for the spectral measure !

SKETCH OF PROOF

Let $\mu = \mathbb{E}\mu_{G_p}^{e_o}$ and $\nu = \mu_{WS}(\cdot/n)$. We compare moments.

Let W_k be the set of closed walks $\gamma = (\gamma_0, \dots, \gamma_k)$ in G of length k starting at o .

$$\int \lambda^k d\mu_{G_p}^{e_o}(\lambda) = \sum_{\gamma \in W_k} \prod_{t=0}^k \mathbf{1}(\gamma_t \text{ is open}) = \sum_{\gamma \in W_k} \prod_{x \in V(\gamma)} \mathbf{1}(x \text{ is open})$$

$$\int \lambda^k d\mu(\lambda) = \sum_{\gamma \in W_k} p^{|V(\gamma)|}.$$

SKETCH OF PROOF

The graph G is d -regular. If $S_t = (\eta_t, x_t)$ is a random walk on the WS-lampighter graph and $\varepsilon = (\underline{0}, o)$,

$$\int \lambda^k d\nu = d^k \mathbb{P}^\varepsilon(S_k = \varepsilon).$$

We have

$$\eta_t(x_t) = \eta_{t-1}(x_t) + \ell_t,$$

where ℓ_t is independent of (x_t, η_{t-1}) and uniform on $\mathbb{Z}/n\mathbb{Z}$.

For any $q \in \mathbb{Z}/n\mathbb{Z}$.

$$\mathbb{P}(\ell_t + q = 0) = \frac{1}{n} = p.$$

If τ_x is the last passage time of $(x_t)_{0 \leq t \leq k}$ at x ,

$$\begin{aligned} \mathbb{P}^\varepsilon(S_k = \varepsilon) &= d^{-k} \sum_{\gamma \in W_k} \mathbb{P}(\forall x \in V(\gamma) : \eta_{\tau_x}(x) + \ell_{\tau_x} = 0) \\ &= d^{-k} \sum_{\gamma \in W_k} p^{|V(\gamma)|}. \end{aligned}$$

RANDOM ROOTED GRAPHS

So far : μ_G well defined for finite graphs and vertex-transitive graphs :

$$\mu_G = \mathbb{E} \mu_G^{e_o} = \begin{cases} \frac{1}{|V|} \sum_x \mu_G^{e_x} & \text{(finite)} \\ \mu_G^{e_x} & \text{(transitive)} \end{cases}$$

We want to extend the notion to a large class of "stationary" random graphs.

For a random (unlabeled) connected rooted graph (G, o) with law ρ , we define

$$\mu_\rho := \mathbb{E}_\rho \mu_G^{e_o}.$$

PART I: TYPICAL EIGENVALUES

Spectral measures and BS convergence

BENJAMINI-SCHRAMM CONVERGENCE

BS convergence of finite graph sequences = convergence of typical local neighborhood.

For integer k : $(G, o)_k$ is the rooted (connected) graph spanned by vertices at distance at most k from o .

$G_n = (V_n, E_n)$ has BS limit $\rho = \mathcal{L}((G, o))$ if for any integer k and unlabeled rooted graph g of diameter k ,

$$\frac{1}{|V_n|} \sum_{x \in V_n} \mathbf{1}((G_n, x)_k = g) \rightarrow \mathbb{P}_\rho((G, o)_k = g).$$

BS LIMITS

$G_n = \mathbb{Z}^d \cap [0, n]^d$ has BS limit ? $\delta_{(\mathbb{Z}^d, 0)}$

$T_n = \mathbb{T}_3 \cap \{x : |x| \leq n\}$ has BS limit ?

BS LIMITS

Uniform d -regular graph : a.s. the limit is the (Dirac mass at) \mathbb{T}_d rooted somewhere.

Erdős-Rényi graph, $\mathcal{G}(n, \alpha/n)$: a.s. the limit is the law of (T, o) where T is a Galton-Watson tree with offspring distribution $\text{Poi}(\alpha)$.

Random graphs : many random graphs have random rooted trees as BS limit.

UNIMODULAR GRAPHS

Unimodular random rooted graphs : subclass which contains Cayley graphs and all BS limits of finite graphs.

A law ρ on (unlabeled) rooted graphs is unimodular if for any non-negative functions $f(G, x, y)$ invariant by graph-isomorphisms,

$$\mathbb{E}_\rho \sum_{x \in V} f(G, o, x) = \mathbb{E}_\rho \sum_{x \in V} f(G, x, o).$$

Benjamini/Schramm (2001), Aldous/Steele (2004)

UNIFORM ROOTING IS UNIMODULAR

For finite G , $U(G)$ the law of $(G(o), o)$, where o is uniform on V and $G(o)$ is the c.c. of o , is unimodular

$$\begin{aligned}\mathbb{E}_{U(G)} \sum_{x \in V} f(G, o, x) &= \frac{1}{|V|} \sum_y \sum_{x \in V(y)} f(G(y), y, x) \\ &= \frac{1}{|V|} \sum_x \sum_{y \in V(x)} f(G(y), y, x) \\ &= \frac{1}{|V|} \sum_x \sum_{y \in V(x)} f(G(x), y, x) \\ &= \mathbb{E}_{U(G)} \sum_{x \in V} f(G, x, o).\end{aligned}$$

CONTINUITY OF SPECTRAL MEASURE

Theorem

Let G_n be a sequence of finite graphs with BS-limit ρ . Then

$$d_{\text{KS}}(\mu_{G_n}, \mu_\rho) = \sup_{t \in \mathbb{R}} |\mu_{G_n}(-\infty, t] - \mu_\rho(-\infty, t]| \rightarrow 0.$$

Consequently, for any real λ , $\mu_{G_n}(\{\lambda\}) \rightarrow \mu_\rho(\{\lambda\})$.

Veselić (2005), Thom (2008), Bordenave/Lelarge (2010),
Abèrt/Thom/Virág (2013)

CONTINUITY OF SPECTRAL MEASURE

Corollary (Thom (2008))

Let G_n be a sequence of finite graphs with BS-limit ρ . Then

$$\mu_\rho(\{\lambda\}) > 0$$

implies that λ is a totally real algebraic integer.

SKETCH OF PROOF

Assume for simplicity that $\deg_{G_n}(x) \leq \theta$.

Weak convergence is easy :

$$\int \lambda^k d\mu_{G_n} = \frac{1}{|V_n|} \sum_{x \in V_n} |\{\text{closed paths of length } k \text{ starting from } x\}|.$$

is bounded by θ^k and it depends only on $(G_n, o)_k$.

SKETCH OF PROOF

Convergence in KS-distance = weak convergence + cv of atoms.

From $\liminf \mu_n(O) \geq \mu(O)$, $\limsup \mu_n(C) \leq \mu(C)$, we should prove that

$$\liminf \mu_{G_n}(\{\lambda\}) \geq \mu_\rho(\{\lambda\}).$$

Since

$$\liminf \mu_{G_n}((\lambda - \varepsilon, \lambda + \varepsilon)) \geq \mu_\rho((\lambda - \varepsilon, \lambda + \varepsilon)) \geq \mu_\rho(\{\lambda\}),$$

the theorem follows from

Lemma (Lück)

Let $\lambda \in \mathbb{R}$, $\theta > 0$. There exists a continuous function $\delta : \mathbb{R} \rightarrow [0, 1]$ with $\delta(0) = 0$ depending on (λ, θ) s.t. for any finite graph G with degrees bounded θ , $\varepsilon > 0$,

$$\mu_G((\lambda - \varepsilon, \lambda + \varepsilon)) \leq \mu_G(\{\lambda\}) + \delta(\varepsilon).$$

SKETCH OF PROOF

For $\lambda = 0, \varepsilon \in (0, 1)$,

$$\mu_G((-\varepsilon, \varepsilon)) \leq \mu_G(\{0\}) + \frac{\log(\theta)}{\log(1/\varepsilon)}.$$

reads, with $n = |V|$, $k = |\{i : 0 < |\lambda_i| < \varepsilon\}|$,

$$k \leq n \frac{\log(\theta)}{\log(1/\varepsilon)}.$$

We observe

$$\prod_{i: \lambda_i \neq 0} \lambda_i \in \mathbb{Z} \setminus \{0\}.$$

Hence

$$1 \leq \prod_{\lambda_i \neq 0} |\lambda_i| = \prod_{0 < |\lambda_i| < \varepsilon} |\lambda_i| \prod_{|\lambda_i| \geq \varepsilon} |\lambda_i| \leq \varepsilon^k \theta^n.$$

KESTEN-MCKAY LAW

Theorem

Fix integer $d \geq 2$. If G_n has BS limit \mathbb{T}_d , then for any $I \subset \mathbb{R}$,

$$\mu_{G_n}(I) \rightarrow \mu_{\mathbb{T}_d}(I),$$

where

$$\mu_{\mathbb{T}_d}(dx) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - x^2}}{d^2 - x^2} \mathbf{1}_{|x| \leq 2\sqrt{d-1}} dx.$$

We have $\mu_{KM}(I\sqrt{d}) \rightarrow \mu_{sc}(I)$, the semi-circular distribution, when $d \rightarrow \infty$.

KESTEN-MCKAY LAW

Take $d = 4$, $n = 2000$ and G a uniformly sampled d -regular graph.

ERDŐS-RÉNYI

Theorem

Fix $\alpha > 0$. Let G_n be an Erdős-Rényi graph with parameter $p = \alpha/n$. Then, with probability one, for any interval $I \subset \mathbb{R}$,

$$\mu_{G_n}(I) \rightarrow \mu_\rho(I).$$

where ρ is the law of a Galton-Watson tree with $\text{Poi}(\alpha)$ offspring distribution.

ERDŐS-RÉNYI

Histogram of eigenvalues for $\alpha = 4$ and $n = 500$.

ERDŐS-RÉNYI

There is no explicit expression for μ_ρ .

Let $\Lambda = \{\lambda_i, i \geq 1\}$, be the atoms of μ_ρ , i.e.

$$\Lambda = \{\lambda : \mu_\rho(\{\lambda\}) > 0\}.$$

Λ is the set totally real algebraic integers and

$$\sum_{\lambda \in \Lambda} \mu_\rho(\{\lambda\}) < 1$$

if and only if $\alpha > 1$.

Also, $\mu_\rho(\{0\})$ has a closed-form expression.

Bordenave/Lelarge/Salez (2012), Salez (2013), Bordenave/Virág/Sen (2014)

PART I: TYPICAL EIGENVALUES

Spectral percolation

REGULARITY OF THE SPECTRAL MEASURE

Any probability measure on \mathbb{R} can be decomposed as

$$\mu = \mu_{pp} + \mu_c = \mu_{pp} + \mu_{ac} + \mu_{sc}.$$

For $|V| = \infty$, the decompositions of

$$\mu_G^{e_o} \quad \text{and} \quad \mu_\rho = \mathbb{E}\mu_G^{e_o}$$

reveal deep information on the graph.

In the context of random Schrödinger operators, called **quantum percolation**, *De Gennes, Lafore, Millot (1959)*.

RESOLUTION OF THE IDENTITY

For finite graphs, the decomposition

$$A = \sum_k \lambda_k \psi_k \psi_k^*$$

induces a **projection-valued measure**, for Borel $I \subset \mathbb{R}$,

$$E(I) = \sum_k \mathbf{1}(\lambda_k \in I) \psi_k \psi_k^*.$$

$E(\{\lambda\})$ is the orthogonal projection on the vector space of λ -eigenvectors and

$$\mu_G^\psi(I) = \langle E(I)\psi, \psi \rangle = \|E(I)\psi\|_2^2.$$

This p.v.m. exists also for infinite graphs.

LOCALIZATION/DELOCALIZATION OF EIGENVECTORS

What are the nature of the probability vectors,

$$(|\psi_k(x)|^2, x \in V) \quad ?$$

Localization is related to the atomic part of $\mu_G^{e_x}$

$$\mu_G^{e_x}(\{\lambda\}) = \|E(\{\lambda\})e_x\|_2^2.$$

Delocalization is related to the continuous part of $\mu_G^{e_x}$. If

$$\sum_{\lambda_k \in I} |\psi_k(x)|^2 = \mu_G^{e_x}(I) \leq c|I|,$$

then $|\psi_k(x)|^2 \leq c|I|$ for all λ_k in I .

ATOMS

Finite pending graphs create atoms (e.g. percolation graphs)
Kirkpatrick/Eggarter (1972).

If $G_1 \simeq G_2$ and $A_{G_1}\psi = \lambda\psi$, $\|\psi\|_2 = 1/\sqrt{2}$, then

$$\mu_G^{e_o}(\{\lambda\}) = \|E(\{\lambda\})e_o\|_2^2 \geq \langle \varphi, e_o \rangle^2 = \psi(o)^2.$$

$$\varphi = \psi|_{G_1} - \psi|_{G_2}$$

Warning : recall lamplighter graphs !!

RANDOM ROOTED TREES

Topological end of a rooted tree : semi-infinite self-avoiding path starting from the root.

Theorem

Let (T, o) be a unimodular tree with law ρ . If, with positive probability, T has 2 or more topological ends then μ_ρ has a continuous part.

0 end : finite trees.

1 end ?

2 ends : \mathbb{Z} .

∞ ends : all others, e.g. supercritical Galton-Watson trees.

INVARIANT LINE ENSEMBLE

Let (\mathcal{T}, o) be a unimodular tree with law ρ .

An **invariant line ensemble** L is a subset of non intersecting doubly infinite lines in \mathcal{T} which does not depend on the choice of the root o .

$\mathbb{P}(o \in L)$ is the **density** of the invariant line ensemble.

INVARIANT LINE ENSEMBLE

Theorem

Let (T, o) be a unimodular tree with law ρ .

If L is an invariant line ensemble of (T, o) then the total mass of atoms of μ_ρ is bounded above by $\mathbb{P}(o \notin L)$.

Moreover, for each real λ ,

$$\mu_\rho(\{\lambda\}) \leq \mathbb{P}(o \notin L) \mu_{\rho'}(\{\lambda\})$$

where, if $\mathbb{P}(o \notin L) > 0$, ρ' is the law of the rooted tree $(T \setminus L, o)$ conditioned on the root $o \notin L$.

INVARIANT LINE ENSEMBLE

There are explicit lower bounds on the density $\mathbb{P}(o \in L)$.

For example, if (T, o) is a unimodular random tree, there exists an invariant line ensemble L such that

$$\mathbb{P}(o \in L) \geq \frac{1}{6} \frac{(\mathbb{E} \deg_T(o) - 2)_+^2}{\mathbb{E} \deg_T(o)^2}.$$

WATTS-STROGATZ RANDOM GRAPH

G_n is obtained by superposing the graphs of $\mathbb{Z}/n\mathbb{Z}$ + Erdős-Rényi graph $\mathcal{G}(n, \alpha/n)$.

Then μ_{G_n} converges and it is continuous.

PROOF BY AN EXAMPLE : VERTICAL PERCOLATION

Consider the following $n \times n$ graph.

S = eigenspace associated to eigenvalue λ .

R = vector space spanned by red vertices.

$$\dim(S \cap R^\perp) \geq \dim(S) - \dim(R) = \dim(S) - n.$$

PROOF BY AN EXAMPLE : VERTICAL PERCOLATION

If $f \in S \cap R^\perp$, we write

$$0 = (A - \lambda)f(x) = \sum_{y \sim x} f(y).$$

For x red vertex, we get that f is also 0 on the green vertices.

By iteration, $S \cap R^\perp = \emptyset$ and

$$n^2\mu_G(\{\lambda\}) = \dim(S) \leq n = o(n^2).$$

OTHER QUESTIONS

Works also for supercritical percolation on \mathbb{Z}^2 (other method).

No criterion for existence of **ac part** in $\mu_\rho = \mathbb{E}_\rho \mu_G^{e_o}$.

The same questions for $\mu_G^{e_o}$ are essentially open, *Keller (2013), Bordenave (2014)*.

Their are finite volume versions of these questions.

QUANTUM PERCOLATION ON A REGULAR TREE

Consider T_p , the bond percolation on \mathbb{T}_d with parameter p .

Then, for any $0 < p < 1$, $\mathbb{E}\mu_{T_p}^{e_o}$ has dense atomic part on its support $[-2\sqrt{d-1}, 2\sqrt{d-1}]$.

For all $p > p_0$, conditioned on non-extinction, $\mu_{T_p}^{e_o}$ has non-trivial ac part.

Bordenave (2014)

PART II: EXTREMAL EIGENVALUES

Convergence to Equilibrium

SPECTRAL GAP

Take a connected graph on n vertices.

The **spectral gap**

$$\min_{\lambda \neq 0} \lambda(L)$$

$$1 - \max_{\lambda \neq 1} \lambda(P)$$

is closely related to the rate convergence of the Markov chain/process.

For simplicity we only consider L .

SPECTRAL GAP

Let X_t be the Markov process with generator $-L$,

$$P_t^x = e^{-tL} e_x$$

is the probability distribution of X_t given $X_0 = x$.

Let $\lambda_1 = 0 < \lambda_2 \leq \dots \leq \lambda_n$ the eigenvalues of L and $\psi_1 = \mathbf{1}/\sqrt{n}, \dots, \psi_n$ an orthogonal basis of eigenvectors.

From the spectral theorem

$$e^{-tL} = \sum_{i=1}^n e^{-t\lambda_i} \psi_i \psi_i^*$$

$$P_t^x = \frac{1}{n} + \sum_{i=2}^n e^{-t\lambda_i} \psi_i(x) \psi_i$$

SPECTRAL GAP

Recall that $\Pi = \mathbf{1}/n$ is the invariant distribution. We get

$$\|P_t^x - \Pi\|_2^2 = \sum_{i=2}^n e^{-2t\lambda_i} |\psi_i(x)|^2 \leq e^{-2\lambda_2 t}.$$

Recall

$$\|x\|_2 \leq \sum_i |x_i| \leq \sqrt{n} \|x\|_2.$$

So,

$$|\psi_2(x)| e^{-\lambda_2 t} \leq 2 \|P_t^x - \Pi\|_{TV} \leq \sqrt{n} e^{-\lambda_2 t}.$$

where the total variation norm is

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_x |\mu(x) - \nu(x)|.$$

SPECTRAL GAP

The **mixing time** of a Markov process is usually defined as

$$\tau = \inf_{t>0} \max_x \|P_t^x - \Pi\|_{TV} \leq \frac{1}{2}.$$

$$\frac{\max_x |\psi_2(x)|}{\lambda_2} \leq \tau \leq \frac{\log n}{2\lambda_2}.$$

(Note that $\max_x |\psi_2(x)| \geq 1/\sqrt{n}$).

There are similar developments for reversible Markov chains.

Levin/Peres/Wilmer (2009)

PART II: EXTREMAL EIGENVALUES

Expanders

CHUNG'S DIAMETER INEQUALITY

Let

$$1 = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq -1$$

be the eigenvalues of \mathbf{P} .

Set

$$\lambda_\star = \max_{i \neq 1} |\lambda_i|.$$

Theorem

If \mathbf{G} connected,

$$\text{diam}(G) \leq \left\lceil \frac{\log(2|E|)}{\log(1/|\lambda_\star|)} \right\rceil.$$

PROOF

Since

$$P = D^{-1}X = D^{-1/2}(D^{-1/2}AD^{-1/2})D^{1/2},$$

the λ_i 's are also the eigenvalues of S with $S = D^{-1/2}AD^{-1/2}$.

Since $P\mathbf{1} = \mathbf{1}$,

$$\psi_1 = \frac{D^{1/2}\mathbf{1}}{\sqrt{2|E|}}$$

is the normalized eigenvector of S associated to $\lambda_1 = 1$.

$$S^t = \psi_1\psi_1^* + \sum_{k \geq 2} \lambda_k^t \psi_k\psi_k^*.$$

Hence, from Cauchy-Schwartz

$$\begin{aligned} (S^t)_{xy} &\geq \psi_1(x)\psi_1(y) - \lambda_*^t \sum_{k \geq 2} |\psi_k(x)||\psi_k(y)| \\ &\geq \psi_1(x)\psi_1(y) - \lambda_*^t \sqrt{\sum_{k \geq 2} |\psi_k(x)|^2} \sqrt{\sum_{k \geq 2} |\psi_k(y)|^2}. \end{aligned}$$

PROOF

Since

$$\sum_{k \geq 2} |\psi_k(x)|^2 = 1 - \psi_1(x)^2 < 1;$$

We find

$$(S^t)_{xy} > \psi_1(x)\psi_1(y) - \lambda_\star^t.$$

This is positive if

$$t > \frac{\log (\psi_1(x)\psi_1(y))}{\log |\lambda_\star|} = \frac{\log \left(2|E| / \sqrt{\deg(x) \deg(y)} \right)}{\log (1/|\lambda_\star|)}.$$

CHEEGER'S CONSTANT

For $X \subset V$, define

$$\text{vol}(X) = \sum_{x \in X} \deg(x).$$

$$\text{area}(\partial X) = \sum_{x \in X, y \in X^c} \mathbf{1}(xy \in E).$$

Isoperimetric / Expansion constant :

$$h(G) = \min_{X \subset V} \frac{\text{area}(\partial X)}{\min(\text{vol}(X), \text{vol}(X^c))}.$$

CHEEGER'S INEQUALITY

Again

$$1 = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq -1$$

be the eigenvalues of \mathcal{P} .

$1 - \lambda_2$ is the spectral gap of \mathcal{P} .

Theorem

$$\frac{h(G)^2}{2} \leq 1 - \lambda_2 \leq 2h(G).$$

PROOF (EASY HALF)

The λ_i 's are also the eigenvalues of S with $S = D^{-1/2}AD^{-1/2}$.

$\chi = D^{1/2}\mathbf{1}$ is the eigenvector of S associated to $\lambda_1 = 1$.

From Courant-Fisher variational formula,

$$\lambda_2 = \max_{g: \langle g, \chi \rangle = 0} \frac{\langle Sg, g \rangle}{\|g\|_2^2}.$$

Or equivalently,

$$1 - \lambda_2 = \min_{g: \langle g, \chi \rangle = 0} \frac{\langle (I - S)g, g \rangle}{\|g\|_2^2}.$$

PROOF (EASY HALF)

Recall, for the incidence matrix,

$$I - S = D^{-1/2}(D - A)D^{-1/2} = D^{-1/2} \frac{\nabla^* \nabla}{2} D^{-1/2}$$

Set $\pi(x) = \deg(x) = (D\mathbf{1})(x)$ and $f = D^{-1/2}g$,

$$1 - \lambda_2 = \min_{f: \langle f, \pi \rangle = 0} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x \deg(x) f(x)^2}.$$

Let X be such that

$$h(G) = \frac{\text{area}(\partial X)}{\min(\text{vol}(X), \text{vol}(X^c))}.$$

We take

$$f(x) = \frac{\mathbf{1}(x \in X)}{\text{vol}(X)} - \frac{\mathbf{1}(x \notin X)}{\text{vol}(X^c)}.$$

PROOF (EASY HALF)

We have

$$\langle f, \pi \rangle = \sum_{x \in X} \frac{\deg(x)}{\text{vol}(X)} - \sum_{x \in X^c} \frac{\deg(x)}{\text{vol}(X^c)} = 0,$$

and

$$\begin{aligned} 1 - \lambda_2 &\leq \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x \deg(x) f(x)^2} \\ &= 2 \text{area}(\partial X) \frac{(1/\text{vol}(X) - 1/\text{vol}(X^c))^2}{1/\text{vol}(X) + 1/\text{vol}(X^c)} \\ &\leq 2 \frac{\text{area}(\partial X)}{\min(\text{vol}(X), \text{vol}(X^c))} \\ &\leq 2h(G). \end{aligned}$$

RANDOM GRAPHS ARE EXPANDERS

Consider the configuration model with degree sequence d_1, \dots, d_n such that

$$\min_i d_i \geq 3 \quad \text{and} \quad \sum_i d_i \leq n^{5/4}.$$

Then, with high probability,

$$h(G) \geq 0.01.$$

Abdullah/Cooper/Frieze (2012)

PART II: EXTREMAL EIGENVALUES

Outliers

BS CONVERGENCE

Theorem

Take A , L or P . Let G_n be a sequence of graphs on n vertices with BS limit ρ . Then for any $k = o(n)$,

$$\lambda_k \geq b + o(1) \quad \text{and} \quad \lambda_{n-k} \leq a + o(1).$$

where $[a, b]$ is the convex hull of the support of $\mu_\rho = \mathbb{E}_\rho \mu_G^{e_o}$ (with the corresponding operator).

$|a| \vee b$ is the spectral radius of the operator.

PROOF

We know already that

$$d_{\text{KS}}(\mu_{G_n}, \mu_\rho) = \sup_{t \in \mathbb{R}} |\mu_{G_n}(-\infty, t] - \mu_\rho(-\infty, t]| \rightarrow 0.$$

Hence, for $I = (b - \varepsilon, \infty)$,

$$\lim \mu_{G_n}(I) = \mu_\rho(I) = \eta > 0.$$

In words : the nb of eigenvalues larger than $b - \varepsilon$ is at least $n(\eta + o(1)) \gg k$.

We get that for n large enough, $\lambda_k \geq b - \varepsilon$.

OUTLIERS

Assume G_n has BS limit ρ .

Eigenvalues/Eigenvectors of G_n outside the support of μ_ρ contain a **global information** on G_n : they are not seen in the local limit.

e.g. $\lambda_1 = -\lambda_n$ equivalent to G bipartite.

Spectral clustering try to exploit this information (usually low rank).

OUTLIERS

A large locally tree-like 12-regular graph.

PART II: EXTREMAL EIGENVALUES

Regular graphs

ALON-BOPPANA BOUND

Theorem

If G is a d -regular graph on n vertices, then $\lambda_1(A) = d$ and

$$\lambda_2(A) \geq 2\sqrt{d-1} - \frac{c_d}{\log n}.$$

Since $P = A/d$,

$$1 - \lambda_2(P) \leq 1 - 2\frac{\sqrt{d-1}}{d} + o(1).$$

COVER AND UNIVERSAL COVERING TREE

Assume G is connected.

A graph C is a **covering graph** of G if there is a surjective function $f : V_C \rightarrow V_G$ which is a **local isomorphism** (1-neighborhood is mapped bijectly).

The **universal covering** of G is a covering which is a **tree** (unique up to isomorphism). It covers any covering of G .

COVER AND UNIVERSAL COVERING TREE

A construction of $T = (V_T, E_T)$: take $o \in G$. V_T is the set of all non-backtracking paths (v_0, \dots, v_k) starting from $o = v_0$ ($v_{i-1} \neq v_{i+1}$). Two paths share an edge if one is the largest prefix of the other.

SKETCH OF PROOF OF ALON-BOPPANA

Weaker result on $\lambda_\star = \max_{i \geq 2} |\lambda_i| = \lambda_2 \vee (-\lambda_n)$.

\mathbb{T}_d is the universal covering tree of G .

Hence, the nb of closed walks starting from x in G of length k is at least the nb of closed walks starting from the root in \mathbb{T}_d of length k :

$$\text{Tr}(A^k) = \sum_j \lambda_j^k = n \int \lambda^k d\mu_G \geq n \int \lambda^k d\mu_{\mathbb{T}_d}$$

$2\sqrt{d-1}$ is the spectral radius of the adjacency operator of \mathbb{T}_d (Kesten) : for k even,

$$\int \lambda^k d\mu_{\mathbb{T}_d} \geq \frac{c}{k^{3/2}} \left(2\sqrt{d-1}\right)^k.$$

SKETCH OF PROOF

For even k ,

$$\mathrm{Tr}(A^k) = \sum_j \lambda_j^k \leq d^k + n\lambda_\star^k.$$

So finally,

$$\frac{c}{k^{3/2}} \left(2\sqrt{d-1}\right)^k \leq \frac{d^k}{n} + \lambda_\star^k.$$

Take $k = \log_d n$.

Replacing λ_\star by λ_2 requires another strategy (without trace).

RAMANUJAN GRAPHS

Let G be a d -regular graph on n vertices. Consider its adjacency matrix A .

$\lambda_n = -d$ is equivalent to G bipartite.

The largest non-trivial eigenvalue is

$$\lambda_* = \max_i \{|\lambda_i| : |\lambda_i| \neq d\}.$$

G is Ramanujan if

$$\lambda_* \leq 2\sqrt{d-1}.$$

They are the best possible expanders.

EXISTENCE OF RAMANUJAN GRAPHS

Sequence of (bipartite) Ramanujan graphs G_1, G_2, \dots , with $|V(G_n)|$ growing to infinity, are known to exist when

- $d = q + 1$ with $q = p^k$ and p prime number *Lubotzky, Phillips, Sarnak (1988), Morgenstern (1994)*.
- any $d \geq 3$, *Marcus, Spielman, Srivastava (2013)*.

ALON'S CONJECTURE (1986)

Theorem (Friedman (2007))

Fix integer $d \geq 3$. Let G_n is a sequence of uniformly distributed d -regular graphs on n vertices, then with high probability,

$$\lambda_2 = 2\sqrt{d-1} + o(1) = -\lambda_n.$$

Most regular graphs are nearly Ramanujan !!

HASHIMOTO'S NON-BACKTRACKING MATRIX

Oriented edge set :

$$\vec{E} = \{(u, v) : \{u, v\} \in E\},$$

hence, $m = |\vec{E}| = 2|E|$.

If $e = uv, f = xy$ are in \vec{E} ,

$$B_{ef} = \mathbf{1}(v = x)\mathbf{1}(u \neq y),$$

defines a $|\vec{E}| \times |\vec{E}|$ non-symmetric matrix on the oriented edges.

PERRON EIGENVALUE

Complex eigenvalues, $m = 2|E|$,

$$\mu_1 \geq |\mu_2| \geq \cdots \geq |\mu_m|.$$

A **non-backtracking path** $(v_1 \dots v_n)$ is a path such that $v_{i-1} \neq v_{i+1}$.

B_{ef}^ℓ = nb of NB paths from e to f of length $\ell + 1$.

If G is connected and $|E| > |V|$ then B is irreducible and

$\mu_1 = \lim_{\ell \rightarrow \infty} \|B^\ell \delta_e\|_1^{1/\ell}$ = growth rate of the universal cover of G .

IHARA-BASS' IDENTITY

With $Q = D - I$,

$$\det(z - B) = (z^2 - 1)^{|E| - |V|} \det(z^2 - Az + Q)$$

If G is d -regular, then $Q = (d - 1)I$ and

$$\sigma(B) = \{\pm 1\} \cup \{\mu : \mu^2 - \lambda\mu + (d - 1) = 0 \text{ with } \lambda \in \sigma(A)\}.$$

Kotani & Sunada (2000), Angel, Friedman & Hoory (2007), Terras (2011), ...

NON-BACKTRACKING MATRIX OF REGULAR GRAPHS

For a d -regular graph, $\mu_1 = d - 1$,

- ★ Alon-Boppana bound : $\max_{k \neq 1} \Re(\mu_k) \geq \sqrt{\mu_1} - o(1)$.
- ★ Ramanujan (non bipartite) : $|\mu_k| = \sqrt{\mu_1}$ for $k = 2, \dots, n$.
- ★ Friedman's thm : $|\mu_2| \leq \sqrt{\mu_1} + o(1)$ if G random uniform.

IHARA-BASS FORMULA

Theorem (Ihara-Bass Formula)

Let ζ_G be the Ihara's zeta function. We have

$$\frac{1}{\zeta_G(z)} = \det(I - Bz) = (1 - z^2)^{|E|-|V|} \det(I - Az + Qz^2).$$

The poles of the zeta function are the reciprocal of eigenvalues of B .

IHARA'S ZETA FUNCTION (1966)

A closed non-backtracking walk without tail $p = (v_1, \dots, v_n)$ is a closed path such that $v_{i-1} \neq v_{i+1} \bmod(n)$.

A closed non-backtracking walk without tail is **prime** if it cannot be written as $p = (q, q, \dots, q)$ with q closed non-backtracking walk .

IHARA'S ZETA FUNCTION (1966)

If N_ℓ is the number of closed non-backtracking paths without tails of length ℓ in G and $|z|$ small,

$$\zeta_G(z) = \exp \left(\sum_\ell \frac{N_\ell}{\ell} z^\ell \right) = \prod_{p: \text{ prime}} \left(1 - z^{|p|} \right)^{-1}.$$

Stark & Terras draw a parallel between Riemann hypothesis and Ramanujan property.

SKETCH OF PROOF OF IHARA-BASS IDENTITY

$$\det(I_m - Bz) = (1 - z^2)^{|E|-|V|} \det(I_n - Az + Qz^2).$$

Introduce the matrices

$$\begin{aligned} J : \mathbb{R}^{\vec{E}} &\rightarrow \mathbb{R}^{\vec{E}} & Je_{(x,y)} &= e_{(y,x)} \\ S : \mathbb{R}^{\vec{E}} &\rightarrow \mathbb{R}^V & Se_{(x,y)} &= e_x \\ T : \mathbb{R}^{\vec{E}} &\rightarrow \mathbb{R}^V & Te_{(x,y)} &= e_y. \end{aligned}$$

$J^2 = I_m$ and J has $m/2 = |E|$ eigenvalues equal to 1 and -1.

We have

$$\begin{aligned} SJ &= T & A &= ST^* \\ D = Q + I &= SS^* = TT^* & B + J &= T^*S. \end{aligned}$$

SKETCH OF PROOF OF IHARA-BASS IDENTITY

We check the identity

$$\begin{pmatrix} I_n & 0 \\ T^* & I_m \end{pmatrix} \begin{pmatrix} (1 - z^2)I_n & zS \\ 0 & I_m - zB \end{pmatrix} \\ = \begin{pmatrix} I_n - zA + z^2Q & zS \\ 0 & I_m + zJ \end{pmatrix} \begin{pmatrix} I_n & 0 \\ T^* - zS^* & I_m \end{pmatrix}$$

Take determinant and observe,

$$\det(I_m + zJ) = (1 + z)^{m/2}(1 - z)^{m/2} = (1 - z^2)^{|E|}.$$

PART II: EXTREMAL EIGENVALUES

Sketch of proof of Friedman's Theorem

ALON'S CONJECTURE (1986)

Theorem (Friedman (2007))

Fix integer $d \geq 3$. Let G_n is a sequence of uniformly distributed d -regular graphs on n vertices, then with high probability,

$$\lambda_2 = 2\sqrt{d-1} + o(1) = -\lambda_n.$$

We should prove $\lambda_2 \vee |\lambda_n| \leq 2\sqrt{d-1} + o(1)$.

TRACE METHOD

If A is the adjacency matrix of G_n we would like to prove for even k ,

$$d^k + \lambda_2^k + \lambda_n^k \leq \text{Tr}(A^k) \stackrel{?}{\leq} d^k + n \left(2\sqrt{d-1} + o(1) \right)^k.$$

No real hope to do better since, for any $\varepsilon > 0$,

$$\text{Tr}(A^k) = n \int \lambda^k d\mu_A \geq cn \left(2\sqrt{d-1} - \varepsilon \right)^k,$$

with $c = \mu_A(2\sqrt{d-1} - \varepsilon, \infty) = \mu_{\mathbb{T}_d}(2\sqrt{d-1} - \varepsilon, \infty) + o(1) > 0$.

TRACE METHOD

Then,

$$\lambda_2^k \leq n \left(2\sqrt{d-1} + o(1) \right)^k.$$

or

$$\lambda_2 \leq n^{1/k} \left(2\sqrt{d-1} + o(1) \right).$$

If $k \gg \log n$ then

$$n^{1/k} = 1 + o(1),$$

and Friedman's Theorem follows.

It is wiser to project orthogonally on $\mathbf{1}^\perp$:

$$\text{Tr}(A^k) - d^k = \text{Tr} \left(A - \frac{d}{n} \mathbf{1} \mathbf{1}^* \right)^k \stackrel{?}{\leq} n \left(2\sqrt{d-1} + o(1) \right)^k.$$

TRACE METHOD

For a first moment estimate, we would aim at

$$\mathbb{E}\text{Tr}(A^k) - d^k = \mathbb{E}\text{Tr}\left(A - \frac{d}{n}\mathbf{1}\mathbf{1}^*\right)^k \stackrel{?}{\leq} n\left(2\sqrt{d-1} + o(1)\right)^k$$

for $k \gg \log n$.

This is wrong !

The probability that the graph contains K_{d+1} as subgraph is at least n^{-c} . On this event $\lambda_2 = d$. Hence, for even $k \gg \log n$,

$$\mathbb{E}\text{Tr}\left(A - \frac{d}{n}\mathbf{1}\mathbf{1}^*\right)^k \geq n^{-c}d^k \gg n\left(2\sqrt{d-1} + o(1)\right)^k.$$

Subgraphs which have polynomially small probability compromise the first moment method. Called Tangles.

STRATEGY

1. Use \mathbf{B} instead of \mathbf{A} : $|\mu_2| \leq \sqrt{d-1} + o(1)$.
2. Remove the tangles.
3. Project on $\mathbf{1}^\perp$.
4. Use the trace method / first moment method to evaluate the remainder terms.

Bordenave/Massoulié/Lelarge (2015), Bordenave (2015)

CONFIGURATION MODEL

The oriented edge set \vec{E} , $|\vec{E}| = m = nd$ is written as

$$\vec{E} = \{(u, i) : 1 \leq u \leq n, 1 \leq i \leq d\}.$$

A matching σ on \vec{E} defines a multi-graph with adjacency matrix

$$A = Q^* M Q,$$

where, $M : \mathbb{R}^{\vec{E}} \rightarrow \mathbb{R}^{\vec{E}}$, $Q : \mathbb{R}^V \rightarrow \mathbb{R}^{\vec{E}}$,

$$M_{ef} = \mathbf{1}(\sigma(e) = f) = M_{fe} \quad \text{and} \quad Q_{eu} = \mathbf{1}(e_1 = u).$$

M is the permutation matrix associated to σ .

CONFIGURATION MODEL

The non-backtracking matrix with $f = (u, i)$,

$$B_{ef} = \mathbf{1}(\sigma(e) = (u, j) \text{ for some } j \neq i).$$

can be written as

$$B = MN$$

where

$$N_{ef} = \mathbf{1}(e_1 = f_1, e \neq f) = N_{fe}.$$

We have

$$M\mathbf{1} = \mathbf{1} \quad \text{and} \quad N\mathbf{1} = (d-1)\mathbf{1}.$$

Hence,

$$B\mathbf{1} = B^*\mathbf{1} = (d-1)\mathbf{1}.$$

CONFIGURATION MODEL

If $B\psi = \mu\psi$, $\mu \neq d - 1$, we deduce

$$\mu\langle \mathbf{1}, \psi \rangle = \langle \mathbf{1}, B\psi \rangle = \langle B^* \mathbf{1}, \psi \rangle = (d - 1)\langle \mathbf{1}, \psi \rangle.$$

For any integer ℓ , the second largest eigenvalue of B is thus bounded by

$$|\mu_2|^\ell \leq \max_{x: \langle \mathbf{1}, x \rangle = 0} \frac{\|B^\ell x\|_2}{\|x\|_2}.$$

We prove if σ is a uniform random matching that with high probability

$$\max_{x: \langle \mathbf{1}, x \rangle = 0} \frac{\|B^\ell x\|_2}{\|x\|_2} \leq (\log n)^c (d - 1)^{\ell/2}.$$

with $\ell \simeq \log n$. The theorem follows with

$$\varepsilon = O(\log \log n / \log n).$$

PATH DECOMPOSITION

Recall $M_{ef} = \mathbf{1}(\sigma(e) = f)$, $N_{ef} = \mathbf{1}(e_1 = f_1, e \neq f)$

$$B_{ef}^k = \left((MN)^k \right)_{ef} = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1} \gamma_{2s}},$$

where Γ_{ef}^k is the set of paths $\gamma = (\gamma_1, \dots, \gamma_{2k+1})$ such that $\gamma_1 = e$, $\gamma_{2k+1} = f$ and $N_{\gamma_{2s}, \gamma_{2s+1}} = 1$.

PATH DECOMPOSITION

$$B_{ef}^k = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1} \gamma_{2s}},$$

The set of paths Γ_{ef}^k is independent of σ : combinatorial part.

The summand is the probabilistic part.

PATH DECOMPOSITION

$$B_{ef}^k = ((MN)^k)_{ef} = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1} \gamma_{2s}},$$

The projection of M on $\mathbf{1}^\perp$ is

$$\underline{M} = M - \frac{\mathbf{1}\mathbf{1}^*}{m}.$$

Hence, if $\langle x, \mathbf{1} \rangle = 0$, we get

$$B^k x = \underline{B}^k x,$$

where $\underline{B} = \underline{M}\underline{N}$ and

$$\underline{B}_{ef}^k = ((\underline{M}\underline{N})^k)_{ef} = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k \underline{M}_{\gamma_{2s-1} \gamma_{2s}},$$

However, due to the presence of **tangles**, we will reduce the sum **before** doing the projection.

TANGLES

A multi-graph (or a path) is **tangle-free** if it contains **at most one cycle**.

A multi-graph (or a path) is **ℓ -tangle-free** if all vertices have at most **at most one cycle** in their **ℓ** -neighborhood.

We denote by F_{ef}^k the subset of tangle-free paths Γ_{ef}^k .

Observe that F_{ef}^k is much smaller than Γ_{ef}^k .

PATH DECOMPOSITION

Assume that $G = G(\sigma)$ is ℓ -tangle-free. Then, for $0 \leq k \leq \ell$,

$$B^k = B^{(k)},$$

where

$$(B^{(k)})_{ef} = \sum_{\gamma \in F_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1}\gamma_{2s}}.$$

For $0 \leq k \leq \ell$, we define the "projected" matrix

$$(\underline{B}^{(k)})_{ef} = \sum_{\gamma \in F_{ef}^k} \prod_{s=1}^k \underline{M}_{\gamma_{2s-1}\gamma_{2s}}.$$

PATH DECOMPOSITION

Beware that $\underline{B}^k \neq \underline{B}^{(k)}$ and a priori $\underline{B}^{(k)}x \neq \underline{B}^{(k)}\underline{x}$ for $\langle x, \mathbf{1} \rangle = 0$. This is only approximately true !

$$(B^{(\ell)})_{ef} = (\underline{B}^{(\ell)})_{ef} + \sum_{\gamma \in F_{ef}^\ell} \sum_{k=1}^{\ell} \prod_{s=1}^{k-1} M_{\gamma_{2s-1}\gamma_{2s}} \left(\frac{1}{m} \right) \prod_{k+1}^{\ell} M_{\gamma_{2s-1}\gamma_{2s}},$$

which follows from the identity,

$$\prod_{s=1}^{\ell} x_s = \prod_{s=1}^{\ell} y_s + \sum_{k=1}^{\ell} \prod_{s=1}^{k-1} y_s (x_k - y_k) \prod_{k+1}^{\ell} x_s.$$

PATH DECOMPOSITION

An path $\gamma \in F_{ef}^\ell$ can be decomposed as the union of

$$\gamma' \in F_{ea}^{k-1}, \quad \gamma'' \in F_{ab}^1 \quad \text{and} \quad \gamma''' \in F_{bf}^{\ell-k}.$$

PATH DECOMPOSITION

Set

$$K = (d - 1)\mathbf{1}\mathbf{1}^* - N$$

$K_{ef} \in \{d - 1, d - 2\}$ is the cardinal of Γ_{ef}^1 .

$$\sum_{\gamma \in F_{ef}^\ell} \prod_{s=1}^{k-1} \underline{M}_{\gamma_{2s-1}\gamma_{2s}} \prod_{k+1}^{\ell} M_{\gamma_{2s-1}\gamma_{2s}} = \left(\underline{B}^{(k-1)} K B^{(\ell-k)} \right)_{ef} - \left(R_k^{(\ell)} \right)_{ef}$$

where $\left(R_k^{(\ell)} \right)_{ef}$ counts the extra paths :

OR

PATH DECOMPOSITION

So finally, $\mathbf{K} = (d-1)\mathbf{1}\mathbf{1}^* - N$,

$$\begin{aligned} B^{(\ell)} &= \underline{B}^{(\ell)} + \frac{1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} K B^{(\ell-k)} - \frac{1}{m} \sum_{k=1}^{\ell} R_k^{(\ell)} \\ &= \underline{B}^{(\ell)} + \frac{d-1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} \mathbf{1}\mathbf{1}^* B^{(\ell-k)} - \frac{1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} N B^{(\ell-k)} \\ &\quad - \frac{1}{m} \sum_{k=1}^{\ell} R_k^{(\ell)}. \end{aligned}$$

Hence, if $\langle x, \mathbf{1} \rangle = 0$, since $\mathbf{1}^* B^{(\ell-k)} = (d-1)^{\ell-k} \mathbf{1}^*$,

$$B^{(\ell)} x = \underline{B}^{(\ell)} x - \frac{1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} N B^{(\ell-k)} x - \frac{1}{m} \sum_{k=1}^{\ell} R_k^{(\ell)} x.$$

PATH DECOMPOSITION

We arrive at

$$\max_{x: \langle \mathbf{1}, x \rangle = 0} \frac{\|B^\ell x\|_2}{\|x\|_2} \leq \|\underline{B}^{(\ell)}\| + \frac{1}{m} \sum_{k=0}^{\ell-1} (d-1)^{\ell-k} \|\underline{B}^{(k)}\| + \frac{1}{m} \sum_{k=1}^{\ell} \|R_k^{(\ell)}\|.$$

where $\|S\| = \max_{x: \|x\|_2=1} \|Sx\|_2$ is the operator norm.

This inequality holds if $G(\sigma)$ is ℓ tangle-free : for random σ , ok with $\ell = 0.1 \log_{d-1}(n)$.

TRACE METHOD

$$\max_{x: \langle \mathbf{1}, x \rangle = 0} \frac{\|B^\ell x\|_2}{\|x\|_2} \leq \|\underline{B}^{(\ell)}\| + \frac{1}{m} \sum_{k=0}^{\ell-1} (d-1)^{\ell-k} \|\underline{B}^{(k)}\| + \frac{1}{m} \sum_{k=1}^{\ell} \|R_k^{(\ell)}\|.$$

Our aim is then to prove that w.h.p.

$$\|\underline{B}^{(\ell)}\| \leq (\log n)^c (d-1)^{\ell/2} \quad \text{and} \quad \|R_k^{(\ell)}\| \leq (\log n)^c (d-1)^{\ell-k/2}$$

By estimating, for $S = \underline{B}^{(\ell)}$ or $S = R_k^{(\ell)}$.

$$\mathbb{E}\|S\|^{2k} \leq \mathbb{E}\text{Tr}(SS^*)^k.$$

with $k \simeq \log n / (\log \log n)$: on the overall paths of length $2\ell k \gg \log n$.

TRACE METHOD

For $S = \underline{B}^{(\ell)}$,

$$\mathbb{E}\|S\|^{2k} \leq \mathbb{E}\text{Tr}(SS^*)^k \leq \left(\sqrt{d-1} + o(1)\right)^{2k\ell},$$

with $k \simeq \log n / (\log \log n)$.

The combinatorial part of the proof is made possible thanks to the tangle-free reduction.

The probabilistic part relies on an estimate of the type

$$\left| \mathbb{E} \prod_{t=1}^t \left(M_{\gamma_{2t-1}, \gamma_{2t}} - \frac{1}{m} \right) \right| \leq c \left(\frac{1}{m} \right)^a \left(\frac{4t}{\sqrt{m}} \right)^{a_1},$$

where a is the nb of visited edges $\{e, f\}$ and a_1 is the nb of edges visited exactly once.

PART II: EXTREMAL EIGENVALUES

Random n -Lifts

GRAPH LIFT/COVER

A graph C is a **covering graph** of G if there is a surjective function $f : V_C \rightarrow V_G$ which is a **local isomorphism** (1-neighborhood is mapped bijectively).

C is a n -cover of G if $|f^{-1}(x)| = n$ for all $x \in V_G$.

The n -lift can be encoded by a permutation σ_e on each edge $e \in V_G$.

GRAPH LIFT/COVER

A graph C is a **covering graph** of G if there is a surjective function $f : V_C \rightarrow V_G$ which is a **local isomorphism** (1-neighborhood is mapped bijectively).

C is a n -cover of G if $|f^{-1}(x)| = n$ for all $x \in V_G$.

The n -lift can be encoded by a permutation σ_e on each edge $e \in V_G$.

GRAPH LIFT/COVER

BS LIMIT

Let G_n is a uniformly random n -lift of G . Then, as $n \rightarrow \infty$, what is the BS-limit of G ?

The universal covering tree of G rooted uniformly.

NEW EIGENVALUES

Let $G = (V, E)$ be a base graph and $G_n = (V_n, E_n)$ a n -lift of G ,

$$V_n = \{(x, i) : x \in V, i \in [n]\}.$$

We consider for example, the adjacency matrices A and A_n of G and G_n .

Define the vector space

$$H = \{f \in \mathbb{R}^{V_n} : f(x, i) = f(x, j)\} = \text{span}(\chi_x, x \in V),$$

where $\chi_x(y, i) = \mathbf{1}(x = y)$.

We have

$$A_n H \subset H$$

and A_n restricted to H is A .

NEW EIGENVALUES

The eigenvalues of A are also eigenvalues of A_n (counting multiplicities).

The other eigenvalues of A are called **new eigenvalues**. They are the eigenvalues of the matrix A restricted to H^\perp .

The largest new eigenvalue is

$$\lambda_n^* := \max \{ |\lambda| : \lambda \text{ new eigenvalue of } A_n \}.$$

NEW EIGENVALUES

GENERALIZED ALON'S CONJECTURE

Let G_n is a uniformly random n -lift of G . Then, as $n \rightarrow \infty$, with high probability,

$$\lambda_n^* \leq \rho + o(1),$$

where ρ is the spectral radius of the adjacency operator of the universal covering tree of G .

The converse $\lambda_n^* \geq \rho + o(1)$ follows from the BS-limit (and also from a generalized Alon-Boppana bound).

GENERALIZED ALON'S CONJECTURE

This should hold for any reasonable local operator :
 A, P, L, B, \dots

This is proved for non-backtracking operator B , *Friedman, Kohler (2014), Bordenave (2015)*. For B , $\rho = \sqrt{\mu_1}$ where μ_1 is the growth rate of the universal cover *Angel, Friedman, Hoory (2007)*.

The bound $\lambda_n^* \leq \sqrt{3\rho} + o(1)$ is known, *Puder (2012)*.

This is been used for exact reconstruction of the base graph *Brito, Dumitriu, Ganguly, Hoffman, Tran (2015)*.

PART II: EXTREMAL EIGENVALUES

Stochastic Block Model

STOCHASTIC BLOCK MODEL

Consider a set of labels $\{1, \dots, r\}$ and assign label $\sigma_n(v)$ to vertex v . We assume that

$$\pi_n(i) = \frac{1}{n} \sum_{v=1}^n \mathbf{1}(\sigma_n(v) = i) = \pi(i) + O(n^{-\varepsilon}),$$

for some probability vector π .

If $\sigma(u) = i, \sigma(v) = j$, the edge $\{u, v\}$ is present independently with probability

$$\frac{W_{ij}}{n} \wedge 1,$$

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, ...)

STOCHASTIC BLOCK MODEL

If $\sigma(v) = j$, mean number of label i neighbors is

$$\pi(i)W_{ij} + O(1/n).$$

Mean progeny matrix

$$M = \text{diag}(\pi)W.$$

We assume that the average degree is homogeneous, for all $1 \leq j \leq r$,

$$\sum_{i=1}^r M_{ij} = \alpha > 1.$$

Assume that M is strongly irreducible and we order its real eigenvalues

$$\alpha = \rho_1 > |\rho_2| \geq \cdots \geq |\rho_r|.$$

STOCHASTIC BLOCK MODEL

If $r = 1$, we retrieve $\mathcal{G}(n, \alpha/n)$.

Model used in **community detection**. Notably for $r = 2$,

$$\pi = \left(\frac{1}{2}, \frac{1}{2} \right)$$

and, with $a > b$,

$$W = \begin{pmatrix} a & b \\ b & a \end{pmatrix}.$$

Then

$$\rho_1 = \alpha = \frac{a+b}{2} \quad \text{and} \quad \rho_2 = \frac{a-b}{2}.$$

BS LIMIT

The BS limit of SBM is a multi-type Galton-Watson tree with $\text{Poi}(W_{ij})$ offspring distribution and the root has label i with proba $\pi(i)$.

The growth rate of the random tree conditionned on non-extinction is a.s. α , i.e. the expected number of offsprings.

TRANSITION MATRIX

Transition matrix P in an Erdős-Rényi graph $\mathcal{G}(n, \alpha/n)$,
 $n = 2000$, $\alpha = 1.5$.

CLASSICAL LOCAL OPERATORS

The spectral measure of Galton-Watson tree with Poisson offspring distribution has **full support** : \mathbb{R} for A , $[-1, 1]$ for P and \mathbb{R}_+ for L .

This is due to **high degree vertices** (for A) and **long line segments** for P, L .

No outliers : the extremal eigenvalues are related to small subgraphs and **not to global graph properties**.

Various regularization have been proposed to solve this issue.
Including the **non-backtracking matrix**,
Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013).

SIMULATION FOR ERDŐS-RÉNYI GRAPH

Eigenvalues of B for an Erdős-Rényi graph $\mathcal{G}(n, \alpha/n)$ with $n = 500$ and $\alpha = 4$.

ERDŐS-RÉNYI GRAPH

$$\mu_1 \geq |\mu_2| \geq \dots$$

Theorem

Let $\alpha > 1$ and G with distribution $\mathcal{G}(n, \alpha/n)$. With high probability,

$$\begin{aligned}\mu_1 &= \alpha + o(1) \\ |\mu_2| &\leq \sqrt{\alpha} + o(1).\end{aligned}$$

STOCHASTIC BLOCK MODEL

$$n = 500, \quad r = 2, \quad a = 7, \quad b = 1, \quad \rho_1 = 4, \quad \rho_2 = 3.$$

STOCHASTIC BLOCK MODEL

Let $1 \leq r_0 \leq r$ be such that

$$\alpha = \rho_1 > |\rho_2| \geq \cdots \geq |\rho_{r_0}| > \sqrt{\rho_1} \geq |\rho_{r_0+1}| \geq \cdots \geq |\rho_r|.$$

Theorem

Let $\alpha > 1$ and G a stochastic block model as above. With high probability, up to reordering the eigenvalues of B ,

$$\begin{aligned}\mu_k &= \rho_k + o(1) && \text{if } 1 \leq k \leq r_0 \\ |\mu_k| &\leq \sqrt{\alpha} + o(1) && \text{if } k > r_0.\end{aligned}$$

+ a description of the eigenvectors of λ_k , $1 \leq k \leq r_0$, if the μ_k are distinct, In particular, they are asymptotically orthogonal.

COMMUNITY DETECTION

Spectral redemption : eigenvalues/eigenvectors such that $|\mu_k| > \sqrt{\mu_1}$ should contain relevant global information on the graph.

CONFERENCE : SPECTRUM OF RANDOM GRAPHS
JANUARY 4-8, 2016
Luminy - CIRM

THANK YOU FOR YOUR ATTENTION !