# Spectra of sparse random graphs

Charles Bordenave

CNRS & University of Toulouse

# $\underline{FRAMEWORK}$

Take a finite, simple, non-oriented graph G = (V, E).



Natural matrices are associated to G.

They are matrices built from the local neighborhood of the vertices.

#### ADJACENCY MATRIX

The adjacency matrix is indexed by  $V \times V$  and defined by

 $A_{xy} = \mathbf{1}(\{x, y\} \in E).$ 

For integer  $k \ge 0$ ,

 $A_{xy}^k =$ nb of paths from x to y of length k.

A is symmetric : it has real eigenvalues

 $\lambda_{|V|}(A) \leqslant \cdots \leqslant \lambda_1(A)$ 

and an orthonormal basis of eigenvectors.

# ADJACENCY MATRIX



Assume that the graph G is connected. Then A is irreducible: for any x, y in V, there exists k such that  $A_{xy}^k > 0$ .

Then, the largest eigenvalue is positive and it is a simple eigenvalue. Its left and right eigenvector have positive coordinates. The degree matrix is the diagonal matrix indexed by  $V\times V$  such that

$$D_{xx} = \deg(x) = \sum_{y} A_{yx}.$$

# Degree



Define the set of oriented edges as

$$\vec{E} = \{(x, y) : \{x, y\} \in E\}$$

and the incidence matrix as the matrix on  $ec{E} imes V$ 

$$\nabla_{(xy),x} = 1$$
,  $\nabla_{(yx),x} = -1$  and  $\nabla_{e,x} = 0$  otherwise.

Observe for  $x \neq y$ 

$$\begin{aligned} (\nabla^* \nabla)_{xx} &= \sum_e |\nabla_{e,x}|^2 = 2 \deg(x). \\ (\nabla^* \nabla)_{xy} &= \sum_e \nabla_{e,x} \nabla_{e,y} = -2 \times \mathbf{1}(\{x, y\} \in E). \end{aligned}$$

 $\nabla^* \nabla = 2(D - A).$ 

#### Positivity

Hence, for any vector f,

$$2\langle (D-A)f, f \rangle = \langle \nabla f, \nabla f \rangle = \sum_{(x,y) \in \vec{E}} (f(x) - f(y))^2 \ge 0.$$

In other words,

 $D - A \ge 0.$ 

We get

 $-\max_{x} \deg(x) \leqslant \lambda_{|V|}(A) \leqslant \cdots \leqslant \lambda_{1}(A) \leqslant \max_{x} \deg(x).$ 

The transition matrix of the simple random walk on G is

$$P_{xy} = \frac{A_{xy}}{\deg(x)}.$$

We have

 $P = D^{-1}A.$ 

P has real eigenvalues :

$$P = D^{-1}A = D^{-1/2} \left( D^{-1/2} A D^{-1/2} \right) D^{1/2}.$$

Google matrix : for  $\alpha \in (0, 1]$ ,  $\alpha P + (1 - \alpha)\mathbf{11}^*/|V|$ .



Define the left vector

 $\nu(x) = \deg(x).$ 

We have

 $\nu P = \nu$ .

 $\nu$  is a left eigenvector with eigenvalue 1 and

$$\pi(x) = \frac{\nu(x)}{\sum_{y} \nu(y)} = \frac{\deg(x)}{2|E|}$$

is the invariant probability measure of the random walk.

The symmetry

$$\pi(x)P_{xy} = \pi(y)P_{yx} = \frac{\mathbf{1}(\{x,y\} \in E)}{2|E|}$$

is called reversibility.

It asserts that the matrix P is symmetric in  $L^2(\pi)$  with scalar product

$$\langle f,g \rangle_{\pi} = \sum_{x} \pi(x) f(x) g(x),$$

i.e.  $\langle Pf, g \rangle_{\pi} = \langle f, Pg \rangle_{\pi}$ .

It follows that P has real eigenvalues in [-1, 1] and an orthonormal basis of eigenvectors in  $L^2(\pi)$ .

LAPLACIAN MATRIX

L = D - A.

-L is the infinitesimal generator of the countinuous time random walk:

$$\left. \frac{d}{dt} \mathbb{E}^x f(X_t) \right|_{t=0} = -Lf(x).$$

It is symmetric,  $L \ge 0$  with eigenvalues in

 $[0, 2\max_x \deg(x)].$ 

Moreover

 $L\mathbf{1} = A\mathbf{1} - D\mathbf{1} = 0.$ 

The invariant probability measure of the process is the uniform measure.

# LAPLACIAN MATRIX



Matrix on  $V \times V$ ,

$$D^{-1/2}LD^{-1/2} = D^{1/2}(I-P)D^{-1/2}.$$

It is symmetric and has eigenvalues in [0, 2].

There are other interesting local matrices ....

If G is d-regular, then D = dI commutes with A : all these matrices have the same eigenspace decomposition.

# Typical vs Extremal Eigenvalues

There are essentially two types of information encoded in the spectrum.

- **PART II** : the largest eigenvalues (and their eigenspaces) give some information on global graph properties (expansion, clustering, chromatic number, maximal cut, etc...),

- **PART I** : the typical eigenvalues give information on local graph properties (typical degree, partition function of spanning trees, matchings, percolation, etc...).

#### LARGE SPARSE RANDOM GRAPHS

We will study the spectrum of classical random graphs in the regime :

- Large

 $|V| \to \infty$ .

- Sparse / Dilute

|E| = O(|V|).

# PART I: TYPICAL EIGENVALUES

Spectral Measures

# For $M \in M_n(\mathbb{R})$ is a symmetric matrix, we denote its real eigenvalues by

 $\lambda_n(M) \leqslant \ldots \leqslant \lambda_1(M).$ 

The spectral measure / empirical distribution of the eigenvalues / density of states is the probability measure on  $\mathbb{R}$ ,

$$\mu_M = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(M)},$$

i.e. for any set  $I \subset \mathbb{R}$ 

$$\mu_M(I) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\lambda_i(M) \in I)$$

is the proportion of eigenvalues in I or equivalently, the probability that a typical eigenvalue is in I.

$$\int f d\mu_M = \frac{1}{n} \sum_{i=1}^n f(\lambda_i(M)).$$

# KIRCHOFF MATRIX-TREE THEOREM

If G is a connected graph then the number of spanning trees of G is equal to

$$t(G) = \frac{1}{n} \prod_{\lambda_i \neq 0} \lambda_i,$$

where  $\lambda_i = \lambda_i(L)$ .

In particular,

$$\frac{1}{n}\log t(G) = \int_{0^+}^{\infty}\log \lambda d\mu_L(\lambda) - \frac{1}{n}\log n.$$

For t integer, let

$$S_t = |\{ \text{closed paths of length } t \text{ in } G \} |$$

We have

$$S_t = \operatorname{Tr}\{A^t\} = \sum_{i=1}^n \lambda_i(A)^t = n \int \lambda^t d\mu_A(\lambda).$$

In particular, for  $z \in \mathbb{C}$ ,  $\mathfrak{Im}(z) > 0$ ,

$$\frac{1}{n}\sum_{t\geqslant 0}\frac{S_t}{z^{t+1}} = \sum_{t\geqslant 0}\int\frac{\lambda^t}{z^{t+1}}d\mu_A = \int\frac{1}{z-\lambda}d\mu_A(\lambda)$$

is the Cauchy-Stieltjes transform of  $\mu_A$ .

#### RETURN TIMES

If  $X_t$  is the Markov chain with transition matrix P,

$$\frac{1}{n}\sum_{v=1}^{n}\mathbb{P}(X_t=v|X_0=v) = \frac{1}{n}\mathrm{Tr}\{P^t\} = \int \lambda^t d\mu_P(\lambda).$$

Similarly, for t > 0 real, if  $X_t$  is the Markov process with generator L,

$$\frac{1}{n}\sum_{v=1}^{n}\mathbb{P}(X_t=v|X_0=v)=\int e^{-t\lambda}d\mu_L(\lambda).$$

#### SPECTRAL MEASURE AT A VECTOR

Let  $M \in M_n(\mathbb{R})$  be a symmetric matrix. Let  $\psi_1, \ldots, \psi_n$  be an orthonormal basis of eigenvectors :

$$M = \sum_{k} \lambda_k \psi_k \psi_k^*.$$

For  $\phi \in \mathbb{R}^n$  with  $\|\phi\|_2 = 1$ , we define the probability measure,

$$\mu_M^{\phi} = \sum_{k=1}^n \langle \psi_k, \phi \rangle^2 \delta_{\lambda_k}.$$

We have

$$\int \lambda^k d\mu^{\phi}_M = \langle \phi, M^k \phi \rangle.$$

We recover the spectral measure from the spatial average

$$\frac{1}{n}\sum_{x=1}^{n}\mu_{M}^{e_{x}} = \frac{1}{n}\sum_{x=1}^{n}\sum_{k=1}^{n}|\psi_{k}(x)|^{2}\delta_{\lambda_{k}} = \frac{1}{n}\sum_{k=1}^{n}\delta_{\lambda_{k}}\sum_{x=1}^{n}|\psi_{k}(x)|^{2} = \mu_{M}.$$

While  $\mu_M^{e_x}$  depends on the eigenvectors, its spatial average  $\mu_M$  does not.

This local notion of spectrum will be used to define the spectral of a possibly infinite graph.

We will restrict ourselves to the adjacency matrix and set

$$\mu_G := \mu_A \quad and \quad \mu_G^{e_x} := \mu_A^{e_x}.$$

It works the same for P or L.

#### ADJACENCY OPERATOR

Let G = (V, E) be a locally finite graph : for all  $x \in V$ ,

$$\deg(x) = \sum_{y \in V} \mathbf{1} \left( \{x, y\} \in E \right) < \infty.$$

Let  $\ell^2(V) = \{\psi : \sum_{x \in V} \psi(x)^2 < \infty\}$  and  $\ell^2_c(V)$  as the subspace of vectors with finite support : i.e. the subspace spanned by finite linear combinations of  $e_x, x \in V$ .

Adjacency operator : defined for vectors  $\psi \in \ell_c^2(V)$ 

$$A\psi(x) = \sum_{y:\{x,y\}\in E} \psi(y),$$

equivalently, with matrix notation :

$$A_{xy} = \langle e_x, Ae_y \rangle = \mathbf{1}(\{x, y\} \in E).$$

#### ADJACENCY OPERATOR

Under mild assumptions, A is essentially self-adjoint (e.g. for all  $v \in V$ ,  $\deg(v) \leq \theta$ ).

The spectral measure with vector  $\psi \in \ell_c^2(V)$ ,  $\|\psi\|_2 = 1$ , is the probability measure  $\mu_G^{\psi}$  on  $\mathbb{R}$  such that

$$\forall k \geqslant 1, \qquad \int \lambda^k d\mu_G^\psi = \langle \psi, A^k \psi \rangle.$$

As a consequence,

 $\int \lambda^k d\mu_G^{e_x} = \left| \{ \text{closed paths of length } k \text{ starting from } x \} \right|.$ 

#### TRANSITIVE GRAPHS

If G is vertex-transitive (e.g. a Cayley graph associated to a transitive group  $\Gamma$  with a finite symmetric generating set  $S \subset \Gamma$ ), the measure

$$\mu_G := \mu_G^{e_x}$$

does not depend on x.

Plancherel measure, Kesten-von Neumann-Serre spectral measure.

(If G is finite, then the two definitions coincide).

# LATTICES





# Cycle

$$\mu_{\mathbb{Z}/n\mathbb{Z}} = \frac{1}{n} \sum_{k=1}^{n} \delta_{2\cos\left(\frac{2\pi k}{n}\right)}.$$

Bi-infinite path

$$\mu_{\mathbb{Z}}(dx) = \frac{1}{\pi\sqrt{4-x^2}} \mathbf{1}_{|x| \leqslant 2} dx.$$

# Regular lattice

 $\mu_{\mathbb{Z}^d} = \mu_{\mathbb{Z}} * \cdots * \mu_{\mathbb{Z}}.$ 

# INFINITE REGULAR TREE

 $\mathbb{T}_d$  infinite *d*-regular tree

$$\mu_{\mathbb{T}_d}(dx) = \frac{d\sqrt{4(d-1) - x^2}}{2\pi(d^2 - x^2)} \mathbf{1}_{|x| \le 2\sqrt{d-1}} dx.$$

Kesten (1959)



#### LAMPLIGHTER

Consider a vertex-transitive graph G = (V, E) and a colored lamp in  $L = \mathbb{Z}/n\mathbb{Z}$  on each vertex. A vertex of the lamplighter graph is

 $v = (\eta, x)$ 

where  $\eta: V \to L$  is the configuration of the lamps and  $x \in V$  is the position of the walker.



#### <u>LAMPLIGHTER</u>

A switch edge (S)  $\{v, v'\}$  is an edge between two vertices which differ only by the lamp at the position of the walker.

A walk edge (W)  $\{v, v'\}$  is an edge s.t.  $\eta = \eta', \{x, y\} \in E$ .



The WS lamplighter graph is the graph with edge set

 $\{\{v, v'\}: \{v, u\} \in W, \{u, v'\} \in S \text{ for some } u\}.$ 

Similarly for SW and SWS graphs.

# Let $G_p$ be the site percolation with parameter $p \in [0, 1]$ and $o \in V$ .

Theorem (Lehner, Neuhauser and Woess (2008)) For p = 1/n, we have

 $\mu_{SW}(\cdot/n) = \mu_{WS}(\cdot/n) = \mu_{SWS}(\cdot/n^2) = \mathbb{E}\mu_{G_n}^{e_o}(\cdot).$ 

For  $G = \mathbb{Z}$ , n = 2, for some explicit  $(\omega_n)$ ,

$$\mu_{SW} = \sum_{n=0}^{\infty} \omega_n \sum_{k=1}^{n} \delta_{4\cos\left(\frac{\pi k}{(n+1)}\right)},$$

Grigorchuk and Żuk (2001)

Connectivity and homogeneity do not guarantee a density for the spectral measure !

# Sketch of Proof

Let  $\mu = \mathbb{E}\mu_{G_n}^{e_o}$  and  $\nu = \mu_{WS}(\cdot/n)$ . We compare moments.

Let  $W_k$  be the set of closed walks  $\gamma = (\gamma_0, \dots, \gamma_k)$  in G of length k starting at o.

$$\int \lambda^k d\mu_{G_p}^{e_o}(\lambda) = \sum_{\gamma \in W_k} \prod_{t=0}^k \mathbf{1}(\gamma_t \text{ is open}) = \sum_{\gamma \in W_k} \prod_{x \in V(\gamma)} \mathbf{1}(x \text{ is open})$$

$$\int \lambda^k d\mu(\lambda) = \sum_{\gamma \in W_k} p^{|V(\gamma)|}.$$

#### Sketch of Proof

The graph G is d-regular. If  $S_t = (\eta_t, x_t)$  is a random walk on the WS-lampighter graph and  $\varepsilon = (\underline{0}, o)$ ,

$$\int \lambda^k d\nu = d^k \mathbb{P}^{\varepsilon}(S_k = \varepsilon).$$

We have

$$\eta_t(x_t) = \eta_{t-1}(x_t) + \ell_t,$$

where  $\ell_t$  is independent of  $(x_t, \eta_{t-1})$  and uniform on  $\mathbb{Z}/n\mathbb{Z}$ . For any  $q \in \mathbb{Z}/n\mathbb{Z}$ .

$$\mathbb{P}(\ell_t + q = 0) = \frac{1}{n} = p.$$

If  $\tau_x$  is the last passage time of  $(x_t)_{0 \leq t \leq k}$  at x,

$$\mathbb{P}^{\varepsilon}(S_k = \varepsilon) = d^{-k} \sum_{\gamma \in W_k} \mathbb{P}(\forall x \in V(\gamma) : \eta_{\tau_x}(x) + \ell_{\tau_x} = 0)$$
$$= d^{-k} \sum_{\gamma \in W_k} p^{|V(\gamma)|}.$$

### RANDOM ROOTED GRAPHS

So far :  $\mu_G$  well defined for finite graphs and vertex-transitive graphs :

$$\mu_G = \mathbb{E}\mu_G^{e_o} = \begin{cases} \frac{1}{|V|} \sum_x \mu_G^{e_x} & \text{(finite)} \\ \mu_G^{e_x} & \text{(transitive)} \end{cases}$$

We want to extend the notion to a large class of "stationary" random graphs.

For a random (unlabeled) connected rooted graph (G, o) with law  $\rho$ , we define

 $\mu_{\rho} := \mathbb{E}_{\rho} \mu_G^{e_o}.$ 

PART I: TYPICAL EIGENVALUES

Spectral measures and BS convergence

BENJAMINI-SCHRAMM CONVERGENCE

BS convergence of finite graph sequences = convergence of typical local neighborhood.

For integer  $k : (G, o)_k$  is the rooted (connected) graph spanned by vertices at distance at most k from o.



 $G_n = (V_n, E_n)$  has BS limit  $\rho = \mathcal{L}((G, o))$  if for any integer k and unlabeled rooted graph g of diameter k,

$$\frac{1}{|V_n|} \sum_{x \in V_n} \mathbf{1}((G_n, x)_k = g) \to \mathbb{P}_{\rho}((G, o)_k = g).$$

# BS LIMITS

$$G_n = \mathbb{Z}^d \cap [0, n]^d$$
 has BS limit ?  $\delta_{(\mathbb{Z}^d, 0)}$ 

 $T_n = \mathbb{T}_3 \cap \{x : |x| \leq n\}$  has BS limit ?

### BS LIMITS

Uniform *d*-regular graph : a.s. the limit is the (Dirac mass at)  $\mathbb{T}_d$  rooted somewhere.

Erdős-Rényi graph,  $\mathcal{G}(n, \alpha/n)$ : a.s. the limit is the law of (T, o) where T is a Galton-Watson tree with offspring distribution  $\operatorname{Poi}(\alpha)$ .

Random graphs : many random graphs have random rooted trees as BS limit.

Unimodular random rooted graphs : subclass which contains Cayley graphs and all BS limits of finite graphs.

A law  $\rho$  on (unlabeled) rooted graphs is unimodular if for any non-negative functions f(G, x, y) invariant by graph-isomorphisms,

$$\mathbb{E}_{\rho} \sum_{x \in V} f(G, o, x) = \mathbb{E}_{\rho} \sum_{x \in V} f(G, x, o).$$

Benjamini/Schramm (2001), Aldous/Steele (2004)

For finite G, U(G) the law of (G(o), o), where o is uniform on V and G(o) is the c.c. of o, is unimodular

$$\begin{split} \mathbb{E}_{U(G)} \sum_{x \in V} f(G, o, x) &= \frac{1}{|V|} \sum_{y} \sum_{x \in V(y)} f(G(y), y, x) \\ &= \frac{1}{|V|} \sum_{x} \sum_{y \in V(x)} f(G(y), y, x) \\ &= \frac{1}{|V|} \sum_{x} \sum_{y \in V(x)} f(G(x), y, x) \\ &= \mathbb{E}_{U(G)} \sum_{x \in V} f(G, x, o). \end{split}$$

Theorem

Let  $G_n$  be a sequence of finite graphs with BS-limit  $\rho$ . Then

$$d_{\mathrm{KS}}(\mu_{G_n},\mu_{\rho}) = \sup_{t \in \mathbb{R}} |\mu_{G_n}(-\infty,t] - \mu_{\rho}(-\infty,t]| \to 0.$$

Consequently, for any real  $\lambda$ ,  $\mu_{G_n}(\{\lambda\}) \to \mu_{\rho}(\{\lambda\})$ .

Veselić (2005), Thom (2008), Bordenave/Lelarge (2010), Abèrt/Thom/Viràg (2013)

# Corollary (Thom (2008)) Let $G_n$ be a sequence of finite graphs with BS-limit $\rho$ . Then $\mu_{\rho}(\{\lambda\}) > 0$

implies that  $\lambda$  is a totally real algebraic integer.

Assume for simplicity that  $\deg_{G_n}(x) \leq \theta$ .

Weak convergence is easy :

 $\int \lambda^k d\mu_{G_n} = \frac{1}{|V_n|} \sum_{x \in V_n} |\{\text{closed paths of length } k \text{ starting from } x\}|.$ 

is bounded by  $\theta^k$  and it depends only on  $(G_n, o)_k$ .

### Sketch of proof

Convergence in KS-distance = weak convergence + cv of atoms.

From  $\liminf \mu_n(O) \ge \mu(O)$ ,  $\limsup \mu_n(C) \le \mu(C)$ , we should prove that

 $\liminf \mu_{G_n}(\{\lambda\}) \ge \mu_{\rho}(\{\lambda\}).$ 

Since

 $\liminf \mu_{G_n}((\lambda - \varepsilon, \lambda + \varepsilon)) \ge \mu_{\rho}((\lambda - \varepsilon, \lambda + \varepsilon)) \ge \mu_{\rho}(\{\lambda\}),$ the theorem follows from

Lemma (Lück)

Let  $\lambda \in \mathbb{R}$ ,  $\theta > 0$ . There exists a continuous function  $\delta : \mathbb{R} \to [0, 1]$  with  $\delta(0) = 0$  depending on  $(\lambda, \theta)$  s.t. for any finite graph G with degrees bounded  $\theta$ ,  $\varepsilon > 0$ ,

 $\mu_G((\lambda - \varepsilon, \lambda + \varepsilon)) \leqslant \mu_G(\{\lambda\}) + \delta(\varepsilon).$ 

For  $\lambda = 0, \varepsilon \in (0, 1)$ ,  $\mu_G((-\varepsilon, \varepsilon)) \leq \mu_G(\{0\}) + \frac{\log(\theta)}{\log(1/\varepsilon)}.$ reads, with  $n = |V|, k = |\{i : 0 < |\lambda_i| < \varepsilon\}|,$   $k \leq n \frac{\log(\theta)}{\log(1/\varepsilon)}.$ 

We observe

 $\prod_{i:\lambda_i\neq 0}\lambda_i\in\mathbb{Z}\backslash\{0\}.$ 

Hence

$$1 \leqslant \prod_{\lambda_i \neq 0} |\lambda_i| = \prod_{0 < |\lambda_i| < \varepsilon} |\lambda_i| \prod_{|\lambda_i| \geqslant \varepsilon} |\lambda_i| \leqslant \varepsilon^k \theta^n.$$

# Theorem Fix integer $d \ge 2$ . If $G_n$ has BS limit $\mathbb{T}_d$ , then for any $I \subset \mathbb{R}$ ,

 $\mu_{G_n}(I) \to \mu_{\mathbb{T}_d}(I),$ 

where

$$\mu_{\mathbb{T}_d}(dx) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - x^2}}{d^2 - x^2} \mathbf{1}_{|x| \leqslant 2\sqrt{d-1}} dx.$$

We have  $\mu_{KM}(I\sqrt{d}) \to \mu_{sc}(I)$ , the semi-circular distribution, when  $d \to \infty$ .

# KESTEN-MCKAY LAW

Take d = 4, n = 2000 and G a uniformly sampled d-regular graph.



# <u>Erdős-Rényi</u>

#### Theorem

Fix  $\alpha > 0$ . Let  $G_n$  be an Erdős-Rényi graph with parameter  $p = \alpha/n$ . Then, with probability one, for any interval  $I \subset \mathbb{R}$ ,

 $\mu_{G_n}(I) \to \mu_{\rho}(I).$ 

where  $\rho$  is the law of a Galton-Watson tree with  $\text{Poi}(\alpha)$  offspring distribution.

# <u>Erdős-Rényi</u>

Histogram of eigenvalues for  $\alpha = 4$  and n = 500.



# <u>Erdős-Rényi</u>

There is no explicit expression for  $\mu_{\rho}$ .

Let  $\Lambda = \{\lambda_i, i \ge 1\}$ , be the atoms of  $\mu_{\rho}$ , i.e.

 $\Lambda = \{\lambda : \mu_{\rho}(\{\lambda\}) > 0\}.$ 

 $\Lambda$  is the set totally real algebraic integers and

 $\sum_{\lambda \in \Lambda} \mu_{\rho}(\{\lambda\}) < 1$ 

if and only if  $\alpha > 1$ .

Also,  $\mu_{\rho}(\{0\})$  has a closed-form expression.

Bordenave/Lelarge/Salez (2012), Salez (2013), Bordenave/Virág/Sen (2014)

PART I: TYPICAL EIGENVALUES

Spectral percolation

#### <u>Regularity of the spectral measure</u>

Any probability measure on  $\mathbb R$  can be decomposed as

 $\mu = \mu_{pp} + \mu_c = \mu_{pp} + \mu_{ac} + \mu_{sc}.$ 

For  $|V| = \infty$ , the decompositions of

 $\mu_G^{e_o}$  and  $\mu_\rho = \mathbb{E}\mu_G^{e_o}$ 

reveal deep information on the graph.

In the context of random Schrödinger operators, called quantum percolation, *De Gennes, Lafore, Millot (1959)*.

Resolution of the identity

For finite graphs, the decomposition

$$A = \sum_k \lambda_k \psi_k \psi_k^*$$

induces a projection-valued measure, for Borel  $I \subset \mathbb{R}$ ,

$$E(I) = \sum_{k} \mathbf{1}(\lambda_k \in I) \psi_k \psi_k^*.$$

 $E(\{\lambda\})$  is the orthogonal projection on the vector space of  $\lambda\text{-eigenvectors}$  and

$$\mu_G^{\psi}(I) = \langle E(I)\psi, \psi \rangle = \|E(I)\psi\|_2^2.$$

This p.v.m. exists also for infinite graphs.

LOCALIZATION/DELOCALIZATION OF EIGENVECTORS

What are the nature of the probability vectors,

 $(|\psi_k(x)|^2, x \in V)$  ?

Localization is related to the atomic part of  $\mu_G^{e_x}$ 

 $\mu_G^{e_x}(\{\lambda\}) = \|E(\{\lambda\})e_x\|_2^2.$ 

Delocalization is related to the continuous part of  $\mu_G^{e_x}$ . If

$$\sum_{\lambda_k \in I} |\psi_k(x)|^2 = \mu_G^{e_x}(I) \leqslant c|I|,$$

then  $|\psi_k(x)|^2 \leq c|I|$  for all  $\lambda_k$  in I.

#### ATOMS

Finite pending graphs create atoms (e.g. percolation graphs) Kirkpatrick/Eggarter (1972).

If  $G_1 \simeq G_2$  and  $A_{G_1}\psi = \lambda\psi$ ,  $\|\psi\|_2 = 1/\sqrt{2}$ , then

 $\mu_G^{e_o}(\{\lambda\}) = \|E(\{\lambda\})e_o\|_2^2 \ge \langle \varphi, e_o \rangle^2 = \psi(o)^2.$ 



Warning : recall lamplighter graphs !!

Topological end of a rooted tree : semi-infinite self-avoiding path starting from the root.

Theorem

Let (T, o) be a unimodular tree with law  $\rho$ . If, with positive probability, T has 2 or more topological ends then  $\mu_{\rho}$  has a continuous part.

0 end : finite trees. 1 end ? 2 ends : ℤ. ∞ ends : all others, e.g. supercritical Galton-Watson trees.

Bordenave/Virág/Sen~(2014)

INVARIANT LINE ENSEMBLE

Let (T, o) be a unimodular tree with law  $\rho$ .



An invariant line ensemble L is a subset of non intersecting doubly infinite lines in T which does not depend on the choice of the root o.

 $\mathbb{P}(o \in L)$  is the density of the invariant line ensemble.

Theorem Let (T, o) be a unimodular tree with law  $\rho$ .

If L is an invariant line ensemble of (T, o) then the total mass of atoms of  $\mu_{\rho}$  is bounded above by  $\mathbb{P}(o \notin L)$ .

Moreover, for each real  $\lambda$ ,

 $\mu_{\rho}(\{\lambda\}) \leqslant \mathbb{P}(o \notin L)\mu_{\rho'}(\{\lambda\})$ 

where, if  $\mathbb{P}(o \notin L) > 0$ ,  $\rho'$  is the law of the rooted tree  $(T \setminus L, o)$  conditioned on the root  $o \notin L$ .

There are explicit lower bounds on the density  $\mathbb{P}(o \in L)$ .

For example, if (T, o) is a unimodular random tree, there exists an invariant line ensemble L such that

$$\mathbb{P}(o \in L) \ge \frac{1}{6} \frac{(\mathbb{E} \deg_T(o) - 2)_+^2}{\mathbb{E} \deg_T(o)^2}.$$

 $G_n$  is obtained by superposing the graphs of  $\mathbb{Z}/n\mathbb{Z}$  + Erdős-Rényi graph  $\mathcal{G}(n, \alpha/n)$ .



Then  $\mu_{G_n}$  converges and it is continuous.

Consider the following  $n \times n$  graph.



S = eigenspace associated to eigenvalue  $\lambda$ . R = vector space spanned by red vertices.

 $\dim(S \cap R^{\perp}) \ge \dim(S) - \dim(R) = \dim(S) - n.$ 

If  $f \in S \cap R^{\perp}$ , we write



For x red vertex, we get that f is also 0 on the green vertices.

By iteration,  $S \cap R^{\perp} = \emptyset$  and

$$n^2 \mu_G(\{\lambda\}) = \dim(S) \leqslant n = o(n^2).$$

Works also for supercritical percolation on  $\mathbb{Z}^2$  (other method).

No criterion for existence of ac part in  $\mu_{\rho} = \mathbb{E}_{\rho} \mu_{G}^{e_{o}}$ .

The same questions for  $\mu_G^{e_o}$  are essentially open, Keller (2013), Bordenave (2014).

Their are finite volume versions of these questions.

Consider  $T_p$ , the bond percolation on  $\mathbb{T}_d$  with parameter p.

Then, for any  $0 , <math>\mathbb{E}\mu_{T_p}^{e_o}$  has dense atomic part on its support  $[-2\sqrt{d-1}, 2\sqrt{d-1}]$ .

For all  $p > p_0$ , conditioned on non-extinction,  $\mu_{T_p}^{e_o}$  has non-trivial ac part.

Bordenave (2014)

# PART II: EXTREMAL EIGENVALUES

Convergence to Equilibrium

Take a connected graph on n vertices.

The spectral gap

 $\min_{\lambda \neq 0} \lambda(L)$ 

 $1 - \max_{\lambda \neq 1} \lambda(P)$ 

is closely related to the rate convergence of the Markov chain/process.

For simplicity we only consider L.

#### Spectral gap

Let  $X_t$  be the Markov process with generator -L,

 $P_t^x = e^{-tL}e_x$ 

is the probability distribution of  $X_t$  given  $X_0 = x$ .

Let  $\lambda_1 = 0 < \lambda_2 \leq \cdots \leq \lambda_n$  the eigenvalues of L and  $\psi_1 = 1/\sqrt{n}, \ldots, \psi_n$  an orthogonal basis of eigenvectors.

From the spectral theorem

$$e^{-tL} = \sum_{i=1}^{n} e^{-t\lambda_i} \psi_i \psi_i^*$$
$$P_t^x = \frac{1}{n} + \sum_{i=2}^{n} e^{-t\lambda_i} \psi_i(x) \psi_i$$

### Spectral gap

Recall that  $\Pi = 1/n$  is the invariant distribution. We get

$$||P_t^x - \Pi||_2^2 = \sum_{i=2}^n e^{-2t\lambda_i} |\psi_i(x)|^2 \leqslant e^{-2\lambda_2 t}.$$

 $\operatorname{Recall}$ 

$$||x||_2 \leqslant \sum_i |x_i| \leqslant \sqrt{n} ||x||_2.$$

So,

$$|\psi_2(x)|e^{-\lambda_2 t} \leq 2||P_t^x - \Pi||_{TV} \leq \sqrt{n}e^{-\lambda_2 t}$$

where the total variation norm is

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x} |\mu(x) - \nu(x)|.$$

The mixing time of a Markov process is usually defined as

$$\tau = \inf_{t>0} \max_{x} \|P_t^x - \Pi\|_{TV} \leqslant \frac{1}{2}.$$

$$\frac{\max_x |\psi_2(x)|}{\lambda_2} \leqslant \tau \leqslant \frac{\log n}{2\lambda_2}.$$

(Note that  $\max_{x} |\psi_2(x)| \ge 1/\sqrt{n}$ ).

There are similar developments for reversible Markov chains.

Levin/Peres/Wilmer (2009)

# PART II: EXTREMAL EIGENVALUES

Expanders

CHUNG'S DIAMETER INEQUALITY

Let

$$1 = \lambda_1 > \lambda_2 \geqslant \dots \geqslant \lambda_n \geqslant -1$$

be the eigenvalues of P.

 $\operatorname{Set}$ 

$$\lambda_{\star} = \max_{i \neq 1} |\lambda_i|.$$

TheoremIf G connected,

diam(G) 
$$\leq \left\lceil \frac{\log(2|E|)}{\log(1/|\lambda_{\star}|)} \right\rceil$$
.

### Proof

Since

$$P = D^{-1}X = D^{-1/2}(D^{-1/2}AD^{-1/2})D^{1/2},$$

the  $\lambda_i$  is are also the eigenvalues of S with  $S = D^{-1/2}AD^{-1/2}$ .

Since  $P\mathbf{1} = \mathbf{1}$ ,

$$\psi_1 = \frac{D^{1/2} \mathbf{1}}{\sqrt{2|E|}}$$

is the normalized eigenvector of S associated to  $\lambda_1 = 1$ .

$$S^t = \psi_1 \psi_1^* + \sum_{k \ge 2} \lambda_k^t \psi_k \psi_k^*.$$

Hence, from Cauchy-Schwartz

$$\begin{aligned} (S^t)_{xy} & \geqslant \quad \psi_1(x)\psi_1(y) - \lambda_{\star}^t \sum_{k \ge 2} |\psi_k(x)| |\psi_k(y)| \\ & \geqslant \quad \psi_1(x)\psi_1(y) - \lambda_{\star}^t \sqrt{\sum_{k \ge 2} |\psi_k(x)|^2} \sqrt{\sum_{k \ge 2} |\psi_k(y)|^2}. \end{aligned}$$

## Proof

Since

$$\sum_{k \ge 2} |\psi_k(x)|^2 = 1 - \psi_1(x)^2 < 1;$$

We find

$$(S^t)_{xy} > \psi_1(x)\psi_1(y) - \lambda^t_\star.$$

This is positive if

$$t > \frac{\log\left(\psi_1(x)\psi(y)\right)}{\log|\lambda_{\star}|} = \frac{\log\left(2|E|/\sqrt{\deg(x)\deg(y)}\right)}{\log\left(1/|\lambda_{\star}|\right)}.$$

CHEEGER'S CONSTANT

For  $X \subset V$ , define

$$\operatorname{vol}(X) = \sum_{x \in X} \operatorname{deg}(x).$$
$$\operatorname{area}(\partial X) = \sum_{x \in X, y \in X^c} \mathbf{1}(xy \in E).$$



Isoperimetric / Expansion constant :

$$h(G) = \min_{X \subset V} \frac{\operatorname{area}(\partial X)}{\min\left(\operatorname{vol}(X), \operatorname{vol}(X^c)\right)}$$

## CHEEGER'S INEQUALITY

Again

$$1 = \lambda_1 > \lambda_2 \geqslant \cdots \geqslant \lambda_n \geqslant -1$$

be the eigenvalues of P.

 $1 - \lambda_2$  is the spectral gap of *P*.

Theorem

$$\frac{h(G)^2}{2} \leqslant 1 - \lambda_2 \leqslant 2h(G).$$

PROOF (EASY HALF)

The  $\lambda_i$  's are also the eigenvalues of S with  $S = D^{-1/2}AD^{-1/2}$ .

 $\chi = D^{1/2} \mathbf{1}$  is the eigenvector of S associated to  $\lambda_1 = 1$ .

From Courant-Fisher variational formula,

$$\lambda_2 = \max_{g:\langle g,\chi\rangle=0} \frac{\langle Sg,g\rangle}{\|g\|_2^2}.$$

Or equivalently,

$$1 - \lambda_2 = \min_{g:\langle g, \chi \rangle = 0} \frac{\langle (I - S)g, g \rangle}{\|g\|_2^2}.$$

Proof (easy half)

Recall, for the incidence matrix,

$$I - S = D^{-1/2}(D - A)D^{-1/2} = D^{-1/2}\frac{\nabla^*\nabla}{2}D^{-1/2}$$
  
Set  $\pi(x) = \deg(x) = (D\mathbf{1})(x)$  and  $f = D^{-1/2}g$ ,  
 $1 - \lambda_2 = \min_{f:\langle f,\pi \rangle = 0} \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x \deg(x)f(x)^2}.$ 

Let X be such that

$$h(G) = \frac{\operatorname{area}(\partial X)}{\min\left(\operatorname{vol}(X), \operatorname{vol}(X^c)\right)}.$$

We take

$$f(x) = \frac{\mathbf{1}(x \in X)}{\operatorname{vol}(X)} - \frac{\mathbf{1}(x \notin X)}{\operatorname{vol}(X^c)}.$$

# PROOF (EASY HALF)

We have

$$\langle f, \pi \rangle = \sum_{x \in X} \frac{\deg(x)}{\operatorname{vol}(X)} - \sum_{x \in X^c} \frac{\deg(x)}{\operatorname{vol}(X^c)} = 0,$$

 $\operatorname{and}$ 

$$\begin{aligned} 1 - \lambda_2 &\leqslant \quad \frac{\sum_{x \sim y} (f(x) - f(y))^2}{\sum_x \deg(x) f(x)^2} \\ &= \quad 2 \operatorname{area}(\partial X) \frac{(1/\operatorname{vol}(X) - 1/\operatorname{vol}(X^c))^2}{1/\operatorname{vol}(X) + 1/\operatorname{vol}(X^c)} \\ &\leqslant \quad 2 \frac{\operatorname{area}(\partial X)}{\min(\operatorname{vol}(X), \operatorname{vol}(X^c))} \\ &\leqslant \quad 2 h(G). \end{aligned}$$

Consider the configuration model with degree sequence  $d_1, \cdots, d_n$  such that

$$\min_i d_i \geqslant 3$$
 and  $\sum_i d_i \leqslant n^{5/4}.$ 

Then, with high probability,

 $h(G) \geqslant 0.01.$ 

Abdullah/Cooper/Frieze (2012)

# PART II: EXTREMAL EIGENVALUES

# <u>Outliers</u>

### BS CONVERGENCE

### Theorem

Take A, L or P. Let  $G_n$  be a sequence of graphs on n vertices with BS limit  $\rho$ . Then for any k = o(n),

 $\lambda_k \ge b + o(1)$  and  $\lambda_{n-k} \le a + o(1)$ .

where [a, b] is the convex hull of the support of  $\mu_{\rho} = \mathbb{E}_{\rho} \mu_{G}^{e_{o}}$  (with the corresponding operator).

 $|a| \lor b$  is the spectral radius of the operator.

#### Proof

We know already that

 $d_{\mathrm{KS}}(\mu_{G_n},\mu_{\rho}) = \sup_{t\in\mathbb{R}} |\mu_{G_n}(-\infty,t] - \mu_{\rho}(-\infty,t]| \to 0.$ 

Hence, for  $I = (b - \varepsilon, \infty)$ ,

$$\lim \mu_{G_n}(I) = \mu_{\rho}(I) = \eta > 0.$$

In words : the nb of eigenvalues larger than  $b - \varepsilon$  is at least  $n(\eta + o(1)) \gg k$ .

We get that for n large enough,  $\lambda_k \ge b - \varepsilon$ .

#### OUTLIERS

Assume  $G_n$  has BS limit  $\rho$ .

Eigenvalues/Eigenvectors of  $G_n$  outside the support of  $\mu_\rho$  contain a global information on  $G_n$ : they are not seen in the local limit.

e.g.  $\lambda_1 = -\lambda_n$  equivalent to G bipartite.

Spectral clustering try to exploit this information (usually low rank).

#### OUTLIERS

A large locally tree-like 12-regular graph.



# PART II: EXTREMAL EIGENVALUES

Regular graphs

## ALON-BOPPANA BOUND

Theorem If G is a d-regular graph on n vertices, then  $\lambda_1(A) = d$  and

$$\lambda_2(A) \ge 2\sqrt{d-1} - \frac{c_d}{\log n}.$$

Since P = A/d,

$$1 - \lambda_2(P) \leq 1 - 2\frac{\sqrt{d-1}}{d} + o(1).$$

Assume G is connected.

A graph C is a covering graph of G if there is a surjective function  $f: V_C \to V_G$  which is a local isomorphism (1-neighborhood is mapped bijectly).

The universal covering of G is a covering which is a tree (unique up to isomorphism). It covers any covering of G.

### COVER AND UNIVERSAL COVERING TREE

A construction of  $T = (V_T, E_T)$ : take  $o \in G$ .  $V_T$  is the set of all non-backtracking paths  $(v_0, \dots, v_k)$  starting from  $o = v_0$   $(v_{i-1} \neq v_{i+1})$ . Two paths share an edge if one is the largest prefix of the other.



Weaker result on  $\lambda_{\star} = \max_{i \ge 2} |\lambda_i| = \lambda_2 \vee (-\lambda_n).$ 

 $\mathbb{T}_d$  is the universal covering tree of G.

Hence, the nb of closed walks starting from x in G of length k is at least the nb of closed walks starting from the root in  $\mathbb{T}_d$  of length k:

$$\operatorname{Tr}(A^k) = \sum_j \lambda_j^k = n \int \lambda^k d\mu_G \ge n \int \lambda^k d\mu_{\mathbb{T}_d}$$

 $2\sqrt{d-1}$  is the spectral radius of the adjacency operator of  $\mathbb{T}_d$  (Kesten) : for k even,

$$\int \lambda^k d\mu_{\mathbb{T}_d} \geqslant \frac{c}{k^{3/2}} \left( 2\sqrt{d-1} \right)^k.$$

### Sketch of Proof

For even k,

$$\operatorname{Tr}(A^k) = \sum_j \lambda_j^k \leqslant d^k + n\lambda_\star^k.$$

So finally,

$$\frac{c}{k^{3/2}} \Big( 2\sqrt{d-1} \Big)^k \leqslant \frac{d^k}{n} + \lambda_\star^k.$$

Take  $k = \log_d n$ .

Replacing  $\lambda_{\star}$  by  $\lambda_2$  requires another strategy (without trace).

#### RAMANUJAN GRAPHS

Let G be a d-regular graph on n vertices. Consider its adjacency matrix A.

 $\lambda_n = -d$  is equivalent to G bipartite.

The largest non-trivial eigenvalue is

$$\lambda_{\star} = \max_{i} \{ |\lambda_{i}| : |\lambda_{i}| \neq d \}.$$

G is Ramanujan if

 $\lambda_{\star} \leqslant 2\sqrt{d-1}.$ 

They are the best possible expanders.

Sequence of (bipartite) Ramanujan graphs  $G_1, G_2, \cdots$ , with  $|V(G_n)|$  growing to infinity, are known to exist when

- d = q + 1 with  $q = p^k$  and p prime number Lubotzky, Phillips, Sarnak (1988), Morgenstern (1994).

- any  $d \ge 3$ , Marcus, Spielman, Srivastava (2013).

## Theorem (Friedman (2007))

Fix integer  $d \ge 3$ . Let  $G_n$  is a sequence of uniformly distributed *d*-regular graphs on *n* vertices, then with high probability,

$$\lambda_2 = 2\sqrt{d-1} + o(1) = -\lambda_n.$$

Most regular graphs are nearly Ramanujan !!

Oriented edge set :

$$\vec{E} = \{(u,v) : \{u,v\} \in E\},\$$

hence,  $m = |\vec{E}| = 2|E|$ .

If e = uv, f = xy are in  $\vec{E}$ ,

$$B_{ef} = \mathbf{1}(v = x)\mathbf{1}(u \neq y),$$

defines a  $|\vec{E}| \times |\vec{E}|$  non-symmetric matrix on the oriented edges.



#### PERRON EIGENVALUE

Complex eigenvalues, m = 2|E|,

$$\mu_1 \geqslant |\mu_2| \geqslant \cdots \geqslant |\mu_m|.$$

A non-backtracking path  $(v_1 \dots v_n)$  is a path such that  $v_{i-1} \neq v_{i+1}$ .

 $B_{ef}^{\ell}$  = nb of NB paths from e to f of length  $\ell + 1$ .

If G is connected and |E| > |V| then B is irreducible and

 $\mu_1 = \lim_{\ell \to \infty} \|B^\ell \delta_e\|_1^{1/\ell} = \text{growth rate of the universal cover of } G.$ 

IHARA-BASS' IDENTITY

With Q = D - I,  $\det(z - B) = (z^2 - 1)^{|E| - |V|} \det(z^2 - Az + Q)$ 

If G is d-regular, then Q = (d-1)I and  $\sigma(B) = \{\pm 1\} \cup \{\mu : \mu^2 - \lambda\mu + (d-1) = 0 \text{ with } \lambda \in \sigma(A)\}.$ 

Kotani & Sunada (2000), Angel, Friedman & Hoory (2007), Terras (2011), ...

For a *d*-regular graph,  $\mu_1 = d - 1$ ,

- \* Alon-Boppana bound :  $\max_{k\neq 1} \mathfrak{Re}(\mu_k) \ge \sqrt{\mu_1} o(1).$
- \* Ramanujan (non bipartite) :  $|\mu_k| = \sqrt{\mu_1}$  for k = 2, ..., n.
- \* Friedman's thm :  $|\mu_2| \leq \sqrt{\mu_1} + o(1)$  if G random uniform.



Theorem (Ihara-Bass Formula) Let  $\zeta_G$  be the Ihara's zeta function. We have

$$\frac{1}{\zeta_G(z)} = \det(I - Bz) = (1 - z^2)^{|E| - |V|} \det(I - Az + Qz^2).$$

The poles of the zeta function are the reciprocal of eigenvalues of B.

IHARA'S ZETA FUNCTION (1966)

A closed non-backtracking walk without tail  $p = (v_1, \dots, v_n)$  is a closed path such that  $v_{i-1} \neq v_{i+1} \mod(n)$ .



A closed non-backtracking walk without tail is prime if it cannot be written as  $p = (q, q, \dots, q)$  with q closed non-backtracking walk.

If  $N_{\ell}$  is the number of closed non-backtracking paths without tails of length  $\ell$  in G and |z| small,

$$\zeta_G(z) = \exp\left(\sum_{\ell} \frac{N_{\ell}}{\ell} z^{\ell}\right) = \prod_{p: \text{ prime}} \left(1 - z^{|p|}\right)^{-1}.$$

Stark & Terras draw a parallel between Riemann hypothesis and Ramanujan property.

SKETCH OF PROOF OF IHARA-BASS IDENTITY

$$\det(I_m - Bz) = (1 - z^2)^{|E| - |V|} \det(I_n - Az + Qz^2).$$

Introduce the matrices

$$\begin{split} J: \mathbb{R}^{\vec{E}} &\to \mathbb{R}^{\vec{E}} \qquad Je_{(x,y)} = e_{(y,x)} \\ S: \mathbb{R}^{\vec{E}} &\to \mathbb{R}^{V} \qquad Se_{(x,y)} = e_{x} \\ T: \mathbb{R}^{\vec{E}} &\to \mathbb{R}^{V} \qquad Te_{(x,y)} = e_{y}. \end{split}$$

 $J^2 = I_m$  and J has m/2 = |E| eigenvalues equal to 1 and -1.

We have

$$\begin{split} SJ &= T & A = ST^* \\ D &= Q + I = SS^* = TT^* & B + J = T^*S. \end{split}$$

We check the identity

$$\begin{pmatrix} I_n & 0\\ T^* & I_m \end{pmatrix} \begin{pmatrix} (1-z^2)I_n & zS\\ 0 & I_m - zB \end{pmatrix}$$
$$= \begin{pmatrix} I_n - zA + z^2Q & zS\\ 0 & I_m + zJ \end{pmatrix} \begin{pmatrix} I_n & 0\\ T^* - zS^* & I_m \end{pmatrix}$$

Take determinant and observe,

$$\det(I_m + zJ) = (1+z)^{m/2}(1-z)^{m/2} = (1-z^2)^{|E|}.$$

# PART II: EXTREMAL EIGENVALUES

Sketch of proof of Friedman's Theorem

# Theorem (Friedman (2007))

Fix integer  $d \ge 3$ . Let  $G_n$  is a sequence of uniformly distributed *d*-regular graphs on *n* vertices, then with high probability,

$$\lambda_2 = 2\sqrt{d-1} + o(1) = -\lambda_n.$$

We should prove  $\lambda_2 \vee |\lambda_n| \leq 2\sqrt{d-1} + o(1)$ .

If A is the adjacency matrix of  $G_n$  we would like to prove for even k,

$$d^{k} + \lambda_{2}^{k} + \lambda_{n}^{k} \leqslant \operatorname{Tr}(A^{k}) \stackrel{?}{\leqslant} d^{k} + n \left(2\sqrt{d-1} + o(1)\right)^{k}.$$

No real hope to do better since, for any  $\varepsilon > 0$ ,

$$\operatorname{Tr}(A^k) = n \int \lambda^k d\mu_A \ge cn \left(2\sqrt{d-1} - \varepsilon\right)^k,$$

with  $c = \mu_A(2\sqrt{d-1} - \varepsilon, \infty) = \mu_{\mathbb{T}_d}(2\sqrt{d-1} - \varepsilon, \infty) + o(1) > 0.$ 

Then,  $\lambda_2^k \leqslant n \Big( 2\sqrt{d-1} + o(1) \Big)^k.$  or  $\lambda_2 \leqslant n^{1/k} \Big( 2\sqrt{d-1} + o(1) \Big).$ 

If  $k \gg \log n$  then

 $n^{1/k} = 1 + o(1),$ 

and Friedman's Theorem follows.

It is wiser to project orthogonally on  $1^{\perp}$ :

$$\operatorname{Tr}(A^k) - d^k = \operatorname{Tr}\left(A - \frac{d}{n}\mathbf{11}^*\right)^k \stackrel{?}{\leqslant} n\left(2\sqrt{d-1} + o(1)\right)^k.$$

For a first moment estimate, we would aim at

$$\mathbb{E}\mathrm{Tr}(A^k) - d^k = \mathbb{E}\mathrm{Tr}\left(A - \frac{d}{n}\mathbf{1}\mathbf{1}^*\right)^k \stackrel{?}{\leqslant} n\left(2\sqrt{d-1} + o(1)\right)^k$$

for  $k \gg \log n$ .

# This is wrong !

The probability that the graph contains  $K_{d+1}$  as subgraph is at least  $n^{-c}$ . On this event  $\lambda_2 = d$ . Hence, for even  $k \gg \log n$ ,

$$\mathbb{E}\mathrm{Tr}\left(A-\frac{d}{n}\mathbf{1}\mathbf{1}^*\right)^k \ge n^{-c}d^k \gg n\left(2\sqrt{d-1}+o(1)\right)^k.$$

Subgraphs which have polynomially small probability compromise the first moment method. Called Tangles.

# STRATEGY

- 1. Use B instead of  $A : |\mu_2| \leq \sqrt{d-1} + o(1)$ .
- 2. Remove the tangles.
- 3. Project on  $\mathbf{1}^{\perp}$ .
- 4. Use the trace method / first moment method to evaluate the remainder terms.

Bordenave/Massoulié/Lelarge (2015), Bordenave (2015)

#### CONFIGURATION MODEL

The oriented edge set  $\vec{E}$ ,  $|\vec{E}| = m = nd$  is written as

 $\vec{E} = \{(u,i): 1 \leqslant u \leqslant n, 1 \leqslant i \leqslant d\}.$ 



A matching  $\sigma$  on  $\vec{E}$  defines a multi-graph with adjacency matrix

 $A = Q^* M Q,$ 

where,  $M : \mathbb{R}^{\vec{E}} \to \mathbb{R}^{\vec{E}}, Q : \mathbb{R}^{V} \to \mathbb{R}^{\vec{E}},$ 

 $M_{ef} = \mathbf{1}(\sigma(e) = f) = M_{fe} \quad \text{and} \quad Q_{eu} = \mathbf{1}(e_1 = u).$ 

M is the permutation matrix associated to  $\sigma$ .

CONFIGURATION MODEL

The non-backtracking matrix with f = (u, i),

$$B_{ef} = \mathbf{1}(\sigma(e) = (u, j) \text{ for some } j \neq i).$$

can be written as

B = MN

where

$$N_{ef} = \mathbf{1}(e_1 = f_1, e \neq f) = N_{fe}.$$

We have

$$M1 = 1$$
 and  $N1 = (d-1)1$ .

Hence,

$$B\mathbf{1} = B^*\mathbf{1} = (d-1)\mathbf{1}.$$

#### CONFIGURATION MODEL

If  $B\psi = \mu\psi$ ,  $\mu \neq d-1$ , we deduce  $\mu\langle \mathbf{1}, \psi \rangle = \langle \mathbf{1}, B\psi \rangle = \langle B^* \mathbf{1}, \psi \rangle = (d-1)\langle \mathbf{1}, \psi \rangle.$ 

For any integer  $\ell$ , the second largest eigenvalue of B is thus bounded by

$$|\mu_2|^{\ell} \leq \max_{x:\langle \mathbf{1},x \rangle = 0} \frac{\|B^{\ell}x\|_2}{\|x\|_2}.$$

We prove if  $\sigma$  is a uniform random matching that with high probability

$$\max_{x:\langle 1,x\rangle=0} \frac{\left\|B^{\ell}x\right\|_{2}}{\|x\|_{2}} \leq (\log n)^{c} (d-1)^{\ell/2}.$$

with  $\ell \simeq \log n$ . The theorem follows with

 $\varepsilon = O(\log \log n / \log n).$ 

$$\begin{aligned} \text{Recall } M_{ef} &= \mathbf{1}(\sigma(e) = f), \, N_{ef} = \mathbf{1}(e_1 = f_1, e \neq f) \\ B_{ef}^k &= \left( (MN)^k \right)_{ef} = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1}\gamma_{2s}}, \end{aligned}$$

where  $\Gamma_{ef}^k$  is the set of paths  $\gamma = (\gamma_1, \ldots, \gamma_{2k+1})$  such that  $\gamma_1 = e, \gamma_{2k+1} = f$  and  $N_{\gamma_{2s}, \gamma_{2s+1}} = 1$ .



$$B_{ef}^k = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1}\gamma_{2s}},$$

The set of paths  $\Gamma_{ef}^k$  is independent of  $\sigma$ : combinatorial part. The summand is the probabilistic part.

$$B_{ef}^k = \left( (MN)^k \right)_{ef} = \sum_{\gamma \in \Gamma_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1}\gamma_{2s}},$$

The projection of M on  $\mathbf{1}^{\perp}$  is

$$\underline{M} = M - \frac{\mathbf{11}^*}{m}.$$

Hence, if  $\langle x, \mathbf{1} \rangle = 0$ , we get

$$B^k x = \underline{B}^k x,$$

where  $\underline{B} = \underline{M}N$  and

$$\underline{B}_{ef}^{k} = \left( (\underline{M}N)^{k} \right)_{ef} = \sum_{\gamma \in \Gamma_{ef}^{k}} \prod_{s=1}^{k} \underline{M}_{\gamma_{2s-1}\gamma_{2s}},$$

However, due to the presence of tangles, we will reduce the sum before doing the projection.

## TANGLES

A multi-graph (or a path) is tangle-free if it contains at most one cycle.

A multi-graph (or a path) is  $\ell$ -tangle-free if all vertices have at most at most one cycle in their  $\ell$ -neighborhood.

We denote by  $F_{ef}^k$  the subset of tangle-free paths  $\Gamma_{ef}^k$ .

Observe that  $F_{ef}^k$  is much smaller than  $\Gamma_{ef}^k$ .

Assume that  $G = G(\sigma)$  is  $\ell$ -tangle-free. Then, for  $0 \leq k \leq \ell$ ,  $B^k = B^{(k)},$ 

where

$$(B^{(k)})_{ef} = \sum_{\gamma \in F_{ef}^k} \prod_{s=1}^k M_{\gamma_{2s-1}\gamma_{2s}}.$$

For  $0 \leq k \leq \ell$ , we define the "projected" matrix

$$(\underline{B}^{(k)})_{ef} = \sum_{\gamma \in F_{ef}^k} \prod_{s=1}^k \underline{M}_{\gamma_{2s-1}\gamma_{2s}}.$$

Beware that  $\underline{B}^k \neq \underline{B}^{(k)}$  and a priori  $B^{(k)}x \neq \underline{B}^{(k)}x$  for  $\langle x, \mathbf{1} \rangle = 0$ . This is only approximately true !

$$(B^{(\ell)})_{ef} = (\underline{B}^{(\ell)})_{ef} + \sum_{\gamma \in F_{ef}^{\ell}} \sum_{k=1}^{\ell} \prod_{s=1}^{k-1} \underline{M}_{\gamma_{2s-1}\gamma_{2s}} \left(\frac{1}{m}\right) \prod_{k+1}^{\ell} M_{\gamma_{2s-1}\gamma_{2s}},$$

which follows from the identity,

$$\prod_{s=1}^{\ell} x_s = \prod_{s=1}^{\ell} y_s + \sum_{k=1}^{\ell} \prod_{s=1}^{k-1} y_s (x_k - y_k) \prod_{k+1}^{\ell} x_s.$$

An path  $\gamma \in F^\ell_{ef}$  can be decomposed as the union of

$$\gamma' \in F_{ea}^{k-1}, \quad \gamma'' \in F_{ab}^1 \quad \text{and} \quad \gamma''' \in F_{bf}^{\ell-k}.$$



 $\operatorname{Set}$ 

 $K = (d-1)\mathbf{1}\mathbf{1}^* - N$ 

 $K_{ef} \in \{d-1, d-2\}$  is the cardinal of  $\Gamma_{ef}^1$ .

$$\sum_{\gamma \in F_{ef}^{\ell}} \prod_{s=1}^{k-1} \underline{M}_{\gamma_{2s-1}\gamma_{2s}} \prod_{k+1}^{\ell} M_{\gamma_{2s-1}\gamma_{2s}} = \left(\underline{B}^{(k-1)} K B^{(\ell-k)}\right)_{ef} - \left(R_k^{(\ell)}\right)_{ef}$$

where  $\left(R_k^{(\ell)}\right)_{ef}$  counts the extra paths :



So finally,  $K = (d - 1)\mathbf{11}^* - N$ ,

$$\begin{split} B^{(\ell)} &= \underline{B}^{(\ell)} + \frac{1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} K B^{(\ell-k)} - \frac{1}{m} \sum_{k=1}^{\ell} R_k^{(\ell)} \\ &= \underline{B}^{(\ell)} + \frac{d-1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} \mathbf{1} \mathbf{1}^* B^{(\ell-k)} - \frac{1}{m} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} N B^{(\ell-k)} \\ &- \frac{1}{m} \sum_{k=1}^{\ell} R_k^{(\ell)}. \end{split}$$

Hence, if  $\langle x, \mathbf{1} \rangle = 0$ , since  $\mathbf{1}^* B^{(\ell-k)} = (d-1)^{\ell-k} \mathbf{1}^*$ ,

$$B^{(\ell)}x = \underline{B}^{(\ell)}x - \frac{1}{m}\sum_{k=1}^{\ell}\underline{B}^{(k-1)}NB^{(\ell-k)}x - \frac{1}{m}\sum_{k=1}^{\ell}R_k^{(\ell)}x.$$

# We arrive at

$$\max_{x:\langle \mathbf{1}, x \rangle = 0} \frac{\left\| B^{\ell} x \right\|_{2}}{\left\| x \right\|_{2}} \leq \left\| \underline{B}^{(\ell)} \right\| + \frac{1}{m} \sum_{k=0}^{\ell-1} (d-1)^{\ell-k} \left\| \underline{B}^{(k)} \right\| + \frac{1}{m} \sum_{k=1}^{\ell} \left\| R_{k}^{(\ell)} \right\|.$$

where  $||S|| = \max_{x:||x||_2=1} ||Sx||_2$  is the operator norm.

This inequality holds if  $G(\sigma)$  is  $\ell$  tangle-free : for random  $\sigma$ , ok with  $\ell = 0.1 \log_{d-1}(n)$ .

$$\max_{x:\langle \mathbf{1}, x \rangle = 0} \frac{\left\| B^{\ell} x \right\|_{2}}{\|x\|_{2}} \leq \|\underline{B}^{(\ell)}\| + \frac{1}{m} \sum_{k=0}^{\ell-1} (d-1)^{\ell-k} \|\underline{B}^{(k)}\| + \frac{1}{m} \sum_{k=1}^{\ell} \|R_{k}^{(\ell)}\|.$$

Our aim is then to prove that w.h.p.

 $\|\underline{B}^{(\ell)}\| \leq (\log n)^c (d-1)^{\ell/2}$  and  $\|R_k^{(\ell)}\| \leq (\log n)^c (d-1)^{\ell-k/2}$ 

By estimating, for  $S = \underline{B}^{(\ell)}$  or  $S = R_k^{(\ell)}$ .

 $\mathbb{E}||S||^{2k} \leqslant \mathbb{E}\mathrm{Tr}(SS^*)^k.$ 

with  $k \simeq \log n / (\log \log n)$ : on the overall paths of length  $2\ell k \gg \log n$ .

For  $S = \underline{B}^{(\ell)}$ ,  $\mathbb{E} \|S\|^{2k} \leq \mathbb{E} \operatorname{Tr}(SS^*)^k \leq \left(\sqrt{d-1} + o(1)\right)^{2k\ell}$ ,

with  $k \simeq \log n / (\log \log n)$ .

The combinatorial part of the proof is made possible thanks to the tangle-free reduction.

The probabilistic part relies on an estimate of the type

$$\left|\mathbb{E}\prod_{t=1}^{t} \left(M_{\gamma_{2t-1},\gamma_{2t}} - \frac{1}{m}\right)\right| \leqslant c \left(\frac{1}{m}\right)^{a} \left(\frac{4t}{\sqrt{m}}\right)^{a_{1}},$$

where a is the nb of visited edges  $\{e, f\}$  and  $a_1$  is the nb of edges visited exactly once.

# PART II: EXTREMAL EIGENVALUES

 $\underline{\text{Random } n\text{-Lifts}}$ 

GRAPH LIFT/COVER

A graph C is a covering graph of G if there is a surjective function  $f: V_C \to V_G$  which is a local isomorphism (1-neighborhood is mapped bijectly).

C is a n-cover of G if  $|f^{-1}(x)| = n$  for all  $x \in V_G$ .



The *n*-lift can encoded by a permutation  $\sigma_e$  on each edge  $e \in V_G$ .

GRAPH LIFT/COVER

A graph C is a covering graph of G if there is a surjective function  $f: V_C \to V_G$  which is a local isomorphism (1-neighborhood is mapped bijectly).

C is a n-cover of G if  $|f^{-1}(x)| = n$  for all  $x \in V_G$ .



The *n*-lift can encoded by a permutation  $\sigma_e$  on each edge  $e \in V_G$ .

# Graph Lift/Cover







# Let $G_n$ is a uniformly random *n*-lift of *G*. Then, as $n \to \infty$ , what it is the BS-limit of *G*?

The universal covering tree of G rooted uniformly.

Let G = (V, E) be a base graph and  $G_n = (V_n, E_n)$  a *n*-lift of G,  $V_n = \{(x, i) : x \in V, i \in [n]\}.$ 

We consider for example, the adjacency matrices A and  $A_n$  of G and  $G_n$ .

Define the vector space

 $H = \left\{ f \in \mathbb{R}^{V_n} : f(x, i) = f(x, j) \right\} = \operatorname{span}(\chi_x, x \in V),$ 

where  $\chi_x(y,i) = \mathbf{1}(x=y)$ .

We have

$$A_n H \subset H$$

and  $A_n$  restricted to H is A.

The eigenvalues of A are also eigenvalues of  $A_n$  (counting multiplicities).

The other eigenvalues of A are called new eigenvalues. They are the eigenvalues of the matrix A restricted to  $H^{\perp}$ .

The largest new eigenvalue is

 $\lambda_n^{\star} := \max \{ |\lambda| : \lambda \text{ new eigenvalue of } A_n \}.$ 

# NEW EIGENVALUES



Let  $G_n$  is a uniformly random n-lift of G. Then, as  $n \to \infty$ , with high probability,

 $\lambda_n^\star \leqslant \rho + o(1),$ 

where  $\rho$  is the spectral radius of the adjacency operator of the universal covering tree of G.

The converse  $\lambda_n^* \ge \rho + o(1)$  follows from the BS-limit (and also from a generalized Alon-Boppana bound).

This should hold for any reasonable local operator :  $A, P, L, B, \ldots$ 

This is proved for non-backtracking operator B, Friedman, Kohler (2014), Bordenave (2015). For B,  $\rho = \sqrt{\mu_1}$  where  $\mu_1$  is the growth rate of the universal cover Angel, Friedman, Hoory (2007).

The bound  $\lambda_n^* \leq \sqrt{3\rho} + o(1)$  is known, *Puder (2012)*.

This is a been used for exact reconstruction of the base graph Brito, Dumitriu, Ganguly, Hoffman, Tran (2015).

# PART II: EXTREMAL EIGENVALUES

Stochastic Block Model

Consider a set of labels  $\{1, \cdots, r\}$  and assign label  $\sigma_n(v)$  to vertex v. We assume that

$$\pi_n(i) = \frac{1}{n} \sum_{v=1}^n \mathbf{1}(\sigma_n(v) = i) = \pi(i) + O(n^{-\varepsilon}),$$

for some probability vector  $\pi$ .

If  $\sigma(u) = i, \sigma(v) = j$ , the edge  $\{u, v\}$  is present independently with probability

$$\frac{W_{ij}}{n} \wedge 1,$$

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, ...)

If  $\sigma(v) = j$ , mean number of label *i* neighbors is  $\pi(i)W_{ij} + O(1/n).$ 

Mean progeny matrix

 $M = \operatorname{diag}(\pi)W.$ 

We assume that the average degree is homogeneous, for all  $1 \leq j \leq r$ ,

$$\sum_{i=1}^{n} M_{ij} = \alpha > 1.$$

Assume that M is strongly irreducible and we order its real eigenvalues

$$\alpha = \rho_1 > |\rho_2| \ge \cdots \ge |\rho_r|.$$

If r = 1, we retrieve  $\mathcal{G}(n, \alpha/n)$ .

Model used in community detection. Notably for r = 2,

$$\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$$

and, with a > b,

$$W = \begin{pmatrix} a & b \\ b & a \end{pmatrix}.$$

Then

$$\rho_1 = \alpha = \frac{a+b}{2} \quad \text{and} \quad \rho_2 = \frac{a-b}{2}.$$

# BS LIMIT

The BS limit of SBM is a multi-type Galton-Watson tree with  $\operatorname{Poi}(W_{ij})$  offspring distribution and the root has label *i* with proba  $\pi(i)$ .

The growth rate of the random tree condition on non-extinction is a.s.  $\alpha$ , i.e. the expected number of offsprings.

TRANSITION MATRIX

Transition matrix P in an Erdős-Rényi graph  $\mathcal{G}(n, \alpha/n)$ ,  $n = 2000, \alpha = 1.5$ .



CLASSICAL LOCAL OPERATORS

The spectral measure of Galton-Watson tree with Poisson offspring distribution has full support :  $\mathbb{R}$  for A, [-1,1] for P and  $\mathbb{R}_+$  for L.

This is due to high degree vertices (for A) and long line segments for P, L.

No outliers : the extremal eigenvalues are related to small subgraphs and not to global graph properties.

Various regularization have been proposed to solve this issue. Including the non-backtracking matrix, Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013).

# SIMULATION FOR ERDŐS-RÉNYI GRAPH

Eigenvalues of *B* for an Erdős-Rényi graph  $\mathcal{G}(n, \alpha/n)$  with n = 500 and  $\alpha = 4$ .



Erdős-Rényi Graph

 $\mu_1 \geqslant |\mu_2| \geqslant \ldots$ 

Theorem Let  $\alpha > 1$  and G with distribution  $\mathcal{G}(n, \alpha/n)$ . With high probability,

> $\mu_1 = \alpha + o(1)$  $|\mu_2| \leqslant \sqrt{\alpha} + o(1).$

> > Bordenave/Massoulié/Lelarge (2015)

$$n = 500, \quad r = 2, \quad a = 7, \quad b = 1, \quad \rho_1 = 4, \quad \rho_2 = 3.$$



Let  $1 \leq r_0 \leq r$  be such that

 $\alpha = \rho_1 > |\rho_2| \ge \cdots \ge |\rho_{r_0}| > \sqrt{\rho_1} \ge |\rho_{r_0+1}| \ge \cdots \ge |\rho_r|.$ 

#### Theorem

Let  $\alpha > 1$  and G a stochastic block model as above. With high probability, up to reordering the eigenvalues of B,

 $\begin{aligned} \mu_k &= \rho_k + o(1) & \text{if } 1 \leqslant k \leqslant r_0 \\ |\mu_k| &\leqslant \sqrt{\alpha} + o(1) & \text{if } k > r_0. \end{aligned}$ 

+ a description of the eigenvectors of  $\lambda_k$ ,  $1 \leq k \leq r_0$ , if the  $\mu_k$  are distinct, In particular, they are asymptotically orthogonal.

#### COMMUNITY DETECTION

Spectral redemption : eigenvalues/eigenvectors such that  $|\mu_k| > \sqrt{\mu_1}$  should contain relevant global information on the graph.



Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013)

# Conference : Spectrum of Random Graphs January 4-8, 2016 Luminy - CIRM



# THANK YOU FOR YOUR ATTENTION !