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Framework

Take a �nite, simple, non-oriented graph G = (V,E).



Graph matrices

Natural matrices are associated to G.

They are matrices built from the local neighborhood of the
vertices.



Adjacency matrix

The adjacency matrix is indexed by V × V and de�ned by

Axy = 1({x, y} ∈ E).

For integer k > 0,

Akxy = nb of paths from x to y of length k.

A is symmetric : it has real eigenvalues

λ|V |(A) 6 · · · 6 λ1(A)

and an orthonormal basis of eigenvectors.



Adjacency matrix



Perron-Frobenius Theorem

Assume that the graph G is connected. Then A is irreducible:
for any x, y in V , there exists k such that Akxy > 0.

Then, the largest eigenvalue is positive and it is a simple
eigenvalue. Its left and right eigenvector have positive
coordinates.



Degree matrix

The degree matrix is the diagonal matrix indexed by V × V
such that

Dxx = deg(x) =
∑
y

Ayx.



Degree



Incidence matrix

De�ne the set of oriented edges as

~E = {(x, y) : {x, y} ∈ E}

and the incidence matrix as the matrix on ~E × V

∇(xy),x = 1, ∇(yx),x = −1 and ∇e,x = 0 otherwise.

Observe for x 6= y

(∇∗∇)xx =
∑
e

|∇e,x|2 = 2 deg(x).

(∇∗∇)xy =
∑
e

∇e,x∇e,y = −2× 1({x, y} ∈ E).

∇∗∇ = 2(D −A).



Positivity

Hence, for any vector f ,

2〈(D −A)f, f〉 = 〈∇f,∇f〉 =
∑

(x,y)∈ ~E

(f(x)− f(y))2 > 0.

In other words,
D −A > 0.

We get

−max
x

deg(x) 6 λ|V |(A) 6 · · · 6 λ1(A) 6 max
x

deg(x).



Markov transition matrix

The transition matrix of the simple random walk on G is

Pxy =
Axy

deg(x)
.

We have
P = D−1A.

P has real eigenvalues :

P = D−1A = D−1/2
(
D−1/2AD−1/2

)
D1/2.

Google matrix : for α ∈ (0, 1], αP + (1− α)11∗/|V |.



Markov transition matrix



Markov transition matrix

De�ne the left vector

ν(x) = deg(x).

We have
νP = ν.

ν is a left eigenvector with eigenvalue 1 and

π(x) =
ν(x)∑
y ν(y)

=
deg(x)

2|E|

is the invariant probability measure of the random walk.



Markov transition matrix

The symmetry

π(x)Pxy = π(y)Pyx =
1({x, y} ∈ E)

2|E|

is called reversibility.

It asserts that the matrix P is symmetric in L2(π) with scalar
product

〈f, g〉π =
∑
x

π(x)f(x)g(x),

i.e. 〈Pf, g〉π = 〈f, Pg〉π.

It follows that P has real eigenvalues in [−1, 1] and an
orthonormal basis of eigenvectors in L2(π) .



Laplacian matrix

L = D −A.

−L is the in�nitesimal generator of the countinuous time
random walk:

d

dt
Exf(Xt)

∣∣∣
t=0

= −Lf(x).

It is symmetric, L > 0 with eigenvalues in

[0, 2 max
x

deg(x)].

Moreover
L1 = A1−D1 = 0.

The invariant probability measure of the process is the uniform
measure.



Laplacian matrix



Combinatorial Laplacian matrix

Matrix on V × V ,

D−1/2LD−1/2 = D1/2(I − P )D−1/2.

It is symmetric and has eigenvalues in [0, 2].

There are other interesting local matrices . . .



Regular graphs

If G is d-regular, then D = dI commutes with A : all these
matrices have the same eigenspace decomposition.



Typical vs Extremal Eigenvalues

There are essentially two types of information encoded in the
spectrum.

- PART II : the largest eigenvalues (and their eigenspaces) give
some information on global graph properties (expansion,
clustering, chromatic number, maximal cut, etc...),

- PART I : the typical eigenvalues give information on local
graph properties (typical degree, partition function of
spanning trees, matchings, percolation, etc...).



Large sparse random graphs

We will study the spectrum of classical random graphs in the
regime :

- Large
|V | → ∞.

- Sparse / Dilute
|E| = O(|V |).



Part I: Typical Eigenvalues

Spectral Measures



Eigenvalues

For M ∈Mn(R) is a symmetric matrix, we denote its real
eigenvalues by

λn(M) 6 . . . 6 λ1(M).



Spectral measure

The spectral measure / empirical distribution of the eigenvalues
/ density of states is the probability measure on R,

µM =
1

n

n∑
i=1

δλi(M),

i.e. for any set I ⊂ R

µM (I) =
1

n

n∑
i=1

1(λi(M) ∈ I)

is the proportion of eigenvalues in I or equivalently, the
probability that a typical eigenvalue is in I.∫

fdµM =
1

n

n∑
i=1

f(λi(M)).



Kirchoff Matrix-Tree Theorem

If G is a connected graph then the number of spanning trees of
G is equal to

t(G) =
1

n

∏
λi 6=0

λi,

where λi = λi(L).

In particular,

1

n
log t(G) =

∫ ∞
0+

log λdµL(λ)− 1

n
log n.



Closed paths

For t integer, let

St = |{closed paths of length t in G}|

We have

St = Tr{At} =

n∑
i=1

λi(A)t = n

∫
λtdµA(λ).

In particular, for z ∈ C, Im(z) > 0,

1

n

∑
t>0

St
zt+1

=
∑
t>0

∫
λt

zt+1
dµA =

∫
1

z − λ
dµA(λ)

is the Cauchy-Stieltjes transform of µA.



Return times

If Xt is the Markov chain with transition matrix P ,

1

n

n∑
v=1

P(Xt = v|X0 = v) =
1

n
Tr{P t} =

∫
λtdµP (λ).

Similarly, for t > 0 real, if Xt is the Markov process with
generator L,

1

n

n∑
v=1

P(Xt = v|X0 = v) =

∫
e−tλdµL(λ).



Spectral measure at a vector

Let M ∈Mn(R) be a symmetric matrix. Let ψ1, . . . ψn be an
orthonormal basis of eigenvectors :

M =
∑
k

λkψkψ
∗
k.

For φ ∈ Rn with ‖φ‖2 = 1, we de�ne the probability measure,

µφM =

n∑
k=1

〈ψk, φ〉2δλk .

We have ∫
λkdµφM = 〈φ,Mkφ〉.



Spectral measure at a vector

We recover the spectral measure from the spatial average

1

n

n∑
x=1

µexM =
1

n

n∑
x=1

n∑
k=1

|ψk(x)|2δλk =
1

n

n∑
k=1

δλk

n∑
x=1

|ψk(x)|2 = µM .

While µexM depends on the eigenvectors, its spatial average µM
does not.



Spectral measure at a vector

This local notion of spectrum will be used to de�ne the spectral
of a possibly in�nite graph.

We will restrict ourselves to the adjacency matrix and set

µG := µA and µexG := µexA .

It works the same for P or L.



Adjacency operator

Let G = (V,E) be a locally �nite graph : for all x ∈ V ,

deg(x) =
∑
y∈V

1 ({x, y} ∈ E) <∞.

Let `2(V ) =
{
ψ :
∑

x∈V ψ(x)2 <∞
}
and `2c(V ) as the subspace

of vectors with �nite support : i.e. the subspace spanned by
�nite linear combinations of ex, x ∈ V .

Adjacency operator : de�ned for vectors ψ ∈ `2c(V )

Aψ(x) =
∑

y:{x,y}∈E

ψ(y),

equivalently, with matrix notation :

Axy = 〈ex, Aey〉 = 1({x, y} ∈ E).



Adjacency operator

Under mild assumptions, A is essentially self-adjoint (e.g. for all
v ∈ V , deg(v) 6 θ).

The spectral measure with vector ψ ∈ `2c(V ), ‖ψ‖2 = 1, is the

probability measure µψG on R such that

∀k > 1,

∫
λkdµψG = 〈ψ,Akψ〉.

As a consequence,∫
λkdµexG = |{closed paths of length k starting from x}| .



Transitive graphs

If G is vertex-transitive (e.g. a Cayley graph associated to a
transitive group Γ with a �nite symmetric generating set
S ⊂ Γ), the measure

µG := µexG

does not depend on x.

Plancherel measure, Kesten-von Neumann-Serre spectral
measure.

(If G is �nite, then the two de�nitions coincide).



Lattices

Cycle

µZ/nZ =
1

n

n∑
k=1

δ2 cos ( 2πk
n ).

Bi-in�nite path

µZ(dx) =
1

π
√

4− x2
1|x|62dx.

Regular lattice
µZd = µZ ∗ · · · ∗ µZ.



Infinite regular tree

Td in�nite d-regular tree

µTd(dx) =
d
√

4(d− 1)− x2

2π(d2 − x2)
1|x|62

√
d−1dx.

Kesten (1959)



Lamplighter

Consider a vertex-transitive graph G = (V,E) and a colored
lamp in L = Z/nZ on each vertex. A vertex of the lamplighter
graph is

v = (η, x)

where η : V → L is the con�guration of the lamps and x ∈ V is
the position of the walker.



Lamplighter

A switch edge (S) {v, v′} is an edge between two vertices which
di�er only by the lamp at the position of the walker.

A walk edge (W) {v, v′} is an edge s.t. η = η′, {x, y} ∈ E.

The WS lamplighter graph is the graph with edge set{
{v, v′} : {v, u} ∈W, {u, v′} ∈ S for some u

}
.

Similarly for SW and SWS graphs.



Lamplighter

Let Gp be the site percolation with parameter p ∈ [0, 1] and
o ∈ V .

Theorem (Lehner, Neuhauser and Woess (2008))

For p = 1/n, we have

µSW (·/n) = µWS(·/n) = µSWS(·/n2) = EµeoGp(·).



Lamplighter

For G = Z, n = 2, for some explicit (ωn),

µSW =

∞∑
n=0

ωn

n∑
k=1

δ
4 cos

(
πk

(n+1)

),
Grigorchuk and �uk (2001)

Connectivity and homogeneity do not guarantee a density for the
spectral measure !



Sketch of Proof

Let µ = EµeoGp and ν = µWS(·/n). We compare moments.

Let Wk be the set of closed walks γ = (γ0, · · · , γk) in G of
length k starting at o.∫
λkdµeoGp(λ) =

∑
γ∈Wk

k∏
t=0

1(γt is open) =
∑
γ∈Wk

∏
x∈V (γ)

1(x is open)

∫
λkdµ(λ) =

∑
γ∈Wk

p|V (γ)|.



Sketch of Proof

The graph G is d-regular. If St = (ηt, xt) is a random walk on
the WS-lampighter graph and ε = (0, o),∫

λkdν = dkPε(Sk = ε).

We have
ηt(xt) = ηt−1(xt) + `t,

where `t is independent of (xt, ηt−1) and uniform on Z/nZ.

For any q ∈ Z/nZ.

P(`t + q = 0) =
1

n
= p.

If τx is the last passage time of (xt)06t6k at x,

Pε(Sk = ε) = d−k
∑
γ∈Wk

P(∀x ∈ V (γ) : ητx(x) + `τx = 0)

= d−k
∑
γ∈Wk

p|V (γ)|.



Random rooted graphs

So far : µG well de�ned for �nite graphs and vertex-transitive
graphs :

µG = EµeoG =

{ 1
|V |
∑

x µ
ex
G (�nite)

µexG (transitive)

We want to extend the notion to a large class of "stationary"
random graphs.

For a random (unlabeled) connected rooted graph (G, o) with
law ρ, we de�ne

µρ := EρµeoG .



Part I: Typical Eigenvalues

Spectral measures and BS convergence



Benjamini-Schramm convergence

BS convergence of �nite graph sequences = convergence of
typical local neighborhood.

For integer k : (G, o)k is the rooted (connected) graph spanned
by vertices at distance at most k from o.

Gn = (Vn, En) has BS limit ρ = L((G, o)) if for any integer k
and unlabeled rooted graph g of diameter k,

1

|Vn|
∑
x∈Vn

1((Gn, x)k = g)→ Pρ((G, o)k = g).



BS limits

Gn = Zd ∩ [0, n]d has BS limit ? δ(Zd,0)

Tn = T3 ∩ {x : |x| 6 n} has BS limit ?



BS limits

Uniform d-regular graph : a.s. the limit is the (Dirac mass at)
Td rooted somewhere.

Erd®s-Rényi graph, G(n, α/n) : a.s. the limit is the law of
(T, o) where T is a Galton-Watson tree with o�spring
distribution Poi(α).

Random graphs : many random graphs have random rooted
trees as BS limit.



Unimodular graphs

Unimodular random rooted graphs : subclass which contains
Cayley graphs and all BS limits of �nite graphs.

A law ρ on (unlabeled) rooted graphs is unimodular if for any
non-negative functions f(G, x, y) invariant by
graph-isomorphisms,

Eρ
∑
x∈V

f(G, o, x) = Eρ
∑
x∈V

f(G, x, o).

Benjamini/Schramm (2001), Aldous/Steele (2004)



Uniform rooting is unimodular

For �nite G, U(G) the law of (G(o), o), where o is uniform on V
and G(o) is the c.c. of o, is unimodular

EU(G)

∑
x∈V

f(G, o, x) =
1

|V |
∑
y

∑
x∈V (y)

f(G(y), y, x)

=
1

|V |
∑
x

∑
y∈V (x)

f(G(y), y, x)

=
1

|V |
∑
x

∑
y∈V (x)

f(G(x), y, x)

= EU(G)

∑
x∈V

f(G, x, o).



Continuity of spectral measure

Theorem
Let Gn be a sequence of �nite graphs with BS-limit ρ. Then

dKS(µGn , µρ) = sup
t∈R
|µGn(−∞, t]− µρ(−∞, t]| → 0.

Consequently, for any real λ, µGn({λ})→ µρ({λ}).

Veseli¢ (2005), Thom (2008), Bordenave/Lelarge (2010),
Abèrt/Thom/Viràg (2013)



Continuity of spectral measure

Corollary (Thom (2008))

Let Gn be a sequence of �nite graphs with BS-limit ρ. Then

µρ({λ}) > 0

implies that λ is a totally real algebraic integer.



Sketch of proof

Assume for simplicity that degGn(x) 6 θ.

Weak convergence is easy :

∫
λkdµGn =

1

|Vn|
∑
x∈Vn

|{closed paths of length k starting from x}| .

is bounded by θk and it depends only on (Gn, o)k.



Sketch of proof

Convergence in KS-distance = weak convergence + cv of atoms.

From lim inf µn(O) > µ(O), lim supµn(C) 6 µ(C), we should
prove that

lim inf µGn({λ}) > µρ({λ}).

Since

lim inf µGn((λ− ε, λ+ ε)) > µρ((λ− ε, λ+ ε)) > µρ({λ}),
the theorem follows from

Lemma (Lück)

Let λ ∈ R, θ > 0. There exists a continuous function

δ : R→ [0, 1] with δ(0) = 0 depending on (λ, θ) s.t. for any

�nite graph G with degrees bounded θ, ε > 0,

µG((λ− ε, λ+ ε)) 6 µG({λ}) + δ(ε).



Sketch of proof

For λ = 0, ε ∈ (0, 1),

µG((−ε, ε)) 6 µG({0}) +
log(θ)

log(1/ε)
.

reads, with n = |V |, k = |{i : 0 < |λi| < ε}|,

k 6 n
log(θ)

log(1/ε)
.

We observe ∏
i:λi 6=0

λi ∈ Z\{0}.

Hence

1 6
∏
λi 6=0

|λi| =
∏

0<|λi|<ε

|λi|
∏
|λi|>ε

|λi| 6 εkθn.



Kesten-McKay Law

Theorem
Fix integer d > 2. If Gn has BS limit Td, then for any I ⊂ R,

µGn(I)→ µTd(I),

where

µTd(dx) =
d

2π

√
4(d− 1)− x2

d2 − x2
1|x|62

√
d−1dx.

We have µKM (I
√
d)→ µsc(I), the semi-circular distribution,

when d→∞.



Kesten-McKay Law

Take d = 4, n = 2000 and G a uniformly sampled d-regular
graph.



Erd®s-Rényi

Theorem
Fix α > 0. Let Gn be an Erd®s-Rényi graph with parameter

p = α/n. Then, with probability one, for any interval I ⊂ R,

µGn(I)→ µρ(I).

where ρ is the law of a Galton-Watson tree with Poi(α)
o�spring distribution.



Erd®s-Rényi

Histogram of eigenvalues for α = 4 and n = 500.



Erd®s-Rényi

There is no explicit expression for µρ.

Let Λ = {λi, i > 1}, be the atoms of µρ, i.e.

Λ = {λ : µρ({λ}) > 0}.

Λ is the set totally real algebraic integers and∑
λ∈Λ

µρ({λ}) < 1

if and only if α > 1.

Also, µρ({0}) has a closed-form expression.

Bordenave/Lelarge/Salez (2012), Salez (2013), Bordenave/Virág/Sen
(2014)



Part I: Typical Eigenvalues

Spectral percolation



Regularity of the spectral measure

Any probability measure on R can be decomposed as

µ = µpp + µc = µpp + µac + µsc.

For |V | =∞, the decompositions of

µeoG and µρ = EµeoG

reveal deep information on the graph.

In the context of random Schrödinger operators, called quantum
percolation, De Gennes, Lafore, Millot (1959).



Resolution of the identity

For �nite graphs, the decomposition

A =
∑
k

λkψkψ
∗
k

induces a projection-valued measure, for Borel I ⊂ R,

E(I) =
∑
k

1(λk ∈ I)ψkψ
∗
k.

E({λ}) is the orthogonal projection on the vector space of
λ-eigenvectors and

µψG(I) = 〈E(I)ψ,ψ〉 = ‖E(I)ψ‖22.

This p.v.m. exists also for in�nite graphs.



Localization/Delocalization of eigenvectors

What are the nature of the probability vectors,(
|ψk(x)|2, x ∈ V

)
?

Localization is related to the atomic part of µexG

µexG ({λ}) = ‖E({λ})ex‖22.

Delocalization is related to the continuous part of µexG . If∑
λk∈I
|ψk(x)|2 = µexG (I) 6 c|I|,

then |ψk(x)|2 6 c|I| for all λk in I.



Atoms

Finite pending graphs create atoms (e.g. percolation graphs)
Kirkpatrick/Eggarter (1972).

If G1 ' G2 and AG1ψ = λψ, ‖ψ‖2 = 1/
√

2, then

µeoG ({λ}) = ‖E({λ})eo‖22 > 〈ϕ, eo〉2 = ψ(o)2.

o

u

v

G2

G1

ϕ = ψ|G1
− ψ|G2 −ψ

ψ

0

Warning : recall lamplighter graphs !!



Random rooted trees

Topological end of a rooted tree : semi-in�nite self-avoiding
path starting from the root.

Theorem
Let (T, o) be a unimodular tree with law ρ. If, with positive

probability, T has 2 or more topological ends then µρ has a
continuous part.

0 end : �nite trees.
1 end ?
2 ends : Z.
∞ ends : all others, e.g. supercritical Galton-Watson trees.

Bordenave/Virág/Sen (2014)



Invariant Line Ensemble

Let (T, o) be a unimodular tree with law ρ.

An invariant line ensemble L is a subset of non intersecting
doubly in�nite lines in T which does not depend on the choice
of the root o.

P(o ∈ L) is the density of the invariant line ensemble.



Invariant Line Ensemble

Theorem
Let (T, o) be a unimodular tree with law ρ.

If L is an invariant line ensemble of (T, o) then the total mass of

atoms of µρ is bounded above by P(o /∈ L).

Moreover, for each real λ,

µρ({λ}) 6 P(o /∈ L)µρ′({λ})

where, if P(o /∈ L) > 0, ρ′ is the law of the rooted tree (T\L, o)
conditioned on the root o /∈ L.



Invariant Line Ensemble

There are explicit lower bounds on the density P(o ∈ L).

For example, if (T, o) is a unimodular random tree, there exists
an invariant line ensemble L such that

P (o ∈ L) >
1

6

(EdegT (o)− 2)2
+

EdegT (o)2
.



Watts-Strogatz random graph

Gn is obtained by superposing the graphs of Z/nZ +
Erd®s-Rényi graph G(n, α/n).

Then µGn converges and it is continuous.



Proof by an example : vertical percolation

Consider the following n× n graph.

S = eigenspace associated to eigenvalue λ.
R = vector space spanned by red vertices.

dim(S ∩R⊥) > dim(S)− dim(R) = dim(S)− n.



Proof by an example : vertical percolation

If f ∈ S ∩R⊥, we write

0 = (A− λ)f(x) =
∑
y∼x

f(y).

For x red vertex, we get that f is also 0 on the green vertices.

By iteration, S ∩R⊥ = ∅ and

n2µG({λ}) = dim(S) 6 n = o(n2).



Other questions

Works also for supercritical percolation on Z2 (other method).

No criterion for existence of ac part in µρ = EρµeoG .

The same questions for µeoG are essentially open, Keller (2013),
Bordenave (2014).

Their are �nite volume versions of these questions.



Quantum percolation on a regular tree

Consider Tp, the bond percolation on Td with parameter p.

Then, for any 0 < p < 1, EµeoTp has dense atomic part on its

support [−2
√
d− 1, 2

√
d− 1].

For all p > p0, conditioned on non-extinction, µeoTp has
non-trivial ac part.

Bordenave (2014)



Part II: Extremal Eigenvalues

Convergence to Equilibrium



Spectral gap

Take a connected graph on n vertices.

The spectral gap

min
λ 6=0

λ(L)

1−max
λ 6=1

λ(P )

is closely related to the rate convergence of the Markov
chain/process.

For simplicity we only consider L.



Spectral gap

Let Xt be the Markov process with generator −L,

P xt = e−tLex

is the probability distribution of Xt given X0 = x.

Let λ1 = 0 < λ2 6 · · · 6 λn the eigenvalues of L and
ψ1 = 1/

√
n, . . . , ψn an orthogonal basis of eigenvectors.

From the spectral theorem

e−tL =
n∑
i=1

e−tλiψiψ
∗
i

P xt =
1

n
+

n∑
i=2

e−tλiψi(x)ψi



Spectral gap

Recall that Π = 1/n is the invariant distribution. We get

‖P xt −Π‖22 =

n∑
i=2

e−2tλi |ψi(x)|2 6 e−2λ2t.

Recall
‖x‖2 6

∑
i

|xi| 6
√
n‖x‖2.

So,

|ψ2(x)|e−λ2t 6 2‖P xt −Π‖TV 6
√
ne−λ2t.

where the total variation norm is

‖µ− ν‖TV =
1

2

∑
x

|µ(x)− ν(x)|.



Spectral gap

The mixing time of a Markov process is usually de�ned as

τ = inf
t>0

max
x
‖P xt −Π‖TV 6

1

2
.

maxx |ψ2(x)|
λ2

6 τ 6
log n

2λ2
.

(Note that maxx |ψ2(x)| > 1/
√
n).

There are similar developments for reversible Markov chains.

Levin/Peres/Wilmer (2009)



Part II: Extremal eigenvalues

Expanders



Chung's Diameter inequality

Let
1 = λ1 > λ2 > · · · > λn > −1

be the eigenvalues of P .

Set
λ? = max

i 6=1
|λi|.

Theorem
If G connected,

diam(G) 6

⌈
log (2|E|)

log (1/|λ?|)

⌉
.



Proof

Since
P = D−1X = D−1/2(D−1/2AD−1/2)D1/2,

the λi 's are also the eigenvalues of S with S = D−1/2AD−1/2.

Since P1 = 1,

ψ1 =
D1/21√

2|E|
is the normalized eigenvector of S associated to λ1 = 1.

St = ψ1ψ
∗
1 +

∑
k>2

λtkψkψ
∗
k.

Hence, from Cauchy-Schwartz

(St)xy > ψ1(x)ψ1(y)− λt?
∑
k>2

|ψk(x)||ψk(y)|

> ψ1(x)ψ1(y)− λt?
√∑

k>2

|ψk(x)|2
√∑

k>2

|ψk(y)|2.



Proof

Since ∑
k>2

|ψk(x)|2 = 1− ψ1(x)2 < 1;

We �nd
(St)xy > ψ1(x)ψ1(y)− λt?.

This is positive if

t >
log (ψ1(x)ψ(y))

log |λ?|
=

log
(

2|E|/
√

deg(x) deg(y)
)

log (1/|λ?|)
.



Cheeger's Constant

For X ⊂ V , de�ne

vol(X) =
∑
x∈X

deg(x).

area(∂X) =
∑

x∈X,y∈Xc

1(xy ∈ E).

X

Isoperimetric / Expansion constant :

h(G) = min
X⊂V

area(∂X)

min (vol(X), vol(Xc))
.



Cheeger's Inequality

Again
1 = λ1 > λ2 > · · · > λn > −1

be the eigenvalues of P .

1− λ2 is the spectral gap of P .

Theorem

h(G)2

2
6 1− λ2 6 2h(G).



Proof (easy half)

The λi 's are also the eigenvalues of S with S = D−1/2AD−1/2.

χ = D1/21 is the eigenvector of S associated to λ1 = 1.

From Courant-Fisher variational formula,

λ2 = max
g:〈g,χ〉=0

〈Sg, g〉
‖g‖22

.

Or equivalently,

1− λ2 = min
g:〈g,χ〉=0

〈(I − S)g, g〉
‖g‖22

.



Proof (easy half)

Recall, for the incidence matrix,

I − S = D−1/2(D −A)D−1/2 = D−1/2∇∗∇
2

D−1/2

Set π(x) = deg(x) = (D1)(x) and f = D−1/2g,

1− λ2 = min
f :〈f,π〉=0

∑
x∼y(f(x)− f(y))2∑
x deg(x)f(x)2

.

Let X be such that

h(G) =
area(∂X)

min (vol(X), vol(Xc))
.

We take

f(x) =
1(x ∈ X)

vol(X)
− 1(x /∈ X)

vol(Xc)
.



Proof (easy half)

We have

〈f, π〉 =
∑
x∈X

deg(x)

vol(X)
−
∑
x∈Xc

deg(x)

vol(Xc)
= 0,

and

1− λ2 6

∑
x∼y(f(x)− f(y))2∑
x deg(x)f(x)2

= 2area(∂X)
(1/vol(X)− 1/vol(Xc))2

1/vol(X) + 1/vol(Xc)

6 2
area(∂X)

min(vol(X), vol(Xc))

6 2h(G).



Random graphs are expanders

Consider the con�guration model with degree sequence
d1, · · · , dn such that

min
i
di > 3 and

∑
i

di 6 n5/4.

Then, with high probability,

h(G) > 0.01.

Abdullah/Cooper/Frieze (2012)



Part II: Extremal Eigenvalues

Outliers



BS convergence

Theorem
Take A, L or P . Let Gn be a sequence of graphs on n vertices

with BS limit ρ. Then for any k = o(n),

λk > b+ o(1) and λn−k 6 a+ o(1).

where [a, b] is the convex hull of the support of µρ = EρµeoG
(with the corresponding operator).

|a| ∨ b is the spectral radius of the operator.



Proof

We know already that

dKS(µGn , µρ) = sup
t∈R
|µGn(−∞, t]− µρ(−∞, t]| → 0.

Hence, for I = (b− ε,∞),

limµGn(I) = µρ(I) = η > 0.

In words : the nb of eigenvalues larger than b− ε is at least
n(η + o(1))� k.

We get that for n large enough, λk > b− ε.



Outliers

Assume Gn has BS limit ρ.

Eigenvalues/Eigenvectors of Gn outside the support of µρ
contain a global information on Gn : they are not seen in the
local limit.

e.g. λ1 = −λn equivalent to G bipartite.

Spectral clustering try to exploit this information (usually low
rank).



Outliers

A large locally tree-like 12-regular graph.



Part II: Extremal Eigenvalues

Regular graphs



Alon-Boppana bound

Theorem
If G is a d-regular graph on n vertices, then λ1(A) = d and

λ2(A) > 2
√
d− 1− cd

log n
.

Since P = A/d,

1− λ2(P ) 6 1− 2

√
d− 1

d
+ o(1).



Cover and Universal covering tree

Assume G is connected.

A graph C is a covering graph of G if there is a surjective
function f : VC → VG which is a local isomorphism
(1-neighborhood is mapped bijectly).

The universal covering of G is a covering which is a tree (unique
up to isomorphism). It covers any covering of G.



Cover and Universal covering tree

A construction of T = (VT , ET ) : take o ∈ G. VT is the set of
all non-backtracking paths (v0, · · · , vk) starting from o = v0

(vi−1 6= vi+1). Two paths share an edge if one is the largest
pre�x of the other.
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Sketch of Proof of Alon-Boppana

Weaker result on λ? = maxi>2 |λi| = λ2 ∨ (−λn).

Td is the universal covering tree of G.

Hence, the nb of closed walks starting from x in G of length k is
at least the nb of closed walks starting from the root in Td of
length k:

Tr(Ak) =
∑
j

λkj = n

∫
λkdµG > n

∫
λkdµTd

2
√
d− 1 is the spectral radius of the adjacency operator of Td

(Kesten) : for k even,∫
λkdµTd >

c

k3/2

(
2
√
d− 1

)k
.



Sketch of Proof

For even k,

Tr(Ak) =
∑
j

λkj 6 dk + nλk?.

So �nally,
c

k3/2

(
2
√
d− 1

)k
6
dk

n
+ λk?.

Take k = logd n.

Replacing λ? by λ2 requires another strategy (without trace).



Ramanujan graphs

Let G be a d-regular graph on n vertices. Consider its adjacency
matrix A.

λn = −d is equivalent to G bipartite.

The largest non-trivial eigenvalue is

λ? = max
i
{|λi| : |λi| 6= d}.

G is Ramanujan if
λ? 6 2

√
d− 1.

They are the best possible expanders.



Existence of Ramanujan graphs

Sequence of (bipartite) Ramanujan graphs G1, G2, · · · , with
|V (Gn)| growing to in�nity, are known to exist when

- d = q + 1 with q = pk and p prime number Lubotzky,
Phillips, Sarnak (1988), Morgenstern (1994).

- any d > 3, Marcus, Spielman, Srivastava (2013).



Alon's Conjecture (1986)

Theorem (Friedman (2007))

Fix integer d > 3. Let Gn is a sequence of uniformly distributed

d-regular graphs on n vertices, then with high probability,

λ2 = 2
√
d− 1 + o(1) = −λn.

Most regular graphs are nearly Ramanujan !!



Hashimoto's non-backtracking matrix

Oriented edge set :

~E = {(u, v) : {u, v} ∈ E},

hence, m = | ~E| = 2|E|.

If e = uv, f = xy are in ~E,

Bef = 1(v = x)1(u 6= y),

de�nes a | ~E| × | ~E| non-symmetric matrix on the oriented edges.

e

f

e

f

u
v = x

y



Perron eigenvalue

Complex eigenvalues, m = 2|E|,

µ1 > |µ2| > · · · > |µm|.

A non-backtracking path (v1 . . . vn) is a path such that
vi−1 6= vi+1.

B`
ef = nb of NB paths from e to f of length `+ 1.

If G is connected and |E| > |V | then B is irreducible and

µ1 = lim
`→∞

‖B`δe‖1/`1 = growth rate of the universal cover of G.



Ihara-Bass' Identity

With Q = D − I,

det(z −B) = (z2 − 1)|E|−|V | det(z2 −Az +Q)

If G is d-regular, then Q = (d− 1)I and

σ(B) = {±1} ∪
{
µ : µ2 − λµ+ (d− 1) = 0 with λ ∈ σ(A)

}
.

Kotani & Sunada (2000), Angel, Friedman & Hoory (2007), Terras
(2011), . . .



Non-Backtracking matrix of regular graphs

For a d-regular graph, µ1 = d− 1,

? Alon-Boppana bound : maxk 6=1 Re(µk) >
√
µ1 − o(1).

? Ramanujan (non bipartite) : |µk| =
√
µ1 for k = 2, . . . , n.

? Friedman's thm : |µ2| 6
√
µ1 + o(1) if G random uniform.

��������������������

1−1
√
d− 1 d− 1



Ihara-Bass Formula

Theorem (Ihara-Bass Formula)

Let ζG be the Ihara's zeta function. We have

1

ζG(z)
= det(I −Bz) = (1− z2)|E|−|V | det(I −Az +Qz2).

The poles of the zeta function are the reciprocal of eigenvalues
of B.



Ihara's Zeta Function (1966)

A closed non-backtracking walk without tail p = (v1, · · · , vn) is
a closed path such that vi−1 6= vi+1 mod(n).
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A closed non-backtracking walk without tail is prime if it cannot
be written as p = (q, q, · · · , q) with q closed non-backtracking
walk .



Ihara's Zeta Function (1966)

If N` is the number of closed non-backtracking paths without
tails of length ` in G and |z| small,

ζG(z) = exp

(∑
`

N`

`
z`

)
=

∏
p : prime

(
1− z|p|

)−1
.

Stark & Terras draw a parallel between Riemann hypothesis
and Ramanujan property.



Sketch of proof of Ihara-Bass Identity

det(Im −Bz) = (1− z2)|E|−|V | det(In −Az +Qz2).

Introduce the matrices

J : R ~E → R ~E Je(x,y) = e(y,x)

S : R ~E → RV Se(x,y) = ex

T : R ~E → RV Te(x,y) = ey.

J2 = Im and J has m/2 = |E| eigenvalues equal to 1 and −1.

We have

SJ = T A = ST ∗

D = Q+ I = SS∗ = TT ∗ B + J = T ∗S.



Sketch of proof of Ihara-Bass Identity

We check the identity

(
In 0
T ∗ Im

)(
(1− z2)In zS

0 Im − zB

)
=

(
In − zA+ z2Q zS

0 Im + zJ

)(
In 0

T ∗ − zS∗ Im

)

Take determinant and observe,

det(Im + zJ) = (1 + z)m/2(1− z)m/2 = (1− z2)|E|.



Part II: Extremal Eigenvalues

Sketch of proof of Friedman's Theorem



Alon's conjecture (1986)

Theorem (Friedman (2007))

Fix integer d > 3. Let Gn is a sequence of uniformly distributed

d-regular graphs on n vertices, then with high probability,

λ2 = 2
√
d− 1 + o(1) = −λn.

We should prove λ2 ∨ |λn| 6 2
√
d− 1 + o(1).



Trace method

If A is the adjacency matrix of Gn we would like to prove for
even k,

dk + λk2 + λkn 6 Tr(Ak)
?
6 dk + n

(
2
√
d− 1 + o(1)

)k
.

No real hope to do better since, for any ε > 0,

Tr(Ak) = n

∫
λkdµA > cn

(
2
√
d− 1− ε

)k
,

with c = µA(2
√
d− 1− ε,∞) = µTd(2

√
d− 1− ε,∞) + o(1) > 0.



Trace method

Then,

λk2 6 n
(

2
√
d− 1 + o(1)

)k
.

or
λ2 6 n1/k

(
2
√
d− 1 + o(1)

)
.

If k � log n then
n1/k = 1 + o(1),

and Friedman's Theorem follows.

It is wiser to project orthogonally on 1⊥:

Tr(Ak)− dk = Tr

(
A− d

n
11∗

)k ?
6 n

(
2
√
d− 1 + o(1)

)k
.



Trace method

For a �rst moment estimate, we would aim at

ETr(Ak)− dk = ETr

(
A− d

n
11∗

)k ?
6 n

(
2
√
d− 1 + o(1)

)k
for k � log n.

This is wrong !

The probability that the graph contains Kd+1 as subgraph is at
least n−c. On this event λ2 = d. Hence, for even k � log n,

ETr

(
A− d

n
11∗

)k
> n−cdk � n

(
2
√
d− 1 + o(1)

)k
.

Subgraphs which have polynomially small probability compromise
the �rst moment method. Called Tangles.



Strategy

1. Use B instead of A : |µ2| 6
√
d− 1 + o(1).

2. Remove the tangles.

3. Project on 1⊥.

4. Use the trace method / �rst moment method to evaluate
the remainder terms.

Bordenave/Massoulié/Lelarge (2015), Bordenave (2015)



Configuration model

The oriented edge set ~E, | ~E| = m = nd is written as

~E = {(u, i) : 1 6 u 6 n, 1 6 i 6 d}.

vu
(u, i) (v, j) = σ(u, i)

A matching σ on ~E de�nes a multi-graph with adjacency matrix

A = Q∗MQ,

where, M : R ~E → R ~E , Q : RV → R ~E ,

Mef = 1(σ(e) = f) = Mfe and Qeu = 1(e1 = u).

M is the permutation matrix associated to σ.



Configuration model

The non-backtracking matrix with f = (u, i),

Bef = 1(σ(e) = (u, j) for some j 6= i).

can be written as
B = MN

where
Nef = 1(e1 = f1, e 6= f) = Nfe.

We have
M1 = 1 and N1 = (d− 1)1.

Hence,
B1 = B∗1 = (d− 1)1.



Configuration model

If Bψ = µψ, µ 6= d− 1, we deduce

µ〈1, ψ〉 = 〈1, Bψ〉 = 〈B∗1, ψ〉 = (d− 1)〈1, ψ〉.

For any integer `, the second largest eigenvalue of B is thus
bounded by

|µ2|` 6 max
x:〈1,x〉=0

∥∥B`x
∥∥

2

‖x‖2
.

We prove if σ is a uniform random matching that with high
probability

max
x:〈1,x〉=0

∥∥B`x
∥∥

2

‖x‖2
6 (log n)c(d− 1)`/2.

with ` ' log n. The theorem follows with

ε = O(log log n/ log n).



Path decomposition

Recall Mef = 1(σ(e) = f), Nef = 1(e1 = f1, e 6= f)

Bk
ef =

(
(MN)k

)
ef

=
∑
γ∈Γkef

k∏
s=1

Mγ2s−1γ2s ,

where Γkef is the set of paths γ = (γ1, . . . , γ2k+1) such that
γ1 = e, γ2k+1 = f and Nγ2s,γ2s+1 = 1.

γ1 = e

γ3

γ4

γ2

γ5 = f
k = 2



Path decomposition

Bk
ef =

∑
γ∈Γkef

k∏
s=1

Mγ2s−1γ2s ,

The set of paths Γkef is independent of σ : combinatorial part.

The summand is the probabilistic part.



Path decomposition

Bk
ef =

(
(MN)k

)
ef

=
∑
γ∈Γkef

k∏
s=1

Mγ2s−1γ2s ,

The projection of M on 1⊥ is

M = M − 11∗

m
.

Hence, if 〈x,1〉 = 0, we get

Bkx = Bkx,

where B = MN and

Bk
ef =

(
(MN)k

)
ef

=
∑
γ∈Γkef

k∏
s=1

Mγ2s−1γ2s ,

However, due to the presence of tangles, we will reduce the sum
before doing the projection.



Tangles

A multi-graph (or a path) is tangle-free if it contains at most
one cycle.

A multi-graph (or a path) is `-tangle-free if all vertices have at
most at most one cycle in their `-neighborhood.

We denote by F kef the subset of tangle-free paths Γkef .

Observe that F kef is much smaller than Γkef .



Path decomposition

Assume that G = G(σ) is `-tangle-free. Then, for 0 6 k 6 `,

Bk = B(k),

where

(B(k))ef =
∑
γ∈Fkef

k∏
s=1

Mγ2s−1γ2s .

For 0 6 k 6 `, we de�ne the "projected" matrix

(B(k))ef =
∑
γ∈Fkef

k∏
s=1

Mγ2s−1γ2s .



Path decomposition

Beware that Bk 6= B(k) and a priori B(k)x 6= B(k)x for
〈x,1〉 = 0. This is only approximately true !

(B(`))ef = (B(`))ef +
∑
γ∈F `ef

∑̀
k=1

k−1∏
s=1

Mγ2s−1γ2s

(
1

m

) ∏̀
k+1

Mγ2s−1γ2s ,

which follows from the identity,

∏̀
s=1

xs =
∏̀
s=1

ys +
∑̀
k=1

k−1∏
s=1

ys(xk − yk)
∏̀
k+1

xs.



Path decomposition

An path γ ∈ F `ef can be decomposed as the union of

γ′ ∈ F k−1
ea , γ′′ ∈ F 1

ab and γ′′′ ∈ F `−kbf .

e

b

a

f



Path decomposition

Set
K = (d− 1)11∗ −N

Kef ∈ {d− 1, d− 2} is the cardinal of Γ1
ef .

∑
γ∈F `ef

k−1∏
s=1

Mγ2s−1γ2s

∏̀
k+1

Mγ2s−1γ2s =
(
B(k−1)KB(`−k)

)
ef
−
(
R

(`)
k

)
ef

where
(
R

(`)
k

)
ef

counts the extra paths :

or

a
b

b
a

fee

f



Path decomposition

So �nally, K = (d− 1)11∗ −N ,

B(`) = B(`) +
1

m

∑̀
k=1

B(k−1)KB(`−k) − 1

m

∑̀
k=1

R
(`)
k

= B(`) +
d− 1

m

∑̀
k=1

B(k−1)11∗B(`−k) − 1

m

∑̀
k=1

B(k−1)NB(`−k)

− 1

m

∑̀
k=1

R
(`)
k .

Hence, if 〈x,1〉 = 0, since 1∗B(`−k) = (d− 1)`−k1∗,

B(`)x = B(`)x− 1

m

∑̀
k=1

B(k−1)NB(`−k)x− 1

m

∑̀
k=1

R
(`)
k x.



Path decomposition

We arrive at

max
x:〈1,x〉=0

∥∥B`x
∥∥

2

‖x‖2
6 ‖B(`)‖+

1

m

`−1∑
k=0

(d− 1)`−k‖B(k)‖+
1

m

∑̀
k=1

‖R(`)
k ‖.

where ‖S‖ = maxx:‖x‖2=1 ‖Sx‖2 is the operator norm.

This inequality holds if G(σ) is ` tangle-free : for random σ, ok
with ` = 0.1 logd−1(n).



Trace method

max
x:〈1,x〉=0

∥∥B`x
∥∥

2

‖x‖2
6 ‖B(`)‖+

1

m

`−1∑
k=0

(d− 1)`−k‖B(k)‖+
1

m

∑̀
k=1

‖R(`)
k ‖.

Our aim is then to prove that w.h.p.

‖B(`)‖ 6 (log n)c(d− 1)`/2 and ‖R(`)
k ‖ 6 (log n)c(d− 1)`−k/2

By estimating, for S = B(`) or S = R
(`)
k .

E‖S‖2k 6 ETr(SS∗)k.

with k ' log n/(log log n) : on the overall paths of length
2`k � log n.



Trace method

For S = B(`),

E‖S‖2k 6 ETr(SS∗)k 6
(√

d− 1 + o(1)
)2k`

,

with k ' log n/(log log n).

The combinatorial part of the proof is made possible thanks to
the tangle-free reduction.

The probabilistic part relies on an estimate of the type∣∣∣∣∣E
t∏
t=1

(
Mγ2t−1,γ2t −

1

m

)∣∣∣∣∣ 6 c

(
1

m

)a( 4t√
m

)a1
,

where a is the nb of visited edges {e, f} and a1 is the nb of
edges visited exactly once.



Part II: Extremal Eigenvalues

Random n-Lifts



Graph Lift/Cover

A graph C is a covering graph of G if there is a surjective
function f : VC → VG which is a local isomorphism
(1-neighborhood is mapped bijectly).

C is a n-cover of G if |f−1(x)| = n for all x ∈ VG.
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The n-lift can encoded by a permutation σe on each edge e ∈ VG.



Graph Lift/Cover

A graph C is a covering graph of G if there is a surjective
function f : VC → VG which is a local isomorphism
(1-neighborhood is mapped bijectly).

C is a n-cover of G if |f−1(x)| = n for all x ∈ VG.
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The n-lift can encoded by a permutation σe on each edge e ∈ VG.



Graph Lift/Cover



BS limit

Let Gn is a uniformly random n-lift of G. Then, as n→∞,
what it is the BS-limit of G ?

The universal covering tree of G rooted uniformly.



New eigenvalues

Let G = (V,E) be a base graph and Gn = (Vn, En) a n-lift of G,

Vn = {(x, i) : x ∈ V, i ∈ [n]}.

We consider for example, the adjacency matrices A and An of G
and Gn.

De�ne the vector space

H =
{
f ∈ RVn : f(x, i) = f(x, j)

}
= span(χx, x ∈ V ),

where χx(y, i) = 1(x = y).

We have
AnH ⊂ H

and An restricted to H is A.



New eigenvalues

The eigenvalues of A are also eigenvalues of An (counting
multiplicities).

The other eigenvalues of A are called new eigenvalues. They are
the eigenvalues of the matrix A restricted to H⊥.

The largest new eigenvalue is

λ?n := max {|λ| : λ new eigenvalue of An}.



New eigenvalues

6

6

6

6

6



Generalized Alon's conjecture

Let Gn is a uniformly random n-lift of G. Then, as n→∞,
with high probability,

λ?n 6 ρ+ o(1),

where ρ is the spectral radius of the adjacency operator of the
universal covering tree of G.

The converse λ?n > ρ+ o(1) follows from the BS-limit (and also
from a generalized Alon-Boppana bound).



Generalized Alon's conjecture

This should hold for any reasonable local operator :
A,P, L,B, . . ..

This is proved for non-backtracking operator B, Friedman,
Kohler (2014), Bordenave (2015). For B, ρ =

√
µ

1
where µ1 is the

growth rate of the universal cover Angel, Friedman, Hoory (2007).

The bound λ?n 6
√

3ρ+ o(1) is known, Puder (2012).

This is a been used for exact reconstruction of the base graph
Brito, Dumitriu, Ganguly, Ho�man, Tran (2015).



Part II: Extremal Eigenvalues

Stochastic Block Model



Stochastic Block Model

Consider a set of labels {1, · · · , r} and assign label σn(v) to
vertex v. We assume that

πn(i) =
1

n

n∑
v=1

1(σn(v) = i) = π(i) +O(n−ε),

for some probability vector π.

If σ(u) = i, σ(v) = j, the edge {u, v} is present independently
with probability

Wij

n
∧ 1,

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, . . . )



Stochastic Block Model

If σ(v) = j, mean number of label i neighbors is

π(i)Wij +O(1/n).

Mean progeny matrix

M = diag(π)W.

We assume that the average degree is homogeneous, for all
1 6 j 6 r,

r∑
i=1

Mij = α > 1.

Assume that M is strongly irreducible and we order its real
eigenvalues

α = ρ1 > |ρ2| > · · · > |ρr|.



Stochastic Block Model

If r = 1, we retrieve G(n, α/n).

Model used in community detection. Notably for r = 2,

π =

(
1

2
,
1

2

)

and, with a > b,

W =

(
a b
b a

)
.

Then

ρ1 = α =
a+ b

2
and ρ2 =

a− b
2

.



BS limit

The BS limit of SBM is a multi-type Galton-Watson tree with
Poi(Wij) o�spring distribution and the root has label i with
proba π(i).

The growth rate of the random tree conditionned on
non-extinction is a.s. α, i.e. the expected number of o�springs.



Transition Matrix

Transition matrix P in an Erd®s-Rényi graph G(n, α/n),
n = 2000, α = 1.5.



Classical local operators

The spectral measure of Galton-Watson tree with Poisson
o�spring distribution has full support : R for A, [−1, 1] for P
and R+ for L.

This is due to high degree vertices (for A) and long line
segments for P , L.

No outliers : the extremal eigenvalues are related to small
subgraphs and not to global graph properties.

Various regularization have been proposed to solve this issue.
Including the non-backtracking matrix,
Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013).



Simulation for Erd®s-Rényi Graph

Eigenvalues of B for an Erd®s-Rényi graph G(n, α/n) with
n = 500 and α = 4.



Erd®s-Rényi Graph

µ1 > |µ2| > . . . .

Theorem
Let α > 1 and G with distribution G(n, α/n). With high

probability,

µ1 = α+ o(1)

|µ2| 6
√
α+ o(1).

Bordenave/Massoulié/Lelarge (2015)



Stochastic Block Model

n = 500, r = 2, a = 7, b = 1, ρ1 = 4, ρ2 = 3.



Stochastic Block Model

Let 1 6 r0 6 r be such that

α = ρ1 > |ρ2| > · · · > |ρr0 | >
√
ρ1 > |ρr0+1| > · · · > |ρr|.

Theorem
Let α > 1 and G a stochastic block model as above. With high

probability, up to reordering the eigenvalues of B,

µk = ρk + o(1) if 1 6 k 6 r0

|µk| 6
√
α+ o(1) if k > r0.

+ a description of the eigenvectors of λk, 1 6 k 6 r0, if the µk
are distinct, In particular, they are asymptotically orthogonal.



Community detection

Spectral redemption : eigenvalues/eigenvectors such that
|µk| >

√
µ1 should contain relevant global information on the

graph.

Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013)
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Thank you for your attention !


