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erdős-rényi random graphs

An Erdős-Rényi random graph G(n, p) is a graph on n vertices.
Each edge is present independently, with probability p.

Let Ui ,j be i.i.d. uniform [0, 1] random variables for
1 ≤ i < j ≤ n.

Join vertex i with vertex j if an only if Ui ,j < p. This defines
G(n, p).

Moreover, Un = (Ui ,j )1≤i<j≤n defines a G(n, p) for all p on the
same probability space.

This random graph process has been studied thoroughly.



a random graph process

Let X n = (Xi ,j )1≤i<j≤n be independent standard normal vectors
in Rd .

For each unit vector s ∈ Sd−1 and t ∈ R, define the graph
Γ(X n, s, t) with vertex set [n] and edge set

{{i , j} :
〈
Xi ,j , s

〉
≥ t}

For any s ∈ Sd−1 and t ∈ R, Γ(X n, s, t) is a G(n, p), with
p = 1− Φ(t) where Φ is the distribution function of a standard
normal random variable.

In particular, Γ(X n, s, 0) is a G(n, 1/2) random graph.

We write Γ(X n, s) for Γ(X n, s, 0).



two graphs from the family. t = 0 (p = 1/2)



a random graph process

We study the random graph process

Gd ,p(X n) =
{

Γ(X n, s,Φ−1(1− p)) : s ∈ Sd−1
}
.

Gd ,p(X n) is a stationary process of G(n, p) random graphs,
indexed by d -dimensional unit vectors.

For larger d , the process becomes “richer”.

How large does d have to be so that we find “atypical” behavior?

We study clique number, chromatic number (when p = 1/2) and
connectivity (when p ∼ log n/n).
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schläffli’s lemma

The number of different ways of dichotomizing N ≥ d points in
general position by half-spaces (with 0 on the boundary) in Rd

equals

C(N, d) = 2
d−1∑
k=0

(
N − 1

k

)
.

In particular, when N = d , all 2N possible dichotomies of the N
points are realizable by some linear half space.

The N points are shattered by half spaces.

If d ≥
(n

2

)
, then with probability one, Gd ,1/2(X n) contains all

2(n
2) graphs on n vertices.
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clique number

Consider p = 1/2.

The clique number cl of a graph is the number of vertices of the
largest clique.

Matula’s theorem (1972): for any fixed s ∈ Sd−1, for any ε > 0,

cl(X n, s) ∈ {bω − εc, bω + εc}

with high probability, where

ω = 2 log2 n − 2 log2 log2 n + 2 log2 e − 1.

How large does d have to be so that for some s ∈ Sd−1,
cl(X n, s) is much larger/smaller than ω?
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clique number–subcritical

For what values of d do we find graphs with clique number much
smaller than ω?

If d ≥
(n

2

)
, all Xi ,j are shattered and for some s ∈ Sd−1,

Γ(X n, s) has no edges =⇒ cl(X n, s) = 1.

If d = o(n2/(log n)9), then whp.,

min
s∈Sd−1

cl(X n, s) > bω − 3c .
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clique number, subcritical–proof

A “cap argument”:

Let k = bω − 3c and let Nk(s) be the number of cliques of size
k in Γ(X n, s).

Let η ∈ (0, 1] and let Cη be a minimal η-cover of Sd−1.
By a standard volume argument

|Cη| ≤
(

4

η

)d
.

We take η = 1/n2.



clique number, subcritical–proof

P
{
∃s ∈ Sd−1 : Nk(s) = 0

}
= P

{
∃s′ ∈ Cη and ∃s ∈ Sd−1 : ‖s − s′‖ ≤ η : Nk(s) = 0

}
≤ |Cη|P

{
∃s ∈ Sd−1 : ‖s − s0‖ ≤ η : Nk(s) = 0

}

Key observation: ⋃
s∈Sd−1:‖s−s0‖≤η

Γ(X n, s) ⊂ Γ(X n, s0) ∪ E

where E is a set of Bin(
(n

2

)
, η
√

d√
2π

) edges

The probability of this is at most the probability that
G(n, 1/2− 1/n) does not have any clique of size k .
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union of graphs near s0



clique number, subcritical–proof

Janson’s inequality:

P {Nk = 0} ≤ exp

(
−(ENk)2

∆

)
,

where ENk =
(n
k

)
p(k

2) and

∆ =
k∑

j=2

(
n
k

)(
k
j

)(
n − k
k − j

)
p2(k−j

2 )−(j
2)−2j(k−j) .

This implies

P {Nk = 0} ≤ exp

(
−C ′n2

(log2 n)8

)
.



clique number–supercritical

Very large cliques appear much earlier.

Fix k arbitrary vertices. If d ≥
(k

2

)
, then all Xi ,j corresponding to

edges connecting these vertices are shattered.

In particular, the complete graph on these k vertices is present for
some s ∈ Sd−1.

For example, if d ≥ (9/2)(log2 n)2, then for some s ∈ Sd−1

cl(X n, s) ≥ 3 log2 n
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clique number–supercritical

Using the second moment method we can do a little better:
if d ≥ 7 log2 n/ log log n, then cl(X n, s) ≥ 3 log2 n for some
s ∈ Sd−1.

This is essentially sharp:

For any c > 2 there exists c ′ > 0 such that if
d ≤ c ′ log2 n/ log log n, then

max
s∈Sd−1

cl(X n, s) ≤ c log2 n .

Proof is by “cap argument”.
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clique number–results
(subcritical; necessary.) If d = o(n2/(log n)9), then

min
s∈Sd−1

cl(X n, s) > bω − 3c

(subcritical; sufficient.) If d ≥
(n

2

)
, then

min
s∈Sd−1

cl(X n, s) = 1

(supercritical; necessary.) For any c > 2 there exists
c ′ > 0 such that if d ≤ c ′ log2 n/ log log n, then

max
s∈Sd−1

cl(X n, s) ≤ c log2 n

(supercritical; sufficient.) For any c > 2 and
c ′ > c2/(2 log 2), if d ≥ c ′ log2 n/ log log n, then

max
s∈Sd−1

cl(X n, s) ≥ c log2 n



chromatic number

A proper coloring of vertices of a graph is such that no pair of
vertices joined by an edge share the same color.

The chromatic number χ(G) of G is the smallest number of
colors for which a proper coloring of the graph exists.

We still assume p = 1/2.

For a fixed s, by a result of Bollobás (1988),

n
2 log2 n

≤ χ(Γ(X n, s)) ≤
n

2 log2 n
(1 + o(1)) whp.



chromatic number–results
(subcritical; necessary.) If d = o(n/(log n)3), then

min
s∈Sd−1

χ(Γ(X n, s)) ≥ (1− ε)n/(2 log2 n).

(subcritical; sufficient.) If d ≥ n log2 n/(1− 2ε), then

min
s∈Sd−1

χ(Γ(X n, s)) ≤ (1− ε)n/(2 log2 n).

(supercritical; necessary.) If d = o(n2/(log n)6), then

max
s∈Sd−1

χ(Γ(X n, s)) ≤ (1 + ε)n/(2 log2 n).

(supercritical; sufficient.) If
d ≥ (1/2) [(1 + ε)n/(2 log2 n)]2, then

max
s∈Sd−1

χ(Γ(X n, s)) ≥ (1 + ε)n/(2 log2 n).
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chromatic number–proof

(supercritical; sufficient.) If
d ≥ (1/2) [(1 + ε)n/(2 log2 n)]2, then

max
s∈Sd−1

χ(Γ(X n, s)) ≥ (1 + ε)n/(2 log2 n).

This is immediate because for some s ∈ Sd−1, there is a clique of
size (1 + ε)n/(2 log2 n).
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chromatic number–proof

(supercritical; necessary.) If d = o(n2/(log n)6), then

max
s∈Sd−1

χ(Γ(X n, s)) ≤ (1 + ε)n/(2 log2 n).

This follows by a “cap argument” combined with the high resilience
of the chromatic number proved by Alon and Sudakov (2010):

With probability at least 1− exp(c1n2/(log n)4), for every
collection E of at most c2ε

2n2/(log2 n)2 edges, the chromatic
number of G(n, 1/2) ∪ E is at most (1 + ε)n/(2 log2 n).
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chromatic number–proof

(subcritical; sufficient.) If d ≥ n log2 n/(1− 2ε), then

min
s∈Sd−1

χ(Γ(X n, s)) ≤ (1− ε)n/(2 log2 n).

Partition the n vertices of k = (1− ε)n/(2 log2 n) sets of n/k
vertices.

χ is at least k if all k sets are independent.

Need to remove k
(n/k

2

)
edges.

Such graph appears with probability one if d ≥ k
(n/k

2

)
.
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chromatic number–proof

(subcritical; necessary.) If d = o(n/(log n)3), then

min
s∈Sd−1

χ(Γ(X n, s)) ≥ (1− ε)n/(2 log2 n).

By a classical result of Shamir and Spencer (1987), for any fixed s,

|χ(Γ(X n, s))− E (χ(Γ(X n, s)))| = Op(n1/2) .

It follows from the bounded differences inequality if we consider
χ(Γ(X n, s)) as a function of
Yi ,s = (1{〈Xi ,j ,s〉≥0}})j=1,...,i−1 ∈ {0, 1}i−1 for i = 2, . . . , n.



bounded differences inequality

If f is such that

|f (x1, . . . , xn)− f (x1, . . . , x ′i , . . . , xn)| ≤ 1

and X1, . . . ,Xn are independent, then Z = f (X1, . . . ,Xn)
satisfies

exp (λ(Z − EZ)) ≤ exp(nλ2/8)

and
P{|Z − EZ | > t} ≤ 2e−2t2/n .



chromatic number–proof

It suffices to prove that

E sup
s∈Sd−1

|χ(Γ(X n, s))− Eχ(Γ(X n, s))| ≤ 4
√

nd log n .

This can be done by a Vapnik-Chervonenkis-style symmetrization
combined with the bounded differences inequality.



connectivity

Here we consider p = c log n/n.

Erdős and Rényi (1960) proved that whp. for c < 1, the graph is
disconnected and for c > 1 it is connected.

Two questions:

• if c < 1, for what values of d do connected graphs appear in
Gd ,p(X n)?

• if c > 1, for what values of d do disconnected graphs appear in
Gd ,p(X n)?



connectivity–results

Recall t = Φ−1(1− p).

(subcritical; necessary.) If c < 1 and d = O(n1−c−ε),
then for all s ∈ Sd−1, Γ(X n, s, t) is disconnected.

(subcritical; sufficient.) If d ≥ Cn
√

log n, then there
exists an s ∈ Sd−1 such that Γ(X n, s, t) is connected.

(supercritical; necessary.) If c > 1 and
d ≤ (1− ε)(c − 1) log n/ log log n, then for all s ∈ Sd−1,
Γ(X n, s, t) is connected.

(supercritical; sufficient.) If c > 1 and
d ≥ (2 + ε)(c − 1) log n/ log log n, then for some s ∈ Sd−1,
Γ(X n, s, t) is disconnected.
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connectivity–proofs

(subcritical; necessary.) If c < 1 and d = O(n1−c−ε),
then for all s ∈ Sd−1, Γ(X n, s, t) is disconnected.

We prove that for all s ∈ Sd−1, Γ(X n, s, t) contains an isolated
vertex.

“Cap argument” together with a sharp estimate for the number N
of isolated vertices in G(n, c log n/n).

P{N = 0} ≤ exp(−n−(1−c−ε/2)) .
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bound for isolated vertices



connectivity–proofs

(subcritical; sufficient.) If d ≥ Cn
√

log n, then there
exists an s ∈ Sd−1 such that Γ(X n, s, t) is connected.

This bound is probably loose. We prove much more:

For every spanning tree of Kn, there exists s ∈ Sd−1 such that
Γ(X n, s, t) contains the spanning tree.

We show that for any k , if d ≥ CkΦ−1(1− p), then whp. k i.i.d.
standard normal vectors are shattered by half spaces of the form
{x : 〈x, s〉 ≥ t}.
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shattering by half planes



distance of the affine span from the origin

min
y :

∑
yi =1

∥∥∥∥∥
k∑

i=1

yiXi

∥∥∥∥∥
2

≥
1

k
min

y :|y |2=1

∥∥∥∥∥
k∑

i=1

yiXi

∥∥∥∥∥
2

=
1

k

(
min

y :|y |2=1
‖Xy‖

)2

where X is the d × k matrix with columns X1, . . . ,Xk .

This is just the square of the least singular value of X .

By Rudelson and Vershinin (2009), the least singular value is at
least Ω(

√
d −
√

k − 1). In particular,

P

 min
y :

∑
yi =1

∥∥∥∥∥
k∑

i=1

yiXi

∥∥∥∥∥ ≤ c1

√
d
k

 < 2e−c2d .

Note that t = Φ−1(1− p) ≤
√

2 log(1/p) ∼
√

2 log n.



connectivity–proofs

(supercritical; necessary.) If c > 1 and
d ≤ (1− ε)(c − 1) log n/ log log n, then for all s ∈ Sd−1,
Γ(X n, s, t) is connected.

“Cap” argument—with careful covering estimate + standard
estimates for the probability that G(n, c log n/n) is disconnected.



connectivity–proofs

(supercritical; sufficient.) If c > 1 and
d ≥ (2 + ε)(c − 1) log n/ log log n, then for some s ∈ Sd−1,
Γ(X n, s, t) is disconnected.

Second moment method.

Let θ = (log n)−1/(2+ε).
Let P be a maximal set such that for all s, s′ ∈ P ,
〈s, s′〉 ≤ cos θ. Then

|P| ≥
d
16
θ−(d−1) .

Use the second moment method to prove that whp.,∑
s∈P

number of isolated vertices in Γ(X n, s, t) > 0
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questions

• Tighter bounds? Especially the subcritical, sufficient part for
connectivity.

• Other properties? Giant component.

• More general model:
(n

2

)
i.i.d. points, class of sets.

• Inhomogeneous random graphs? Distribution of ‖Xi ,j‖ may
depend on weights of vertices i and j .


