A high-dimensional random graph process

Gábor Lugosi

ICREA and Pompeu Fabra University, Barcleona
based on joint work with
Louigi Addario Berry, Shankar Bhamidi, Sébastien Bubeck,
Luc Devroye, and Roberto Imbuzeiro Oliveira

erdős-rényi random graphs

An Erdős-Rényi random graph $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$ is a graph on \boldsymbol{n} vertices. Each edge is present independently, with probability \boldsymbol{p}.

Let $\boldsymbol{U}_{i, j}$ be i.i.d. uniform $[0,1]$ random variables for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$.
Join vertex \boldsymbol{i} with vertex \boldsymbol{j} if an only if $\boldsymbol{U}_{\boldsymbol{i}, \boldsymbol{j}}<\boldsymbol{p}$. This defines $G(n, p)$.
Moreover, $\boldsymbol{U}_{\boldsymbol{n}}=\left(\boldsymbol{U}_{\boldsymbol{i}, \boldsymbol{j}}\right)_{\mathbf{1 \leq i} \boldsymbol{i} \leq \boldsymbol{j}}$ defines a $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$ for all \boldsymbol{p} on the same probability space.

This random graph process has been studied thoroughly.

a random graph process

Let $\boldsymbol{X}_{\boldsymbol{n}}=\left(\boldsymbol{X}_{\boldsymbol{i}, \mathrm{j}}\right)_{1 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}}$ be independent standard normal vectors in $\mathbb{R}^{\boldsymbol{d}}$.

For each unit vector $s \in S^{d-1}$ and $t \in \mathbb{R}$, define the graph $\Gamma\left(X_{n}, \boldsymbol{s}, \boldsymbol{t}\right)$ with vertex set [$\left.\boldsymbol{n}\right]$ and edge set

$$
\left\{\{i, j\}:\left\langle X_{i, j}, s\right\rangle \geq t\right\}
$$

For any $\boldsymbol{s} \in \boldsymbol{S}^{\boldsymbol{d - 1}}$ and $t \in \mathbb{R}, \Gamma\left(X_{n}, \boldsymbol{s}, \boldsymbol{t}\right)$ is a $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$, with $p=1-\boldsymbol{\Phi}(t)$ where $\boldsymbol{\Phi}$ is the distribution function of a standard normal random variable.

In particular, $\Gamma\left(X_{n}, s, 0\right)$ is a $G(n, 1 / 2)$ random graph.
We write $\Gamma\left(X_{n}, s\right)$ for $\Gamma\left(X_{n}, s, 0\right)$.
two graphs from the family. $t=0(p=1 / 2)$

a random graph process

We study the random graph process

$$
\mathcal{G}_{d, p}\left(X_{n}\right)=\left\{\Gamma\left(X_{n}, s, \Phi^{-1}(1-p)\right): s \in S^{d-1}\right\}
$$

$\mathcal{G}_{\boldsymbol{d}, \boldsymbol{p}}\left(X_{\boldsymbol{n}}\right)$ is a stationary process of $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$ random graphs, indexed by \boldsymbol{d}-dimensional unit vectors.

a random graph process

We study the random graph process

$$
\mathcal{G}_{d, p}\left(X_{n}\right)=\left\{\Gamma\left(X_{n}, s, \Phi^{-1}(1-p)\right): s \in S^{d-1}\right\}
$$

$\mathcal{G}_{d, p}\left(X_{n}\right)$ is a stationary process of $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$ random graphs, indexed by \boldsymbol{d}-dimensional unit vectors.

For larger \boldsymbol{d}, the process becomes "richer".
How large does \boldsymbol{d} have to be so that we find "atypical" behavior?

a random graph process

We study the random graph process

$$
\mathcal{G}_{d, p}\left(X_{n}\right)=\left\{\Gamma\left(X_{n}, s, \Phi^{-1}(1-p)\right): s \in S^{d-1}\right\}
$$

$\mathcal{G}_{\boldsymbol{d}, \boldsymbol{p}}\left(X_{\boldsymbol{n}}\right)$ is a stationary process of $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$ random graphs, indexed by \boldsymbol{d}-dimensional unit vectors.

For larger \boldsymbol{d}, the process becomes "richer".
How large does \boldsymbol{d} have to be so that we find "atypical" behavior?
We study clique number, chromatic number (when $p=1 / 2$) and connectivity (when $\boldsymbol{p} \sim \log \boldsymbol{n} / \boldsymbol{n}$).

schläffli's lemma

The number of different ways of dichotomizing $\boldsymbol{N} \geq \boldsymbol{d}$ points in general position by half-spaces (with $\mathbf{0}$ on the boundary) in $\mathbb{R}^{\boldsymbol{d}}$ equals

$$
C(N, d)=2 \sum_{k=0}^{d-1}\binom{N-1}{k}
$$

In particular, when $\boldsymbol{N}=\boldsymbol{d}$, all 2^{N} possible dichotomies of the \boldsymbol{N} points are realizable by some linear half space.

The N points are shattered by half spaces.

schläffli's lemma

The number of different ways of dichotomizing $\boldsymbol{N} \geq \boldsymbol{d}$ points in general position by half-spaces (with $\mathbf{0}$ on the boundary) in $\mathbb{R}^{\boldsymbol{d}}$ equals

$$
C(N, d)=2 \sum_{k=0}^{d-1}\binom{N-1}{k}
$$

In particular, when $\boldsymbol{N}=\boldsymbol{d}$, all 2^{N} possible dichotomies of the \boldsymbol{N} points are realizable by some linear half space.

The N points are shattered by half spaces.
If $\boldsymbol{d} \geq\binom{\boldsymbol{n}}{2}$, then with probability one, $\mathcal{G}_{\boldsymbol{d}, \mathbf{1 / 2}}\left(\boldsymbol{X}_{\boldsymbol{n}}\right)$ contains all
$2\binom{n}{2}$ graphs on n vertices.

clique number

Consider $p=1 / 2$.
The clique number $\boldsymbol{c l}$ of a graph is the number of vertices of the largest clique.
Matula's theorem (1972): for any fixed $\boldsymbol{s} \in \boldsymbol{S}^{\boldsymbol{d}-1}$, for any $\boldsymbol{\epsilon}>\mathbf{0}$,

$$
c l\left(X_{n}, s\right) \in\{\lfloor\omega-\epsilon\rfloor,\lfloor\omega+\epsilon\rfloor\}
$$

with high probability, where

$$
\omega=2 \log _{2} n-2 \log _{2} \log _{2} n+2 \log _{2} e-1
$$

clique number

Consider $p=1 / 2$.
The clique number $\boldsymbol{c l}$ of a graph is the number of vertices of the largest clique.
Matula's theorem (1972): for any fixed $\boldsymbol{s} \in \boldsymbol{S}^{\boldsymbol{d}-1}$, for any $\boldsymbol{\epsilon}>\mathbf{0}$,

$$
c l\left(X_{n}, s\right) \in\{\lfloor\omega-\epsilon\rfloor,\lfloor\omega+\epsilon\rfloor\}
$$

with high probability, where

$$
\omega=2 \log _{2} n-2 \log _{2} \log _{2} n+2 \log _{2} e-1
$$

How large does \boldsymbol{d} have to be so that for some $\boldsymbol{s} \in \boldsymbol{S}^{\boldsymbol{d}-1}$, $\boldsymbol{c l}\left(X_{n}, s\right)$ is much larger/smaller than ω ?

clique number-subcritical

For what values of \boldsymbol{d} do we find graphs with clique number much smaller than $\boldsymbol{\omega}$?

clique number-subcritical

For what values of \boldsymbol{d} do we find graphs with clique number much smaller than $\boldsymbol{\omega}$?
If $\boldsymbol{d} \geq\binom{\boldsymbol{n}}{2}$, all $\boldsymbol{X}_{i, j}$ are shattered and for some $\boldsymbol{s} \in \boldsymbol{S}^{\boldsymbol{d}-1}$,
$\Gamma\left(X_{n}, s\right)$ has no edges $\Longrightarrow c l\left(X_{n}, s\right)=1$.

clique number-subcritical

For what values of \boldsymbol{d} do we find graphs with clique number much smaller than $\boldsymbol{\omega}$?
If $\boldsymbol{d} \geq\binom{\boldsymbol{n}}{2}$, all $\boldsymbol{X}_{i, j}$ are shattered and for some $\boldsymbol{s} \in S^{\boldsymbol{d}-1}$,
$\Gamma\left(X_{n}, s\right)$ has no edges $\Longrightarrow c l\left(X_{n}, s\right)=1$.
If $d=o\left(n^{2} /(\log n)^{9}\right)$, then whp.,

$$
\min _{s \in S^{d-1}} c l\left(X_{n}, s\right)>\lfloor\omega-3\rfloor .
$$

clique number, subcritical-proof

A "cap argument":
Let $\boldsymbol{k}=\lfloor\omega-3\rfloor$ and let $\boldsymbol{N}_{\boldsymbol{k}}(\boldsymbol{s})$ be the number of cliques of size k in $\Gamma\left(X_{n}, s\right)$.
Let $\eta \in(\mathbf{0}, \mathbf{1}]$ and let \mathcal{C}_{η} be a minimal η-cover of $\boldsymbol{S}^{\boldsymbol{d}-\mathbf{1}}$.
By a standard volume argument

$$
\left|\mathcal{C}_{\eta}\right| \leq\left(\frac{4}{\eta}\right)^{d}
$$

We take $\eta=1 / n^{2}$.

clique number, subcritical-proof

$$
\begin{aligned}
\mathbb{P} & \left\{\exists s \in S^{d-1}: N_{k}(s)=0\right\} \\
& =\mathbb{P}\left\{\exists s^{\prime} \in \mathcal{C}_{\eta} \text { and } \exists s \in S^{d-1}:\left\|s-s^{\prime}\right\| \leq \eta: N_{k}(s)=0\right\} \\
& \leq\left|\mathcal{C}_{\eta}\right| \mathbb{P}\left\{\exists s \in S^{d-1}:\left\|s-s_{0}\right\| \leq \eta: N_{k}(s)=0\right\}
\end{aligned}
$$

clique number, subcritical-proof

$$
\begin{aligned}
\mathbb{P} & \left\{\exists s \in S^{d-1}: N_{k}(s)=0\right\} \\
& =\mathbb{P}\left\{\exists s^{\prime} \in \mathcal{C}_{\eta} \text { and } \exists s \in S^{d-1}:\left\|s-s^{\prime}\right\| \leq \eta: N_{k}(s)=0\right\} \\
& \leq\left|\mathcal{C}_{\eta}\right| \mathbb{P}\left\{\exists s \in S^{d-1}:\left\|s-s_{0}\right\| \leq \eta: N_{k}(s)=0\right\}
\end{aligned}
$$

Key observation:

$$
\bigcup_{s \in S^{d-1}:\left\|s-s_{0}\right\| \leq \eta} \Gamma\left(X_{n}, s\right) \subset \Gamma\left(X_{n}, s_{0}\right) \cup E
$$

where E is a set of $\operatorname{Bin}\left(\binom{\boldsymbol{n}}{2}, \frac{\eta \sqrt{d}}{\sqrt{2 \pi}}\right)$ edges

clique number, subcritical-proof

$$
\begin{aligned}
\mathbb{P} & \left\{\exists s \in S^{d-1}: N_{k}(s)=0\right\} \\
& =\mathbb{P}\left\{\exists s^{\prime} \in \mathcal{C}_{\eta} \text { and } \exists s \in S^{d-1}:\left\|s-s^{\prime}\right\| \leq \eta: N_{k}(s)=0\right\} \\
& \leq\left|\mathcal{C}_{\eta}\right| \mathbb{P}\left\{\exists s \in S^{d-1}:\left\|s-s_{0}\right\| \leq \eta: N_{k}(s)=0\right\}
\end{aligned}
$$

Key observation:

$$
\bigcup_{s \in S^{d-1}:\left\|s-s_{0}\right\| \leq \eta} \Gamma\left(X_{n}, s\right) \subset \Gamma\left(X_{n}, s_{0}\right) \cup E
$$

where E is a set of $\operatorname{Bin}\left(\binom{\boldsymbol{n}}{2}, \frac{\eta \sqrt{d}}{\sqrt{2 \pi}}\right)$ edges
The probability of this is at most the probability that $G(n, 1 / 2-1 / n)$ does not have any clique of size k.

union of graphs near s_{0}

clique number, subcritical-proof

Janson's inequality:

$$
\mathbb{P}\left\{N_{k}=0\right\} \leq \exp \left(\frac{-\left(\mathbb{E} N_{k}\right)^{2}}{\Delta}\right)
$$

where $\mathbb{E} \boldsymbol{N}_{\boldsymbol{k}}=\binom{\boldsymbol{n}}{\boldsymbol{k}} \boldsymbol{p}\binom{\boldsymbol{k}}{2}$ and

$$
\Delta=\sum_{j=2}^{k}\binom{n}{k}\binom{k}{j}\binom{n-k}{k-j} p^{2\binom{k-j}{2}-\binom{j}{2}-2 j(k-j)}
$$

This implies

$$
\mathbb{P}\left\{N_{k}=0\right\} \leq \exp \left(\frac{-C^{\prime} n^{2}}{\left(\log _{2} n\right)^{8}}\right)
$$

clique number-supercritical

Very large cliques appear much earlier.

clique number-supercritical

Very large cliques appear much earlier.
Fix \boldsymbol{k} arbitrary vertices. If $\boldsymbol{d} \geq\binom{\boldsymbol{k}}{2}$, then all $\boldsymbol{X}_{\boldsymbol{i}, \boldsymbol{j}}$ corresponding to edges connecting these vertices are shattered.

In particular, the complete graph on these \boldsymbol{k} vertices is present for some $s \in S^{d-1}$.
For example, if $d \geq(9 / 2)\left(\log _{2} n\right)^{2}$, then for some $s \in S^{d-1}$

$$
c l\left(X_{n}, s\right) \geq 3 \log _{2} n
$$

clique number-supercritical

Using the second moment method we can do a little better:
if $d \geq 7 \log ^{2} n / \log \log n$, then $\boldsymbol{c l}\left(X_{n}, s\right) \geq 3 \log _{2} n$ for some $s \in S^{d-1}$.

clique number-supercritical

Using the second moment method we can do a little better:
if $d \geq 7 \log ^{2} n / \log \log n$, then $\boldsymbol{c l}\left(X_{n}, s\right) \geq 3 \log _{2} n$ for some $s \in \bar{S}^{d-1}$.

This is essentially sharp:
For any $c>2$ there exists $c^{\prime}>0$ such that if $\boldsymbol{d} \leq \boldsymbol{c}^{\prime} \log ^{2} \boldsymbol{n} / \log \log \boldsymbol{n}$, then

$$
\max _{s \in S^{d-1}} c l\left(X_{n}, s\right) \leq c \log _{2} n
$$

Proof is by "cap argument".

clique number-results

(SUBCRITICAL; NECESSARY.) If $\boldsymbol{d}=\boldsymbol{o}\left(\boldsymbol{n}^{2} /(\log n)^{9}\right)$, then

$$
\min _{s \in S^{d-1}} c l\left(X_{n}, s\right)>\lfloor\omega-3\rfloor
$$

(SUBCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq\binom{\boldsymbol{n}}{2}$, then

$$
\min _{s \in S^{d-1}} c l\left(X_{n}, s\right)=1
$$

(SUPERCRITICAL; NECESSARY.) For any $\boldsymbol{c}>2$ there exists $\boldsymbol{c}^{\prime}>\mathbf{0}$ such that if $\boldsymbol{d} \leq \boldsymbol{c}^{\prime} \log ^{2} \boldsymbol{n} / \log \log \boldsymbol{n}$, then

$$
\max _{s \in S^{d-1}} c l\left(X_{n}, s\right) \leq c \log _{2} n
$$

(SUPERCRITICAL; SUFFICIENT.) For any $c>2$ and $c^{\prime}>c^{2} /(2 \log 2)$, if $d \geq c^{\prime} \log ^{2} n / \log \log n$, then

$$
\max _{s \in S^{d-1}} c l\left(X_{n}, s\right) \geq c \log _{2} n
$$

chromatic number

A proper coloring of vertices of a graph is such that no pair of vertices joined by an edge share the same color.

The chromatic number $\chi(\mathbf{G})$ of G is the smallest number of colors for which a proper coloring of the graph exists.

We still assume $\boldsymbol{p}=\mathbf{1} / \mathbf{2}$.
For a fixed s, by a result of Bollobás (1988),

$$
\frac{\boldsymbol{n}}{2 \log _{2} \boldsymbol{n}} \leq \chi\left(\Gamma\left(X_{\boldsymbol{n}}, s\right)\right) \leq \frac{\boldsymbol{n}}{2 \log _{2} \boldsymbol{n}}(1+o(1)) \quad \text { whp. }
$$

chromatic number-results

(SUBCRITICAL; NECESSARY.) If $d=o\left(n /(\log n)^{3}\right)$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \geq(1-\epsilon) n /\left(2 \log _{2} n\right)
$$

(SUBCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq \boldsymbol{n} \boldsymbol{\operatorname { l o g }}_{2} \boldsymbol{n} /(\mathbf{1}-\mathbf{2 \epsilon})$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1-\epsilon) n /\left(2 \log _{2} n\right) .
$$

chromatic number-results

(SUBCRITICAL; NECESSARY.) If $d=o\left(n /(\log n)^{3}\right)$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \geq(1-\epsilon) n /\left(2 \log _{2} n\right)
$$

(SUBCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq \boldsymbol{n} \log _{2} \boldsymbol{n} /(\mathbf{1}-2 \boldsymbol{\epsilon})$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1-\epsilon) n /\left(2 \log _{2} n\right)
$$

(SUPERCRITICAL; NECESSARY.) If $\boldsymbol{d}=\boldsymbol{o}\left(\boldsymbol{n}^{2} /(\log n)^{6}\right)$, then

$$
\max _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1+\epsilon) n /\left(2 \log _{2} n\right)
$$

(SUPERCRITICAL; SUFFICIENT.) If
$d \geq(1 / 2)\left[(1+\epsilon) n /\left(2 \log _{2} n\right)\right]^{2}$, then

$$
\max _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \geq(1+\epsilon) n /\left(2 \log _{2} n\right)
$$

chromatic number-proof

(SUPERCRITICAL; SUFFICIENT.) If
$d \geq(1 / 2)\left[(1+\epsilon) n /\left(2 \log _{2} n\right)\right]^{2}$, then

$$
\max _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \geq(1+\epsilon) n /\left(2 \log _{2} n\right)
$$

chromatic number-proof

(SUPERCRITICAL; SUFFICIENT.) If
$d \geq(1 / 2)\left[(1+\epsilon) n /\left(2 \log _{2} n\right)\right]^{2}$, then

$$
\max _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \geq(1+\epsilon) n /\left(2 \log _{2} n\right)
$$

This is immediate because for some $s \in S^{\boldsymbol{d}-1}$, there is a clique of size $(1+\epsilon) n /\left(2 \log _{2} n\right)$.

chromatic number-proof

(SUPERCRITICAL; NECESSARY.) If $\boldsymbol{d}=\boldsymbol{o}\left(\boldsymbol{n}^{2} /(\log n)^{6}\right)$, then

$$
\max _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1+\epsilon) n /\left(2 \log _{2} n\right)
$$

chromatic number-proof

(SUPERCRITICAL; NECESSARY.) If $\boldsymbol{d}=\boldsymbol{o}\left(\boldsymbol{n}^{2} /(\log \boldsymbol{n})^{6}\right)$, then

$$
\max _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1+\epsilon) n /\left(2 \log _{2} n\right)
$$

This follows by a "cap argument" combined with the high resilience of the chromatic number proved by Alon and Sudakov (2010):
With probability at least $1-\exp \left(c_{1} n^{2} /(\log n)^{4}\right)$, for every collection E of at most $\boldsymbol{c}_{2} \epsilon^{2} \boldsymbol{n}^{2} /\left(\log _{2} n\right)^{2}$ edges, the chromatic number of $G(n, 1 / 2) \cup E$ is at most $(1+\epsilon) n /\left(2 \log _{2} n\right)$.

chromatic number-proof

(SUBCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq \boldsymbol{n} \log _{2} \boldsymbol{n} /(\mathbf{1}-\mathbf{2 \epsilon})$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1-\epsilon) n /\left(2 \log _{2} n\right)
$$

chromatic number-proof

(SUBCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq \boldsymbol{n} \log _{2} \boldsymbol{n} /(\mathbf{1}-\mathbf{2} \boldsymbol{\epsilon})$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \leq(1-\epsilon) n /\left(2 \log _{2} n\right)
$$

Partition the n vertices of $\boldsymbol{k}=(1-\epsilon) \boldsymbol{n} /\left(2 \log _{2} n\right)$ sets of n / k vertices.
χ is at least \boldsymbol{k} if all \boldsymbol{k} sets are independent.
Need to remove $\boldsymbol{k}\binom{\boldsymbol{n} / \boldsymbol{k}}{2}$ edges.
Such graph appears with probability one if $\boldsymbol{d} \geq \boldsymbol{k}\binom{\boldsymbol{n} / \boldsymbol{k}}{2}$.

chromatic number-proof

(SUBCRITICAL; NECESSARY.) If $\boldsymbol{d}=\boldsymbol{o}\left(\boldsymbol{n} /(\log n)^{3}\right)$, then

$$
\min _{s \in S^{d-1}} \chi\left(\Gamma\left(X_{n}, s\right)\right) \geq(1-\epsilon) n /\left(2 \log _{2} n\right)
$$

By a classical result of Shamir and Spencer (1987), for any fixed s,

$$
\left|\chi\left(\Gamma\left(X_{n}, s\right)\right)-\mathbb{E}\left(\chi\left(\Gamma\left(X_{n}, s\right)\right)\right)\right|=O_{p}\left(n^{1 / 2}\right)
$$

It follows from the bounded differences inequality if we consider $\chi\left(\Gamma\left(X_{n}, s\right)\right)$ as a function of

$$
\widehat{Y}_{i, s}=\left(\mathbb{1}_{\left.\left\{\left\langle x_{i, j}, s\right\rangle \geq 0\right\}\right\}}\right)_{j=1, \ldots, i-1} \in\{0,1\}^{i-1} \text { for } i=2, \ldots, n .
$$

bounded differences inequality

If \boldsymbol{f} is such that

$$
\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)\right| \leq 1
$$

and X_{1}, \ldots, X_{n} are independent, then $Z=f\left(X_{1}, \ldots, X_{\boldsymbol{n}}\right)$ satisfies

$$
\exp (\lambda(Z-\mathbb{E} Z)) \leq \exp \left(n \lambda^{2} / 8\right)
$$

and

$$
\mathbb{P}\{|Z-\mathbb{E} Z|>t\} \leq 2 e^{-2 t^{2} / n}
$$

chromatic number-proof

It suffices to prove that

$$
\mathbb{E} \sup _{s \in S^{d-1}}\left|\chi\left(\Gamma\left(X_{n}, s\right)\right)-\mathbb{E} \chi\left(\Gamma\left(X_{n}, s\right)\right)\right| \leq 4 \sqrt{n d \log n}
$$

This can be done by a Vapnik-Chervonenkis-style symmetrization combined with the bounded differences inequality.

connectivity

Here we consider $\boldsymbol{p}=\boldsymbol{c} \log \boldsymbol{n} / \boldsymbol{n}$.
Erdős and Rényi (1960) proved that whp. for $\boldsymbol{c}<\mathbf{1}$, the graph is disconnected and for $c>1$ it is connected.

Two questions:

- if $\boldsymbol{c}<\mathbf{1}$, for what values of \boldsymbol{d} do connected graphs appear in $\mathcal{G}_{d, p}\left(X_{n}\right)$?
- if $\boldsymbol{c}>\mathbf{1}$, for what values of \boldsymbol{d} do disconnected graphs appear in $\mathcal{G}_{d, p}\left(X_{n}\right)$?

connectivity-results

Recall $\boldsymbol{t}=\boldsymbol{\Phi}^{-1}(\mathbf{1}-p)$.
(SUBCRITICAL; NECESSARY.) If $c<1$ and $d=O\left(n^{1-c-\epsilon}\right)$, then for all $s \in S^{d-1}, \Gamma\left(X_{n}, s, t\right)$ is disconnected.
(SUbCRitical; SUFFicient.) If $\boldsymbol{d} \geq C n \sqrt{\log \boldsymbol{n}}$, then there exists an $s \in S^{d-1}$ such that $\Gamma\left(X_{n}, s, t\right)$ is connected.

connectivity-results

Recall $\boldsymbol{t}=\boldsymbol{\Phi}^{-1}(\mathbf{1}-p)$.
(SUBCRITICAL; NECESSARY.) If $c<1$ and $d=O\left(n^{1-c-\epsilon}\right)$, then for all $s \in S^{d-1}, \Gamma\left(X_{n}, s, t\right)$ is disconnected.
(SUbCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq \boldsymbol{C n} \sqrt{\log \boldsymbol{n}}$, then there exists an $s \in S^{d-1}$ such that $\Gamma\left(X_{n}, s, t\right)$ is connected.
(SUPERCRITICAL; NECESSARY.) If $c>1$ and $d \leq(1-\epsilon)(c-1) \log n / \log \log n$, then for all $s \in S^{d-1}$, $\Gamma\left(X_{n}, s, t\right)$ is connected.
(SUPERCRITICAL; SUFFICIENT.) If $c>1$ and $d \geq(2+\epsilon)(c-1) \log n / \log \log n$, then for some $s \in S^{d-1}$, $\Gamma\left(X_{n}, s, t\right)$ is disconnected.

connectivity-proofs

(SUbCritical; Necessary.) If $\boldsymbol{c}<\mathbf{1}$ and $\boldsymbol{d}=\boldsymbol{O}\left(\boldsymbol{n}^{1-c-\epsilon}\right)$,
then for all $\boldsymbol{s} \in \boldsymbol{S}^{d-1}, \Gamma\left(X_{n}, \boldsymbol{s}, \boldsymbol{t}\right)$ is disconnected.

connectivity-proofs

(SUBCRITICAL; NECESSARY.) If $c<1$ and $d=O\left(n^{1-c-\epsilon}\right)$, then for all $s \in S^{d-1}, \Gamma\left(X_{n}, s, t\right)$ is disconnected.
We prove that for all $s \in S^{d-1}, \Gamma\left(X_{n}, s, t\right)$ contains an isolated vertex.
"Cap argument" together with a sharp estimate for the number \mathbf{N} of isolated vertices in $G(n, c \log n / n)$.

$$
\mathbb{P}\{N=0\} \leq \exp \left(-n^{-(1-c-\epsilon / 2)}\right)
$$

bound for isolated vertices

D'Comell's argument
$N=\#$ of isolated vertices in $G(n, p)$
$\stackrel{\otimes}{\triangle} M=\#$ of vertices with no imoming or antyoing are.

$I=\#$ of vertices with no incoming arr.
Then
$I \sim \operatorname{Bin}\left(n,(1-q)^{n-1}\right) \quad H_{s}$ Chemaft bounds.

$$
M \sim \operatorname{Bin}\left(I,(l-q)^{n-I}\right)
$$

connectivity-proofs

(SUbCRITICAL; SUFFICIENT.) If $\boldsymbol{d} \geq \boldsymbol{C n} \sqrt{\log \boldsymbol{n}}$, then there exists an $s \in S^{\boldsymbol{d}-1}$ such that $\Gamma\left(X_{n}, \boldsymbol{s}, \boldsymbol{t}\right)$ is connected.

connectivity-proofs

(SUbCRitical; SuFficient.) If $\boldsymbol{d} \geq \boldsymbol{C n} \sqrt{\log \boldsymbol{n}}$, then there exists an $s \in S^{\boldsymbol{d}-1}$ such that $\Gamma\left(X_{n}, \boldsymbol{s}, \boldsymbol{t}\right)$ is connected.

This bound is probably loose. We prove much more:
For every spanning tree of K_{n}, there exists $s \in S^{\boldsymbol{d}-1}$ such that $\Gamma\left(X_{n}, s, t\right)$ contains the spanning tree.
We show that for any \boldsymbol{k}, if $\boldsymbol{d} \geq \boldsymbol{C} \boldsymbol{k} \boldsymbol{\Phi}^{-\mathbf{1}}(\mathbf{1}-\boldsymbol{p})$, then whp. \boldsymbol{k} i.i.d. standard normal vectors are shattered by half spaces of the form $\{x:\langle x, s\rangle \geq t\}$.
shattering by half planes

Affine span of $X_{1, \ldots}, X_{E}$:

$$
S=\left\{\sum_{i=1}^{E} c_{i} X_{i}: \sum_{i=1}^{0} 1_{i}=1\right\}
$$

If $\min _{y \in S}\|y\|>t$ then $\left\{x_{1}, \ldots, x_{t}\right\}$ is shattered if the class of halt spares of the form

$$
\{x:\langle x, s\rangle \geqslant t\}, s \in S^{d-1}
$$

distance of the affine span from the origin

$\min _{y: \sum y_{i}=1}\left\|\sum_{i=1}^{k} y_{i} x_{i}\right\|^{2} \geq \frac{1}{k} \min _{y:|y|^{2}=1}\left\|\sum_{i=1}^{k} y_{i} x_{i}\right\|^{2}=\frac{1}{k}\left(\min _{y:|y|^{2}=1}\|X y\|\right)^{2}$
where \boldsymbol{X} is the $\boldsymbol{d} \times \boldsymbol{k}$ matrix with columns $X_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$.
This is just the square of the least singular value of \boldsymbol{X}.
By Rudelson and Vershinin (2009), the least singular value is at least $\Omega(\sqrt{d}-\sqrt{k-1})$. In particular,

$$
\mathbb{P}\left\{\min _{y: \sum y_{i}=1}\left\|\sum_{i=1}^{k} y_{i} x_{i}\right\| \leq c_{1} \sqrt{\frac{d}{k}}\right\}<2 e^{-c_{2} d}
$$

Note that $t=\Phi^{-1}(1-p) \leq \sqrt{2 \log (1 / p)} \sim \sqrt{2 \log n}$.

connectivity-proofs

(SUPERCRITICAL; NECESSARY.) If $c>1$ and
$d \leq(1-\epsilon)(c-1) \log n / \log \log n$, then for all $s \in S^{d-1}$,
$\Gamma\left(X_{n}, s, t\right)$ is connected.
"Cap" argument-with careful covering estimate + standard estimates for the probability that $G(n, c \log n / n)$ is disconnected.

connectivity-proofs

(SUPERCRITICAL; SUFFICIENT.) If $c>1$ and $d \geq(2+\epsilon)(c-1) \log n / \log \log n$, then for some $s \in S^{d-1}$, $\Gamma\left(X_{n}, s, t\right)$ is disconnected.

connectivity-proofs

(SUPERCRITICAL; SUFFICIENT.) If $c>1$ and $d \geq(2+\epsilon)(c-1) \log n / \log \log n$, then for some $s \in S^{d-1}$, $\Gamma\left(X_{n}, s, t\right)$ is disconnected.

Second moment method.
Let $\theta=(\log n)^{-1 /(2+\epsilon)}$.
Let \mathcal{P} be a maximal set such that for all $s, s^{\prime} \in \mathcal{P}$, $\left\langle s, s^{\prime}\right\rangle \leq \cos \theta$. Then

$$
|\mathcal{P}| \geq \frac{d}{16} \theta^{-(d-1)}
$$

Use the second moment method to prove that whp.,

$$
\sum_{s \in \mathcal{P}} \text { number of isolated vertices in } \Gamma\left(X_{n}, s, t\right)>0
$$

questions

- Tighter bounds? Especially the subcritical, sufficient part for connectivity.
- Other properties? Giant component.
- More general model: $\binom{n}{2}$ i.i.d. points, class of sets.
- Inhomogeneous random graphs? Distribution of $\left\|\boldsymbol{X}_{i, j}\right\|$ may depend on weights of vertices \boldsymbol{i} and \boldsymbol{j}.

