A high-dimensional random graph process

Gábor Lugosi

ICREA and Pompeu Fabra University, Barcleona

based on joint work with Louigi Addario Berry, Shankar Bhamidi, Sébastien Bubeck, Luc Devroye, and Roberto Imbuzeiro Oliveira

erdős-rényi random graphs

An Erdős-Rényi random graph G(n, p) is a graph on n vertices. Each edge is present independently, with probability p.

Let $U_{i,j}$ be i.i.d. uniform [0,1] random variables for $1 \leq i < j \leq n$.

Join vertex i with vertex j if an only if $U_{i,j} < p$. This defines G(n,p).

Moreover, $U_n = (U_{i,j})_{1 \leq i < j \leq n}$ defines a G(n,p) for all p on the same probability space.

This random graph process has been studied thoroughly.

Let $X_n = (X_{i,j})_{1 \le i < j \le n}$ be independent standard normal vectors in \mathbb{R}^d .

For each unit vector $s \in S^{d-1}$ and $t \in \mathbb{R}$, define the graph $\Gamma(X_n, s, t)$ with vertex set [n] and edge set

$$\{\{i,j\}:\langle X_{i,j},s\rangle\geq t\}$$

For any $s \in S^{d-1}$ and $t \in \mathbb{R}$, $\Gamma(X_n, s, t)$ is a G(n, p), with $p = 1 - \Phi(t)$ where Φ is the distribution function of a standard normal random variable.

In particular, $\Gamma(X_n, s, 0)$ is a G(n, 1/2) random graph.

We write $\Gamma(X_n, s)$ for $\Gamma(X_n, s, 0)$.

two graphs from the family. t=0~(p=1/2)

We study the random graph process

$$\mathcal{G}_{d,p}(X_n) = \left\{ \Gamma(X_n, s, \Phi^{-1}(1-p)) : s \in S^{d-1} \right\} .$$

 $\mathcal{G}_{d,p}(X_n)$ is a stationary process of G(n,p) random graphs, indexed by d-dimensional unit vectors.

We study the random graph process

$$\mathcal{G}_{d,p}(X_n) = \left\{ \Gamma(X_n, s, \Phi^{-1}(1-p)) : s \in S^{d-1} \right\} .$$

 $\mathcal{G}_{d,p}(X_n)$ is a stationary process of G(n,p) random graphs, indexed by d-dimensional unit vectors.

For larger d, the process becomes "richer".

How large does d have to be so that we find "atypical" behavior?

We study the random graph process

$$\mathcal{G}_{d,p}(X_n) = \left\{ \Gamma(X_n, s, \Phi^{-1}(1-p)) : s \in S^{d-1} \right\} .$$

 $\mathcal{G}_{d,p}(X_n)$ is a stationary process of G(n,p) random graphs, indexed by d-dimensional unit vectors.

For larger d, the process becomes "richer".

How large does d have to be so that we find "atypical" behavior?

We study clique number, chromatic number (when p = 1/2) and connectivity (when $p \sim \log n/n$).

schläffli's lemma

The number of different ways of dichotomizing $N \geq d$ points in general position by half-spaces (with 0 on the boundary) in \mathbb{R}^d equals

$$C(N,d) = 2 \sum_{k=0}^{d-1} {N-1 \choose k}.$$

In particular, when N = d, all 2^N possible dichotomies of the N points are realizable by some linear half space.

The N points are shattered by half spaces.

schläffli's lemma

The number of different ways of dichotomizing $N \geq d$ points in general position by half-spaces (with 0 on the boundary) in \mathbb{R}^d equals

$$C(N,d) = 2 \sum_{k=0}^{d-1} {N-1 \choose k}.$$

In particular, when N = d, all 2^N possible dichotomies of the N points are realizable by some linear half space.

The N points are shattered by half spaces.

If $d \geq \binom{n}{2}$, then with probability one, $\mathcal{G}_{d,1/2}(X_n)$ contains all $2^{\binom{n}{2}}$ graphs on n vertices.

clique number

Consider p = 1/2.

The clique number cl of a graph is the number of vertices of the largest clique.

Matula's theorem (1972): for any fixed $s \in S^{d-1}$, for any $\epsilon > 0$,

$$cl(X_n, s) \in \{\lfloor \omega - \epsilon \rfloor, \lfloor \omega + \epsilon \rfloor\}$$

with high probability, where

$$\omega = 2\log_2 n - 2\log_2 \log_2 n + 2\log_2 e - 1.$$

clique number

Consider p = 1/2.

The clique number cl of a graph is the number of vertices of the largest clique.

Matula's theorem (1972): for any fixed $s \in S^{d-1}$, for any $\epsilon > 0$,

$$cl(X_n, s) \in \{\lfloor \omega - \epsilon \rfloor, \lfloor \omega + \epsilon \rfloor\}$$

with high probability, where

$$\omega = 2\log_2 n - 2\log_2 \log_2 n + 2\log_2 e - 1.$$

How large does d have to be so that for some $s \in S^{d-1}$, $cl(X_n, s)$ is much larger/smaller than ω ?

For what values of d do we find graphs with clique number much smaller than ω ?

For what values of d do we find graphs with clique number much smaller than ω ?

If $d \geq \binom{n}{2}$, all $X_{i,j}$ are shattered and for some $s \in S^{d-1}$, $\Gamma(X_n,s)$ has no edges $\implies cl(X_n,s)=1$.

For what values of d do we find graphs with clique number much smaller than ω ?

If
$$d \geq \binom{n}{2}$$
, all $X_{i,j}$ are shattered and for some $s \in S^{d-1}$, $\Gamma(X_n,s)$ has no edges $\implies cl(X_n,s)=1$.

If
$$d = o(n^2/(\log n)^9)$$
, then whp.,

$$\min_{s \in S^{d-1}} cl(X_n, s) > \lfloor \omega - 3 \rfloor$$
 .

A "cap argument":

Let $k = \lfloor \omega - 3 \rfloor$ and let $N_k(s)$ be the number of cliques of size k in $\Gamma(X_n, s)$.

Let $\eta \in (0,1]$ and let \mathcal{C}_{η} be a minimal η -cover of $\boldsymbol{S^{d-1}}$. By a standard volume argument

$$|\mathcal{C}_{\eta}| \leq \left(rac{4}{\eta}
ight)^d$$
 .

We take $\eta = 1/n^2$.

$$\begin{split} \mathbb{P}\left\{\exists s \in S^{d-1}: \textit{N}_k(s) = 0\right\} \\ &= \mathbb{P}\left\{\exists s' \in \mathcal{C}_{\eta} \text{ and } \exists s \in S^{d-1}: \|s - s'\| \leq \eta: \textit{N}_k(s) = 0\right\} \\ &\leq \left|\mathcal{C}_{\eta}\right| \mathbb{P}\left\{\exists s \in S^{d-1}: \|s - s_0\| \leq \eta: \textit{N}_k(s) = 0\right\} \end{split}$$

$$\begin{split} \mathbb{P}\left\{\exists s \in S^{d-1} : \textit{N}_k(s) = 0\right\} \\ &= \mathbb{P}\left\{\exists s' \in \mathcal{C}_{\eta} \text{ and } \exists s \in S^{d-1} : \|s - s'\| \leq \eta : \textit{N}_k(s) = 0\right\} \\ &\leq \left||\mathcal{C}_{\eta}||\mathbb{P}\left\{\exists s \in S^{d-1} : \|s - s_0\| \leq \eta : \textit{N}_k(s) = 0\right\} \end{split}$$

Key observation:

$$\bigcup_{s \in S^{d-1}: \|s-s_0\| \leq \eta} \Gamma(X_n, s) \subset \Gamma(X_n, s_0) \cup E$$

where ${\pmb E}$ is a set of ${\sf Bin}ig({n\choose 2}, {\eta\sqrt{d}\over\sqrt{2\pi}}ig)$ edges

$$\begin{split} \mathbb{P}\left\{\exists s \in S^{d-1} : \textit{N}_k(s) = 0\right\} \\ &= \mathbb{P}\left\{\exists s' \in \mathcal{C}_{\eta} \text{ and } \exists s \in S^{d-1} : \|s - s'\| \leq \eta : \textit{N}_k(s) = 0\right\} \\ &\leq \left|\mathcal{C}_{\eta}\right| \mathbb{P}\left\{\exists s \in S^{d-1} : \|s - s_0\| \leq \eta : \textit{N}_k(s) = 0\right\} \end{split}$$

Key observation:

$$igcup_{s \in S^{d-1}: \|s-s_0\| \leq \eta} \Gamma(\pmb{X}_n, s) \subset \Gamma(\pmb{X}_n, s_0) \cup \pmb{E}$$

where **E** is a set of Bin $(\binom{n}{2}, \frac{\eta\sqrt{d}}{\sqrt{2\pi}})$ edges

The probability of this is at most the probability that G(n, 1/2 - 1/n) does not have any clique of size k.

union of graphs near s_0

Janson's inequality:

$$\mathbb{P}\left\{ \mathsf{N}_k = 0
ight\} \leq \exp\left(rac{-(\mathbb{E} \mathsf{N}_k)^2}{\Delta}
ight) \; ,$$

where $\mathbb{E}N_k = \binom{n}{k} p^{\binom{k}{2}}$ and

$$\Delta = \sum_{i=2}^{k} {n \choose k} {k \choose j} {n-k \choose k-j} p^{2{k-j \choose 2}-{j \choose 2}-2j(k-j)}.$$

This implies

$$\mathbb{P}\left\{N_k=0\right\} \leq \exp\left(\frac{-C'n^2}{(\log_2 n)^8}\right) .$$

Very large cliques appear much earlier.

Very large cliques appear much earlier.

Fix k arbitrary vertices. If $d \geq {k \choose 2}$, then all $X_{i,j}$ corresponding to edges connecting these vertices are shattered.

In particular, the complete graph on these k vertices is present for some $s \in S^{d-1}$.

For example, if $d \geq (9/2)(\log_2 n)^2$, then for some $s \in S^{d-1}$

$$cl(X_n, s) \geq 3 \log_2 n$$

Using the second moment method we can do a little better: if $d \geq 7 \log^2 n / \log \log n$, then $cl(X_n, s) \geq 3 \log_2 n$ for some $s \in S^{d-1}$.

Using the second moment method we can do a little better: if $d \geq 7 \log^2 n / \log \log n$, then $cl(X_n, s) \geq 3 \log_2 n$ for some $s \in S^{d-1}$.

This is essentially sharp:

For any c>2 there exists c'>0 such that if $d\leq c'\log^2 n/\log\log n$, then

$$\max_{s \in S^{d-1}} cl(X_n, s) \le c \log_2 n .$$

Proof is by "cap argument".

clique number-results

(SUBCRITICAL; NECESSARY.) If
$$d = o(n^2/(\log n)^9)$$
, then $\min_{s \in S^{d-1}} cl(X_n, s) > \lfloor \omega - 3 \rfloor$

(SUBCRITICAL; SUFFICIENT.) If $d \geq {n \choose 2}$, then

$$\min_{s \in S^{d-1}} cl(X_n, s) = 1$$

(SUPERCRITICAL; NECESSARY.) For any c>2 there exists c'>0 such that if $d\leq c'\log^2 n/\log\log n$, then

$$\max_{s \in S^{d-1}} cl(X_n, s) \le c \log_2 n$$

(SUPERCRITICAL; SUFFICIENT.) For any c > 2 and $c' > c^2/(2 \log 2)$, if $d > c' \log^2 n/\log \log n$, then

$$\max_{s \in S^{d-1}} cl(X_n, s) \ge c \log_2 n$$

chromatic number

A proper coloring of vertices of a graph is such that no pair of vertices joined by an edge share the same color.

The chromatic number $\chi(G)$ of G is the smallest number of colors for which a proper coloring of the graph exists.

We still assume p = 1/2.

For a fixed s, by a result of Bollobás (1988),

$$rac{n}{2\log_2 n} \leq \chi(\Gamma(X_n,s)) \leq rac{n}{2\log_2 n}(1+o(1))$$
 whp.

chromatic number-results

(SUBCRITICAL; NECESSARY.) If
$$d = o(n/(\log n)^3)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \ge (1 - \epsilon)n/(2\log_2 n).$$

(SUBCRITICAL; SUFFICIENT.) If
$$d \geq n \log_2 n/(1-2\epsilon)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n,s)) \leq (1-\epsilon)n/(2\log_2 n).$$

chromatic number-results

(SUBCRITICAL; NECESSARY.) If
$$d = o(n/(\log n)^3)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \ge (1 - \epsilon)n/(2\log_2 n).$$

(SUBCRITICAL; SUFFICIENT.) If
$$d \geq n \log_2 n/(1-2\epsilon)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n,s)) \leq (1-\epsilon)n/(2\log_2 n).$$

(SUPERCRITICAL; NECESSARY.) If
$$d = o(n^2/(\log n)^6)$$
, then
$$\max_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \le (1 + \epsilon)n/(2\log_2 n).$$

(SUPERCRITICAL; SUFFICIENT.) If
$$d \geq (1/2) [(1+\epsilon)n/(2\log_2 n)]^2$$
, then
$$\max_{s \in S^{d-1}} \chi(\Gamma(X_n,s)) \geq (1+\epsilon)n/(2\log_2 n).$$

(SUPERCRITICAL; SUFFICIENT.) If
$$d \geq (1/2) \left[(1+\epsilon)n/(2\log_2 n) \right]^2$$
, then
$$\max_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \geq (1+\epsilon)n/(2\log_2 n).$$

(SUPERCRITICAL; SUFFICIENT.) If
$$d \geq (1/2) \left[(1+\epsilon)n/(2\log_2 n) \right]^2$$
, then
$$\max_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \geq (1+\epsilon)n/(2\log_2 n).$$

This is immediate because for some $s \in S^{d-1}$, there is a clique of size $(1 + \epsilon)n/(2\log_2 n)$.

(SUPERCRITICAL; NECESSARY.) If
$$d = o(n^2/(\log n)^6)$$
, then
$$\max_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \le (1 + \epsilon)n/(2\log_2 n).$$

(SUPERCRITICAL; NECESSARY.) If
$$d = o(n^2/(\log n)^6)$$
, then
$$\max_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \le (1 + \epsilon)n/(2\log_2 n).$$

This follows by a "cap argument" combined with the high resilience of the chromatic number proved by Alon and Sudakov (2010):

With probability at least $1 - \exp(c_1 n^2/(\log n)^4)$, for every collection E of at most $c_2 \epsilon^2 n^2/(\log_2 n)^2$ edges, the chromatic number of $G(n, 1/2) \cup E$ is at most $(1 + \epsilon)n/(2\log_2 n)$.

(SUBCRITICAL; SUFFICIENT.) If
$$d \geq n \log_2 n/(1-2\epsilon)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n,s)) \leq (1-\epsilon)n/(2\log_2 n).$$

(SUBCRITICAL; SUFFICIENT.) If
$$d \geq n \log_2 n/(1-2\epsilon)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n,s)) \leq (1-\epsilon)n/(2\log_2 n).$$

Partition the **n** vertices of $k = (1 - \epsilon)n/(2\log_2 n)$ sets of n/k vertices.

 χ is at least k if all k sets are independent.

Need to remove $k\binom{n/k}{2}$ edges.

Such graph appears with probability one if $d \geq k \binom{n/k}{2}$.

(SUBCRITICAL; NECESSARY.) If
$$d = o(n/(\log n)^3)$$
, then
$$\min_{s \in S^{d-1}} \chi(\Gamma(X_n, s)) \ge (1 - \epsilon)n/(2\log_2 n).$$

By a classical result of Shamir and Spencer (1987), for any fixed s,

$$|\chi(\Gamma(X_n,s)) - \mathbb{E}(\chi(\Gamma(X_n,s)))| = O_p(n^{1/2}).$$

It follows from the bounded differences inequality if we consider $\chi(\Gamma(X_n,s))$ as a function of $Y_{i,s}=(\mathbb{1}_{\{\langle X_{i,j},s\rangle\geq 0\}\}})_{j=1,\ldots,i-1}\in\{0,1\}^{i-1}$ for $i=2,\ldots,n$.

bounded differences inequality

If f is such that

$$|f(x_1,\ldots,x_n)-f(x_1,\ldots,x_i',\ldots,x_n)|\leq 1$$

and X_1, \ldots, X_n are independent, then $Z = f(X_1, \ldots, X_n)$ satisfies

$$\exp(\lambda(Z - \mathbb{E}Z)) \leq \exp(n\lambda^2/8)$$

and

$$\mathbb{P}\{|Z-\mathbb{E}Z|>t\}\leq 2e^{-2t^2/n}.$$

chromatic number-proof

It suffices to prove that

$$\mathbb{E}\sup_{s\in S^{d-1}}|\chi(\Gamma(X_n,s))-\mathbb{E}\chi(\Gamma(X_n,s))|\leq 4\sqrt{nd\log n}\;.$$

This can be done by a Vapnik-Chervonenkis-style symmetrization combined with the bounded differences inequality.

connectivity

Here we consider $p = c \log n/n$.

Erdős and Rényi (1960) proved that whp. for c < 1, the graph is disconnected and for c > 1 it is connected.

Two questions:

- ullet if c<1, for what values of d do connected graphs appear in $\mathcal{G}_{d,p}(X_n)$?
- ullet if c>1, for what values of d do disconnected graphs appear in $\mathcal{G}_{d,p}(X_n)$?

connectivity-results

Recall $t = \Phi^{-1}(1 - p)$.

(SUBCRITICAL; NECESSARY.) If c < 1 and $d = O(n^{1-c-\epsilon})$, then for all $s \in S^{d-1}$, $\Gamma(X_n, s, t)$ is disconnected.

(SUBCRITICAL; SUFFICIENT.) If $d \geq Cn\sqrt{\log n}$, then there exists an $s \in S^{d-1}$ such that $\Gamma(X_n, s, t)$ is connected.

connectivity-results

 $\Gamma(X_n, s, t)$ is disconnected.

```
Recall t = \Phi^{-1}(1 - p).
(SUBCRITICAL; NECESSARY.) If c < 1 and d = O(n^{1-c-\epsilon}),
then for all s \in S^{d-1}, \Gamma(X_n, s, t) is disconnected.
(SUBCRITICAL; SUFFICIENT.) If d > Cn\sqrt{\log n}, then there
exists an s \in S^{d-1} such that \Gamma(X_n, s, t) is connected.
(SUPERCRITICAL; NECESSARY.) If c>1 and
d \leq (1-\epsilon)(c-1)\log n/\log\log n, then for all s \in S^{d-1}.
\Gamma(X_n, s, t) is connected.
(SUPERCRITICAL; SUFFICIENT.) If c>1 and
d > (2 + \epsilon)(c - 1) \log n / \log \log n, then for some s \in S^{d-1},
```

(SUBCRITICAL; NECESSARY.) If c < 1 and $d = O(n^{1-c-\epsilon})$, then for all $s \in S^{d-1}$, $\Gamma(X_n, s, t)$ is disconnected.

(SUBCRITICAL; NECESSARY.) If c < 1 and $d = O(n^{1-c-\epsilon})$, then for all $s \in S^{d-1}$, $\Gamma(X_n, s, t)$ is disconnected.

We prove that for all $s \in S^{d-1}$, $\Gamma(X_n, s, t)$ contains an isolated vertex.

"Cap argument" together with a sharp estimate for the number N of isolated vertices in $G(n, c \log n/n)$.

$$\mathbb{P}\{N=0\} \leq \exp(-n^{-(1-c-\epsilon/2)}).$$

bound for isolated vertices

O'Cornell's argument

$$N = \# \text{ of isolated vertices in } \mathcal{G}(r,p)$$
 $M = \# \text{ of vertices with no incoming on outgoing are.}$
 $M = \# \text{ of vertices with no incoming are.}$

Thin

$$I \sim Bin(n,(-q)^{n-1})$$

Use Chemoff bounds.

(SUBCRITICAL; SUFFICIENT.) If $d \geq Cn\sqrt{\log n}$, then there exists an $s \in S^{d-1}$ such that $\Gamma(X_n, s, t)$ is connected.

(SUBCRITICAL; SUFFICIENT.) If $d \geq Cn\sqrt{\log n}$, then there exists an $s \in S^{d-1}$ such that $\Gamma(X_n, s, t)$ is connected.

This bound is probably loose. We prove much more:

For every spanning tree of K_n , there exists $s \in S^{d-1}$ such that $\Gamma(X_n, s, t)$ contains the spanning tree.

We show that for any k, if $d \geq Ck\Phi^{-1}(1-p)$, then whp. k i.i.d. standard normal vectors are shattered by half spaces of the form $\{x: \langle x,s\rangle \geq t\}$.

shattering by half planes

distance of the affine span from the origin

$$\min_{y:\sum y_i=1} \left\| \sum_{i=1}^k y_i X_i \right\|^2 \ge \frac{1}{k} \min_{y:|y|^2=1} \left\| \sum_{i=1}^k y_i X_i \right\|^2 = \frac{1}{k} \left(\min_{y:|y|^2=1} \| Xy \| \right)^2$$

where X is the $d \times k$ matrix with columns X_1, \ldots, X_k .

This is just the square of the least singular value of X.

By Rudelson and Vershinin (2009), the least singular value is at least $\Omega(\sqrt{d} - \sqrt{k-1})$. In particular,

$$\mathbb{P}\left\{\min_{\mathbf{y}:\sum y_i=1}\left\|\sum_{i=1}^k y_i \mathbf{X}_i\right\| \leq c_1 \sqrt{\frac{d}{k}}\right\} < 2e^{-c_2 d}.$$

Note that $t = \Phi^{-1}(1-\rho) \leq \sqrt{2\log(1/\rho)} \sim \sqrt{2\log n}$.

(SUPERCRITICAL; NECESSARY.) If c>1 and $d\leq (1-\epsilon)(c-1)\log n/\log\log n$, then for all $s\in S^{d-1}$, $\Gamma(X_n,s,t)$ is connected.

"Cap" argument—with careful covering estimate + standard estimates for the probability that $G(n, c \log n/n)$ is disconnected.

(SUPERCRITICAL; SUFFICIENT.) If c>1 and $d\geq (2+\epsilon)(c-1)\log n/\log\log n$, then for some $s\in S^{d-1}$, $\Gamma(X_n,s,t)$ is disconnected.

(SUPERCRITICAL; SUFFICIENT.) If c>1 and $d\geq (2+\epsilon)(c-1)\log n/\log\log n$, then for some $s\in S^{d-1}$, $\Gamma(X_n,s,t)$ is disconnected.

Second moment method.

Let
$$\theta = (\log n)^{-1/(2+\epsilon)}$$
.

Let $\mathcal P$ be a maximal set such that for all $s,s'\in \mathcal P$, $\langle s,s'
angle \leq \cos heta$. Then

$$|\mathcal{P}| \geq \frac{d}{16} \theta^{-(d-1)} .$$

Use the second moment method to prove that whp.,

$$\sum_{s \in \mathcal{P}}$$
 number of isolated vertices in $\Gamma(X_n,s,t)>0$

questions

- Tighter bounds? Especially the subcritical, sufficient part for connectivity.
- Other properties? Giant component.
- More general model: $\binom{n}{2}$ i.i.d. points, class of sets.
- Inhomogeneous random graphs? Distribution of $\|X_{i,j}\|$ may depend on weights of vertices i and j.