Lovász Local Lemma

Oriol Serra

Univ. Politècnica de Catalunya Barcelona

Cargèse Fall School on Random Graphs, September 2015

O. Serra (UPC)

・ロト ・回ト ・ヨト ・ヨト

Outline

- The Local Lemma. Examples. Lopsided version.
- Counting with the Local Lemma: the device of Lu and Székely. Examples
- Algorithmic version of LLL by Moser and Tardos

The Lovász Local Lemma

Theorem (LLL, Erdős-Lovász, 1975)

Let A_1, \ldots, A_n be events in a probability space. Let $C_1, \ldots, C_n \subset [n]$ such that A_i is independent of $\{A_j : j \in C_i\}$ for each *i*. If there are numbers $x_1, \ldots, x_n \in (0, 1)$ such that

$$\Pr(A_i) \leq x_i \prod_{j \in [n] \setminus C_j} (1 - x_j), \ i = 1, \dots, n,$$

then

$$\Pr(\cap_i \overline{A_i}) \geq \prod_{j \in [n]} (1 - x_j).$$

<ロト < 回 > < 回 > < 回 > < 回 >

The Lovász Local Lemma

Theorem (LLL, Erdős-Lovász, 1975)

Let A_1, \ldots, A_n be events in a probability space. Let $C_1, \ldots, C_n \subset [n]$ such that A_i is independent of $\{A_j : j \in C_i\}$ for each *i*. If there are numbers $x_1, \ldots, x_n \in (0, 1)$ such that

$$\Pr(A_i) \leq x_i \prod_{j \in [n] \setminus C_j} (1 - x_j), \ i = 1, \dots, n,$$

then

$$\Pr(\cap_i \overline{A_i}) \geq \prod_{j \in [n]} (1 - x_j).$$

- If the events A_1, \ldots, A_n are independent then the statement is obvious. The LLL is useful when dependencies are rare.
- The directed graph G = ([n], E) with (i, j) ∈ E iff j ∈ [n] \ C_i is a dependency graph for the events A₁,..., A_n.
- The LLL has been used in many applications of the probabilistic method, including graph coloring, Ramsey theory, combinatorial number theory.

O. Serra (UPC)

Theorem (Erdős-Lovász, 1975)

For $k \ge 9$ every k-uniform and k-regular hypergraph H admits a 2-coloring with no monochromatic edges.

・ロト ・回ト ・ヨト ・ヨト

Theorem (Erdős-Lovász, 1975)

For $k \ge 9$ every k-uniform and k-regular hypergraph H admits a 2-coloring with no monochromatic edges.

• Define a random 2-coloring of H by giving each vertex the color red or blue with probability p = 1/2 independently.

Theorem (Erdős-Lovász, 1975)

For $k \ge 9$ every k-uniform and k-regular hypergraph H admits a 2-coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability p = 1/2 independently.
- For each edge $e \in E(H)$ define A_e the event that e is monochromatic. $Pr(A_e) = 2^{-(k-1)}$.

Theorem (Erdős-Lovász, 1975)

For $k \ge 9$ every k-uniform and k-regular hypergraph H admits a 2-coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability p = 1/2 independently.
- For each edge $e \in E(H)$ define A_e the event that e is monochromatic. $Pr(A_e) = 2^{-(k-1)}$.
- The events A_e, A_{e'} are independent if e ∩ e' = Ø: each A_e is independent with all but at most k(k − 1) events.

Theorem (Erdős-Lovász, 1975)

For $k \ge 9$ every k-uniform and k-regular hypergraph H admits a 2-coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability p = 1/2 independently.
- For each edge $e \in E(H)$ define A_e the event that e is monochromatic. $Pr(A_e) = 2^{-(k-1)}$.
- The events A_e, A_{e'} are independent if e ∩ e' = Ø: each A_e is independent with all but at most k(k − 1) events.
- By setting $x = x_1 = \cdots = x_m$, m = |E(H)|, if $2^{-(k-1)} \le x(1-x)^{k(k-1)}$ then (LLL) the probability that no edge is monochromatic is at least $(1-x)^{k(k-1)}$.

LLL: Symmetric version

Theorem (LLL, Erdős-Lóvasz, 1975)

Let A_1, \ldots, A_n be events in a probability space. Let $C_1, \ldots, C_n \subset [n]$ such that A_i is independent of $\{A_j : j \in C_i\}$ for each *i*. If there are numbers $x_1, \ldots, x_n \in (0, 1)$ such that

$$\Pr(A_i) \le x_i \prod_{j \in [n] \setminus C_j} (1 - x_j), \ i = 1, \dots, n,$$
(1)

then

$$\Pr(\cap_i \overline{A_i}) \ge \prod_{j \in [n]} (1 - x_j).$$

If $Pr(A_i) \le p$, i = 1, ..., n, and every event is independent with all but at most d events, then (1) can be replaced by

$ep(d+1) \leq 1$

and the conclusion by $\Pr(\bigcap_i \overline{A_i}) \ge e^{-nx(1+o(1))}$ by setting $x_i = 1/(d+1)$. The constant *e* is best possible [Shearer, 1981]

A proper edge-coloring of a graph G is acyclic if every two colors induce a forest.

 $G \Delta$ -regular, $a(G) \geq \Delta(G) + 1$, $a(K_{2n}) \geq \Delta(K_{2n}) + 2$.

Conjecture (Alon, Sudakov, Zaks) $a(G) \le \Delta(G) + 2$ for all graphs G

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \ge c\Delta \log \Delta$ implies $a(G) \le \Delta(G) + 2$.

• Take a proper edge–coloring of G with $\leq \Delta + 1$ colors (Vizing)

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \ge c\Delta \log \Delta$ implies $a(G) \le \Delta(G) + 2$.

- Take a proper edge–coloring of G with $\leq \Delta + 1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \ge c\Delta \log \Delta$ implies $a(G) \le \Delta(G) + 2$.

- Take a proper edge–coloring of G with $\leq \Delta + 1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$
- Define 'bad' events
 - A_B : the incident edges $B = \{e, e'\}$ receive color $\Delta + 2$,
 - A_C : the bichromatic cycle C gets no $\Delta + 2$ color,
 - A_D : the cycle *D* with half the edges monochromatic gets the other half with color $\Delta + 2$,

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \ge c\Delta \log \Delta$ implies $a(G) \le \Delta(G) + 2$.

- Take a proper edge–coloring of G with $\leq \Delta + 1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$
- Define 'bad' events
 - ► A_B : the incident edges $B = \{e, e'\}$ receive color $\Delta + 2$, $Pr(A_{e,e'}) = p^2$
 - A_C : the bichromatic cycle C gets no $\Delta + 2$ color, $Pr(A_C) = (1 p)^{l(C)}$
 - A_D : the cycle *D* with half the edges monochromatic gets the other half with color $\Delta + 2$, $Pr(A_D) \le 2p^{l(D)/2}$
- A_X is independent with all A_Y with $X \cap Y = \emptyset$: all but at most $2x\Delta$ ' A_B 's, $x\Delta$ ' A_C 's and $2x\Delta^{l(D)/2-1}$ ' A_D 's. (x = |X|)

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \ge c\Delta \log \Delta$ implies $a(G) \le \Delta(G) + 2$.

- Take a proper edge–coloring of G with $\leq \Delta + 1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$
- Define 'bad' events
 - ► A_B : the incident edges $B = \{e, e'\}$ receive color $\Delta + 2$, $Pr(A_{e,e'}) = p^2$
 - A_C : the bichromatic cycle C gets no $\Delta + 2$ color, $Pr(A_C) = (1 p)^{l(C)}$
 - ► A_D : the cycle *D* with half the edges monochromatic gets the other half with color $\Delta + 2$, $Pr(A_D) \le 2p^{l(D)/2}$
- A_X is independent with all A_Y with $X \cap Y = \emptyset$: all but at most $2x\Delta$ ' A_B 's, $x\Delta$ ' A_C 's and $2x\Delta^{l(D)/2-1}$ ' A_D 's. (x = |X|)
- Choose appropriate p and x_i 's (here large girth is used) and apply LLL

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \ge c\Delta \log \Delta$ implies $a(G) \le \Delta(G) + 2$.

The best current result is

Theorem (Cai, Perarnau, Reed, Watts (2015))

For every $\epsilon > 0$ there are $\Delta_0 = \Delta_0(\epsilon)$ and $g = g(\epsilon)$ such that a graph G with girth g and maximum degree $\delta \ge \delta_0$ has acyclic chromatic number at most

 $a(G) \leq (1+\epsilon)\Delta.$

イロト 不得下 イヨト イヨト

Proof of LLL

If there are numbers x_1, \ldots, x_n such that

$$\Pr(A_i) \leq x_i \prod_{j \in [n] \setminus C_j} (1 - x_j), \ i = 1, \dots, n,$$

then

$$\Pr(\cap_i \overline{A_i}) \geq \prod_{j \in [n]} (1 - x_j).$$

- $\Pr(\cap_{i=1}^{n}\overline{A_{i}}) = \Pr(\overline{A_{1}})\Pr(\overline{A_{2}}|\overline{A_{1}})\Pr(\overline{A_{3}}|\overline{A_{2}}\cap\overline{A_{1}})\cdots\Pr(\overline{A_{n}}|\cap_{i=1}^{n-1}\overline{A_{i}}).$
- For each $J \subset [n]$ and $i \notin J$, $\Pr(A_i | \bigcap_{j \in J} \overline{A_j}) \leq x_i$. By induction on j = |J|. Set $J_1 = J \setminus C_i$ and $J_2 = J \cap C_i$

$$\Pr(A_i | \cap_{j \in J} \overline{A_j}) = \frac{\Pr(A_i \cap (\cap_{j \in J_1} \overline{A_j}) | \cap_{j \in J_2} \overline{A_j})}{\Pr(\cap_{j \in J_1} \overline{A_j} | \cap_{j \in J_2} \overline{A_j})} \le \frac{\Pr(A_i)}{\prod_{j \in [n] \setminus C_i} (1 - x_i)}$$

To bound the denominator use induction: $J_1 = \{j_1, \ldots, j_r\}$

$$\Pr(\bigcap_{j\in J_1}\overline{A_j}|\bigcap_{j\in J_2}\overline{A_j}) = \Pr(\overline{A_{j_1}}|\bigcap_{j\in J_2}\overline{A_j})\Pr(\overline{A_{j_2}}|\overline{A_{j_1}}\cap_{j\in J_2}\overline{A_j})\cdots\Pr(\overline{A_{j_r}}|\bigcap_{s=1}^{r-1}\overline{A_s}\cap_{j\in J_2}\overline{A_j})$$

Proof of LLL

If there are numbers x_1, \ldots, x_n such that

$$\Pr(A_i|\cap_{j\in J}\overline{A_j}) \leq x_i \prod_{j\in [n]\setminus C_j} (1-x_j), \ i=1,\ldots,n, \ J\subset C_i$$

then

$$\Pr(\cap_i \overline{A_i}) \geq \prod_{j \in [n]} (1 - x_j).$$

- $\Pr(\cap_{i=1}^{n}\overline{A_{i}}) = \Pr(\overline{A_{1}})\Pr(\overline{A_{2}}|\overline{A_{1}})\Pr(\overline{A_{3}}|\overline{A_{2}}\cap\overline{A_{1}})\cdots\Pr(\overline{A_{n}}|\cap_{i=1}^{n-1}\overline{A_{i}}).$
- For each $J \subset [n]$ and $i \notin J$, $\Pr(A_i | \bigcap_{j \in J} \overline{A_j}) \leq x_i$. By induction on j = |J|. Set $J_1 = J \setminus C_i$ and $J_2 = J \cap C_i$

$$\Pr(A_i | \cap_{j \in J} \overline{A_j}) = \frac{\Pr(A_i \cap (\cap_{j \in J_1} \overline{A_j}) | \cap_{j \in J_2} \overline{A_j})}{\Pr(\cap_{j \in J_1} \overline{A_j} | \cap_{j \in J_2} \overline{A_j})} \le \frac{\Pr(A_i)}{\prod_{j \in [n] \setminus C_i} (1 - x_i)}$$

To bound the denominator use induction: $J_1 = \{j_1, \ldots, j_r\}$

$$\Pr(\bigcap_{j\in J_1}\overline{A_j}|\bigcap_{j\in J_2}\overline{A_j}) = \Pr(\overline{A_{j_1}}|\bigcap_{j\in J_2}\overline{A_j})\Pr(\overline{A_{j_2}}|\overline{A_{j_1}}\cap_{j\in J_2}\overline{A_j})\cdots\Pr(\overline{A_{j_r}}|\bigcap_{s=1}^{r-1}\overline{A_s}\cap_{j\in J_2}\overline{A_j})$$

Lopsided LLL

Theorem (Erdős, Spencer, 1991)

Let A_1, \ldots, A_n be events in a probability space. Let $C_1, \ldots, C_n \subset [n]$ and $x_1, \ldots, x_n \in (0, 1)$ such that

$$\Pr(A_i | \cap_{j \in J} \overline{A_j}) \le x_i \prod_{j \in J} (1 - x_j), \ i = 1, \dots, n, \ J \subset [n] \setminus C_i$$

then

$$\Pr(\cap_i \overline{A_i}) \geq \prod_{j \in [n]} (1 - x_j).$$

• A graph G with vertex set $\{A_1, \ldots, A_n\}$ is a negative dependence graph if

$$\Pr(A_i | \cap_{j \in J} \overline{A_j}) \leq \Pr(A_i), \ i = 1, \dots, n, \ J \subset N[A_i]$$

• Independency can be replaced by negative correlation.

Rainbow matchings

Theorem (Erdős, Spencer, 1991)

Every edge–coloring of $K_{n,n}$ in which every color is used at most $k \le n/4e$ times contains a rainbow matching.

<ロト </p>

Rainbow matchings

Theorem (Erdős, Spencer, 1991)

Every edge–coloring of $K_{n,n}$ in which every color is used at most $k \le n/4e$ times contains a rainbow matching.

- Choose a random matching M
- $A_{e,e'}$: the monochromatic pair $\{e, e'\}$ of independent edges is in M.
- Define a graph G on these events where $A_{e,e'}$ is adjacent to $A_{u,u'}$ whenever $\{e, e'\} \cap \{u, u'\} = \emptyset$: its maximum degree is at most 4nk.
- $\Pr(A_{e,e'}| \cap_{\{u,u'\} \in J} \overline{A_{u,u'}}) \leq 1/n(n-1)$ for all set J of pairs nonincident with e, e'.

• *G* is a negative dependency graph and probabilities of bad events are small enough: aply LLLL (symmetric version)

Rainbow matchings

Theorem (Erdős, Spencer, 1991)

Every edge–coloring of $K_{n,n}$ in which every color is used at most $k \le n/4e$ times contains a rainbow matching.

- A Latin transversal in a Latin square is equivalent to a rainbow matching of a proper edge-coloring of $K_{n,n}$ (k = n) (Ryser, Brualdi-Stein conjectures for Latin squares)
- Every proper edge-coloring of $K_{n,n}$ contains a rainbow matching of size $n c \log^2 n$ (Hatami-Shor, 2008).
- Every graph which is the union of n edge-disjoint matchings with size n + o(n) has a rainbow matching (Prokovsky 2015; Haggkvist-Johansson 2008) (Aharoni-Berger conjecture is that size n + 1 is enough)

Part 2: A counting device with LLLL

LLL provides a lower bound

$$\Pr(\cap_i \overline{A_i}) \geq \prod_i (1-x_i).$$

A graph G on $\{A_1, \ldots, A_n\}$ is an ϵ -near positive dependency graph if

- $Pr(A_i \cap A_j) = 0$ for $ij \in E(G)$ and
- $\Pr(A_i | \cap_{j \in S} \overline{A_j}) \ge (1 \epsilon) \Pr(A_i), \ \forall S \subset V \setminus N[A_i].$

Theorem (Lu, Székely)

If G is an ϵ -near positive dependency graph on A_1, \ldots, A_k then

$$\Pr(\cap_i \overline{A_i}) \leq \prod_i (1 - (1 - \epsilon) \Pr(A_i)).$$

Combination of the two bounds give tight asymptotic enumeration of derangements, latin rectangles,...

O. Serra (UPC)

A counting device with LLLL

Theorem (Lu, Székely, 2009)

If G is an ϵ -near positive dependency graph on A_1, \ldots, A_k then

$$\Pr(\cap_i \overline{A_i}) \ge \prod_i (1 - (1 - \epsilon) \Pr(A_i)).$$

- $\Pr(\cap_{i=1}^{n}\overline{A_{i}}) = \Pr(\overline{A_{1}})\Pr(\overline{A_{2}}|\overline{A_{1}})\Pr(\overline{A_{3}}|\overline{A_{2}}\cap\overline{A_{1}})\cdots\Pr(\overline{A_{n}}|\cap_{i=1}^{n-1}\overline{A_{i}}).$
- For each $J \subset [n]$ and $i \notin J$, $\Pr(A_i | \bigcap_{j \in J} \overline{A_j}) \ge (1 \epsilon) \Pr(A_i)$. Set $J_1 = J \cap N(A_i)$ and $J_2 = J \setminus N(A_i)$

$$\Pr(A_i | \cap_{j \in J} \overline{A_j}) = \frac{\Pr(A_i \cap (\cap_{j \in J_1} \overline{A_j}) | \cap_{j \in J_2} \overline{A_j})}{\Pr(\cap_{j \in J_1} \overline{A_j} | \cap_{j \in J_2} \overline{A_j})} \ge \Pr(A_i | \cap_{j \in J_2} \overline{A_j})$$

Example: Enumeration of rainbow matchings

 $K_{n,n}$ edge-colored, each color appears at most n/k times.

G graph with vertex set $\mathcal{M} = \{A_{e,e'} : \{e,e'\} \text{ monochromatic pair}\}$ and eges $A_{e,e'}, A_{u,u'}$ whenever $\{e,e'\} \cap \{u,u'\} \neq \emptyset$.

- G is a negative dependency graph.
 - ► $\Pr(\bigcap_{i=1}^{n}\overline{A_i}) \ge e^{-(1+16/k)\mu}, \ \mu = \sum_{(e,e')\in\mathcal{M}} \Pr(A_{e,e'}).$
 - Actually, for $I \cap J = \emptyset$, $\Pr(\bigcap_{i \in I} \overline{A_i} | \bigcap_{j \in J} \overline{A_j}) \ge \prod_{i \in I} (1 x_i)$.

• G is an ϵ -near positive dependence graph with $\epsilon = 1 - e^{-(2/k+32/k^2 + o(1))}$.

- $Pr(A_{e,e'} \cap A_{u,u'}) = 0$ for adjacent events.
- With $B = \bigcap_{j \in J} \overline{A_j}$,

$$\Pr(A_i|B) \ge (1-\epsilon)\Pr(A_i) \Leftrightarrow \Pr(B|A_i) \ge (1-\epsilon)\Pr(B)$$

ヘロト 人間ト 人団ト 人団ト

Example: Enumeration of rainbow matchings

Theorem (Perarnau, Serra, 2013)

The number $z_{n,k}$ of rainbow perfect matchings in a proper edge coloring of $K_{n,n}$ which uses each color at most n/k times, $k \ge 12$, $n \ge 200$, satisfies

 $c_1^n n! \leq z_{n,k} \leq c_2^n n!.$

for some $0 < c_1 < c_2 < 1$ which depend only on k.

• Vardi Conjecture: The number *z_n* of latin transversals of the cyclic group of order *n* satisfies

$$c_1^n n! < z_n < c_2^n n!$$

for some constants $0 < c_1 < c_2 < 1$.

• (McKay, McLeod, Wanless, 2006; Cavenagh, Greenhill, Wanless, 2008)

$$a^n < z_n < b^n \sqrt{n} n!$$

where a = 3.246 and b = 0.614.

Counting with LLL: A general framework for matchings

- \mathcal{M} a collection of (partial) matchings of K_{2n} or $K_{n,n}$
- A_M denotes the family of matchings extending $M \in \mathcal{M}$.
- $G_{\mathcal{M}}$ graph with vertex set $\{A_M : M \in \mathcal{M}\}$ and A_M adjacent to $A_{M'}$ whenever $M \cup M'$ is not a matching (conflicting).

Theorem (Lu and Székely, 2009)

 $G_{\mathcal{M}}$ is a negative dependence graph.

- \mathcal{M} is δ -sparse, $\delta < 1/16r$, $r = \max_{M \in \mathcal{M}} |M|$ if
 - \mathcal{M} is an antichain (by inclusion)
 - ► $\sum_{i} \Delta_{i} p(n, i) \leq 1/8r \delta$, Δ_{i} max degree of the hypergraph of matchings with *i* edges.
 - ▶ For each *F*, $\sum_{M \in N(F) \cap C} q(n, M) \leq \delta$, *C* set of nonconflicting with *F*.

Theorem (Lu and Székely, 2009)

 $G_{\mathcal{M}}$ is an ϵ -near-positive dependence graph for some (specific) $\epsilon = \epsilon(\delta, r, d_i)$.

Counting with LLL: A general framework for matchings

Theorem (Lu and Székely, 2009)

Let \mathcal{M} be a regular familiy of matchings of K_{2n} or $K_{n,n}$ and $\mu = \sum_{M} \Pr(A_M)$. If \mathcal{M} is δ -sparse, $\delta = o(\mu^{-1})$ and $\mu = o(\sqrt{nr^{-3/2}})$ then

$$\Pr(\cap \overline{A_M}) = (1 + o(1))e^{-\mu}.$$

- Derangements: \mathcal{M} the edges (i, i) of $K_{n,n}$. $r = \mu = 1$.
- k-cicle free permutations: M k-matchings sending K to K' which are minimal with this property. r = k, μ = 1/k, one can choose δ = 1/n.

• Latin rectangles, enumeration of *d*-regular graphs, ...

(A pause) Rainbow matchings with random colorings

Random edge-coloring of $K_{n,n}$ with s = kn colors, $k \ge 1$.

Uniform model: Choose randomly and independently one of s colors for each edge of K_{n,n}
 All edge-colorings of K_{n,n} with at most s colors appear with the same probability.

• Regular model: Choose a perfect matching in K_{n^2,n^2} . Identify one stable set with $E(K_{n,n})$ and partition the other one in *s* parts (colors) with n/k elements each.

All equitable edge–colorings of $K_{n,n}$ using each of s colors n/k times appear with the same probability.

イロト 不得下 イヨト イヨト

(A pause) Rainbow matchings with random colorings

Theorem (Perarnau, Serra, 2013)

Every random edge-coloring of $K_{n,n}$ in the uniform or regular models has a rainbow matching whp.

Uniform model

• X_M indicator function that M is rainbow. $X = \sum_M X_M$.

$$\mathbb{E}(X) = n! \mathbb{E}(X_M) = n! \Pr(X_M = 1) = \prod_{i=1}^n \left(1 - \frac{i}{s}\right) = n! e^{-(c(k) + o(1))n},$$

• $\Pr(X=0) \leq \mathbb{E}(|X-\mu_X| \geq \mu_X) \leq \sigma_X^2/\mu_X^2 = O(n^{-1})$ (second moment method)

$$\mathbb{E}(X_M X_N) = \Pr(X_M = 1) \Pr(X_N = 1 | X_M = 1) = e^{\frac{\alpha(z)z^2}{2s}} \Pr(X_M = 1).$$

 $z = |M \cap N|$, and upper bound the number of pairs M, N with $z = |M \cap N|$.

(A pause) Rainbow matchings with random colorings

Theorem (Perarnau, Serra, 2013)

Every random edge–coloring of $K_{n,n}$ in the uniform or regular models has a rainbow matching whp.

- One gets $Pr((K_{n,n}, c)$ has a rainbow matching) = $e^{-(c(k)+o(1))n/k}$.
- Unfortunately Pr(random edge coloring is proper) $\sim e^{-n^2}$: too small for an a.a.s. to Ryser conjecture.
- There are more than $(n/2)^{n^2}$ edge-colorings of $K_{n,n}$ with *n* colors which do not contain rainbow matchings:

 $Pr((K_{n,n}, c) \text{ has no rainbow matching}) \geq 1/2^{n^2}$.

• There is no good model for random Latin squares.

Part 3: Algorithmic version of LLL

Lóvasz proof is nonconstructive:

can we find an element in $\cap_i \overline{A_i}$ (which has small probability)

- Beck (1991) proposes an algorithm with certain constrains.
- Particular examples (e.g. acyclic coloring) have been worked out.
- Moser (2008) finds an elegant simple solution to the algorithmic issue.

Theorem (Moser, Tardos (2010))

Let X_1, \ldots, X_m be independent random variables. Let A_1, \ldots, A_n be events such that A_i is determined by $\{X_i : i \in C_i\}$ (but is independent of the remaining variables). Set the dependency graph with edge A_iA_j whenever $C_i \cap C_j \neq \emptyset$. If there are numbers $x_1, \ldots, x_n \in (0, 1)$ such that $\Pr(A_i) \leq x_i \prod_{j \in N[A_i]} (1 - x_j)$ then $\Pr(\cap_i \overline{A_i}) > 0$. Moreover a point in $\cap_i \overline{A_i}$ can be found by a randomized algorithm in expected time at most $\sum_i x_i/(1 - x_i)$.

The proof of the theorem consists of an algorithm which finds a point in $\cap_i \overline{A_i}$.

```
MT Algorithm

for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

```
for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

Analysis of the algorithm

• $C = (E_1, E_2, \dots, E_t, \dots)$ the log of the algorithm, $E_t \in \{A_1, \dots, A_n\}$ the event resampled at step t.

```
for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

Analysis of the algorithm

- $C = (E_1, E_2, \dots, E_t, \dots)$ the log of the algorithm, $E_t \in \{A_1, \dots, A_n\}$ the event resampled at step t.
- Construct a witness rooted tree $\tau(C, t)$ recursively (backwards) as follows: E_t Place E_t at the root.

```
for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

Analysis of the algorithm

 E_t

- $C = (E_1, E_2, \dots, E_{t-1}, E_t, \dots)$ the log of the algorithm, $E_t \in \{A_1, \dots, A_n\}$ the event resampled at step t.
- Construct a witness rooted tree $\tau(C, t)$ recursively (backwards) as follows:

 E_{t-1}

Look for the neighbour of E_{t-1} in the dependency graph deepest in the tree and add E_{t-1} as a child to it.

```
for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

Analysis of the algorithm

- $C = (E_1, E_2, \dots, E_{t-2}, E_{t-1}, E_t, \dots)$ the log of the algorithm, $E_t \in \{A_1, \dots, A_n\}$ the event resampled at step t.
- Construct a witness rooted tree $\tau(C, t)$ recursively (backwards) as follows:

Look for the neighbour of E_{t-1} in the dependency graph deepest in the tree and add E_{t-1} as a child to it.

If no neighbour of E_{t-2} is in the tree then leave the tree untouched,

O. Serra (UPC)

```
for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

Analysis of the algorithm

- Such a labeled rooted tree τ appears in the (random) C if τ = τ(C, t) for some t. T_A is the family of trees rooted at A.
- If the event A is resampled N_A times, then there are N_A distinct trees occurring in C rooted at A.
- the probability that τ appears in C is at most Π_{E∈V(τ)} Pr(E).
 (We assume we pick evaluations of variables from a sequence)

$$\mathbb{E}(N_A) = \sum_{\tau \in \mathcal{T}_A} \Pr(\tau \text{ appears in } C) = \sum_{\tau \in \mathcal{T}_A} \prod_{E \in V(\tau)} \Pr(E).$$

```
for all j = 1, ..., m

v_j \leftarrow a random evaluation of X_j

while some A_i occurs

choose A_i occurring

for all X_j \in C_i

v_j \leftarrow a new random evaluation of X_j

return (v_1, ..., v_m)
```

Analysis of the algorithm

- For a given tree $\tau \in T_A$ we consider the Galton-Watson tree rooted at A where at each step we add a child $A_j \in N[B]$ to each vertex B independently with probability x_j .
- $\bullet\,$ The probability that the resulting tree is τ is

$$p_{ au} = rac{x_i}{1-x_i} \prod_{A_j \in V(au)} \left(x_j \prod_{A_r \in N[A_j]} (1-x_r)
ight).$$

for all j = 1, ..., m $v_j \leftarrow a$ random evaluation of X_j while some A_i occurs choose A_i occurring for all $X_j \in C_i$ $v_j \leftarrow a$ new random evaluation of X_j return $(v_1, ..., v_m)$

Analysis of the algorithm

• From the assumptions on $Pr(A_j) \le x_j \prod_{A_r \in N[A_j]} (1 - x_r)$, if $A = A_i$

$$\mathbb{E}(N_A) = \sum_{\tau \in \mathcal{T}_A} \prod_{E \in V(\tau)} \Pr(E) \leq \frac{x_i}{1 - x_i} \sum_{\tau \in \mathcal{T}_A} p_\tau \leq \frac{x_i}{1 - x_i}.$$

• The algorithm terminates in expected time at most $\sum_{i=1}^{n} \frac{x_i}{1-x_i}$

Acyclic coloring again

Theorem (Esperet, Parreau (2013), Giotis. Kirousis, Psaromiligkos, Thillikos (2015))

The acyclic chromatic number of a graph G with maximum degree Δ is at most

 $a(G) \leq 4\Delta - 4.$

- G can be edge-colored with $2\Delta 1$ colors to obtain a proper coloring with no bichromatic 4-cycles.
- Order the edges of G, e_1, \ldots, e_n , and the even cycles. Use $K = \lceil (2 + \gamma)(\Delta 1) \rceil + 1$ colors.
- At step *i* color e_i randomly subject to preserve 4-acyclicity.
- If a bichromatic 2*k*-cycle appears, choose *C* the smallest such one and Recolor(*C*)

Recolor(C)

- Recolor the edges of *C* preserving 4-acyclicity
- While some edge of C belongs to a bichromatic cycle, choose C' the smallest one and Recolor(C').

- The MT algorithm can be derandomized. For the symmetric case it provides a linear time algorithm.
- Several versions have been proposed. In particular for eliminating the condition on independent random variables.
- In applications explicit procedures for sampling the variables must be made explicit.
- By implementing the algorithm in particular problems some improvements may be obtained from known results.