Lovász Local Lemma

Oriol Serra

Univ. Politècnica de Catalunya
Barcelona

Cargèse Fall School on Random Graphs, September 2015

Outline

- The Local Lemma. Examples. Lopsided version.
- Counting with the Local Lemma: the device of Lu and Székely. Examples
- Algorithmic version of LLL by Moser and Tardos

The Lovász Local Lemma

Theorem (LLL, Erdős-Lovász, 1975)
Let A_{1}, \ldots, A_{n} be events in a probability space. Let $C_{1}, \ldots, C_{n} \subset[n]$ such that A_{i} is independent of $\left\{A_{j}: j \in C_{i}\right\}$ for each i.
If there are numbers $x_{1}, \ldots, x_{n} \in(0,1)$ such that

$$
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{j \in[n] \backslash C_{j}}\left(1-x_{j}\right), i=1, \ldots, n,
$$

then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{j \in[n]}\left(1-x_{j}\right) .
$$

The Lovász Local Lemma

Theorem (LLL, Erdős-Lovász, 1975)

Let A_{1}, \ldots, A_{n} be events in a probability space. Let $C_{1}, \ldots, C_{n} \subset[n]$ such that A_{i} is independent of $\left\{A_{j}: j \in C_{i}\right\}$ for each i.
If there are numbers $x_{1}, \ldots, x_{n} \in(0,1)$ such that

$$
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{j \in[n] \backslash c_{j}}\left(1-x_{j}\right), i=1, \ldots, n,
$$

then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{j \in[n]}\left(1-x_{j}\right)
$$

- If the events A_{1}, \ldots, A_{n} are independent then the statement is obvious. The LLL is useful when dependencies are rare.
- The directed graph $G=([n], E)$ with $(i, j) \in E$ iff $j \in[n] \backslash C_{i}$ is a dependency graph for the events A_{1}, \ldots, A_{n}.
- The LLL has been used in many applications of the probabilistic method, including graph coloring, Ramsey theory, combinatorial number theory.

First examples

Theorem (Erdős-Lovász, 1975)
For $k \geq 9$ every k-uniform and k-regular hypergraph H admits a 2 -coloring with no monochromatic edges.

First examples

Theorem (Erdős-Lovász, 1975)

For $k \geq 9$ every k-uniform and k-regular hypergraph H admits a 2 -coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability $p=1 / 2$ independently.

First examples

Theorem (Erdős-Lovász, 1975)

For $k \geq 9$ every k-uniform and k-regular hypergraph H admits a 2 -coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability $p=1 / 2$ independently.
- For each edge $e \in E(H)$ define A_{e} the event that e is monochromatic. $\operatorname{Pr}\left(A_{e}\right)=2^{-(k-1)}$.

First examples

Theorem (Erdős-Lovász, 1975)

For $k \geq 9$ every k-uniform and k-regular hypergraph H admits a 2 -coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability $p=1 / 2$ independently.
- For each edge $e \in E(H)$ define A_{e} the event that e is monochromatic. $\operatorname{Pr}\left(A_{e}\right)=2^{-(k-1)}$.
- The events $A_{e}, A_{e^{\prime}}$ are independent if $e \cap e^{\prime}=\emptyset$: each A_{e} is independent with all but at most $k(k-1)$ events.

First examples

Theorem (Erdős-Lovász, 1975)

For $k \geq 9$ every k-uniform and k-regular hypergraph H admits a 2 -coloring with no monochromatic edges.

- Define a random 2-coloring of H by giving each vertex the color red or blue with probability $p=1 / 2$ independently.
- For each edge $e \in E(H)$ define A_{e} the event that e is monochromatic.
$\operatorname{Pr}\left(A_{e}\right)=2^{-(k-1)}$.
- The events $A_{e}, A_{e^{\prime}}$ are independent if $e \cap e^{\prime}=\emptyset$: each A_{e} is independent with all but at most $k(k-1)$ events.
- By setting $x=x_{1}=\cdots=x_{m}, m=|E(H)|$, if $2^{-(k-1)} \leq x(1-x)^{k(k-1)}$ then (LLL) the probability that no edge is monochromatic is at least $(1-x)^{k(k-1)}$.

LLL: Symmetric version

Theorem (LLL, Erdős-Lóvasz, 1975)

Let A_{1}, \ldots, A_{n} be events in a probability space. Let $C_{1}, \ldots, C_{n} \subset[n]$ such that A_{i} is independent of $\left\{A_{j}: j \in C_{i}\right\}$ for each i.
If there are numbers $x_{1}, \ldots, x_{n} \in(0,1)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{j \in[n] \backslash c_{j}}\left(1-x_{j}\right), i=1, \ldots, n, \tag{1}
\end{equation*}
$$

then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{j \in[n]}\left(1-x_{j}\right)
$$

If $\operatorname{Pr}\left(A_{i}\right) \leq p, i=1, \ldots, n$, and every event is independent with all but at most d events, then (1) can be replaced by

$$
e p(d+1) \leq 1
$$

and the conclusion by $\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq e^{-n x(1+o(1))}$ by setting $x_{i}=1 /(d+1)$. The constant e is best possible [Shearer, 1981]

Acyclic edge-coloring

A proper edge-coloring of a graph G is acyclic if every two colors induce a forest.

$a(G)$ acyclic chromatic number
$G \Delta$-regular, $\quad a(G) \geq \Delta(G)+1, \quad a\left(K_{2 n}\right) \geq \Delta\left(K_{2 n}\right)+2$.
Conjecture (Alon, Sudakov, Zaks)
$a(G) \leq \Delta(G)+2$ for all graphs G

Acyclic edge-coloring

Theorem (Alon, Sudakov, Zaks)
There is a constant c such that $g(G) \geq c \Delta \log \Delta$ implies $a(G) \leq \Delta(G)+2$.

- Take a proper edge-coloring of G with $\leq \Delta+1$ colors (Vizing)

Acyclic edge-coloring

Theorem (Alon, Sudakov, Zaks)
There is a constant c such that $g(G) \geq c \Delta \log \Delta$ implies $a(G) \leq \Delta(G)+2$.

- Take a proper edge-coloring of G with $\leq \Delta+1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$

Acyclic edge-coloring

Theorem (Alon, Sudakov, Zaks)
There is a constant c such that $g(G) \geq c \Delta \log \Delta$ implies $a(G) \leq \Delta(G)+2$.

- Take a proper edge-coloring of G with $\leq \Delta+1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$
- Define 'bad' events
- A_{B} : the incident edges $B=\left\{e, e^{\prime}\right\}$ receive color $\Delta+2$,
- A_{C} : the bichromatic cycle C gets no $\Delta+2$ color,
- A_{D} : the cycle D with half the edges monochromatic gets the other half with color $\Delta+2$,

Acyclic edge-coloring

Theorem (Alon, Sudakov, Zaks)

There is a constant c such that $g(G) \geq c \Delta \log \Delta$ implies $a(G) \leq \Delta(G)+2$.

- Take a proper edge-coloring of G with $\leq \Delta+1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$
- Define 'bad' events
- A_{B} : the incident edges $B=\left\{e, e^{\prime}\right\}$ receive color $\Delta+2, \operatorname{Pr}\left(A_{e, e^{\prime}}\right)=p^{2}$
- A_{C} : the bichromatic cycle C gets no $\Delta+2$ color, $\operatorname{Pr}\left(A_{C}\right)=(1-p)^{1(C)}$
- A_{D} : the cycle D with half the edges monochromatic gets the other half with color $\Delta+2, \operatorname{Pr}\left(A_{D}\right) \leq 2 p^{\prime(D) / 2}$
- A_{X} is independent with all A_{Y} with $X \cap Y=\emptyset$: all but at most $2 x \Delta$ ' A_{B} 's, $x \Delta$ ' A_{C} 's and $2 x \Delta^{\prime(D) / 2-1}$ ' A_{D} 's. $(x=|X|)$

Acyclic edge-coloring

Theorem (Alon, Sudakov, Zaks)
There is a constant c such that $g(G) \geq c \Delta \log \Delta$ implies $a(G) \leq \Delta(G)+2$.

- Take a proper edge-coloring of G with $\leq \Delta+1$ colors (Vizing)
- Change the color of each edge independently with probability p to a new color $\Delta+2$
- Define 'bad' events
- A_{B} : the incident edges $B=\left\{e, e^{\prime}\right\}$ receive color $\Delta+2, \operatorname{Pr}\left(A_{e, e^{\prime}}\right)=p^{2}$
- A_{C} : the bichromatic cycle C gets no $\Delta+2$ color, $\operatorname{Pr}\left(A_{C}\right)=(1-p)^{1(C)}$
- A_{D} : the cycle D with half the edges monochromatic gets the other half with color $\Delta+2, \operatorname{Pr}\left(A_{D}\right) \leq 2 p^{\prime(D) / 2}$
- A_{X} is independent with all A_{Y} with $X \cap Y=\emptyset$: all but at most $2 x \Delta$ ' A_{B} 's, $x \Delta$ ' A_{C} 's and $2 x \Delta^{\prime(D) / 2-1}$ ' A_{D} 's. $(x=|X|)$
- Choose appropriate p and x_{i} 's (here large girth is used) and apply LLL

Acyclic edge-coloring

Theorem (Alon, Sudakov, Zaks)
There is a constant c such that $g(G) \geq c \Delta \log \Delta$ implies $a(G) \leq \Delta(G)+2$.

The best current result is
Theorem (Cai, Perarnau, Reed, Watts (2015))
For every $\epsilon>0$ there are $\Delta_{0}=\Delta_{0}(\epsilon)$ and $g=g(\epsilon)$ such that a graph G with girth g and maximum degree $\delta \geq \delta_{0}$ has acyclic chromatic number at most

$$
a(G) \leq(1+\epsilon) \Delta .
$$

Proof of LLL

If there are numbers x_{1}, \ldots, x_{n} such that

$$
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{j \in[n] \backslash c_{j}}\left(1-x_{j}\right), i=1, \ldots, n,
$$

then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{j \in[n]}\left(1-x_{j}\right)
$$

- $\operatorname{Pr}\left(\cap_{i=1}^{n} \overline{A_{i}}\right)=\operatorname{Pr}\left(\overline{A_{1}}\right) \operatorname{Pr}\left(\overline{A_{2}} \mid \overline{A_{1}}\right) \operatorname{Pr}\left(\overline{A_{3}} \mid \overline{A_{2}} \cap \overline{A_{1}}\right) \cdots \operatorname{Pr}\left(\overline{A_{n}} \mid \cap_{i=1}^{n-1} \overline{A_{i}}\right)$.
- For each $J \subset[n]$ and $i \notin J, \operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right) \leq x_{i}$.

By induction on $j=|J|$. Set $J_{1}=J \backslash C_{i}$ and $J_{2}=J \cap C_{i}$

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right)=\frac{\operatorname{Pr}\left(A_{i} \cap\left(\cap_{j \in J_{1}} \overline{A_{j}}\right) \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)}{\operatorname{Pr}\left(\cap_{j \in J_{1}} \overline{A_{j}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)} \leq \frac{\operatorname{Pr}\left(A_{i}\right)}{\prod_{j \in[n] \backslash C_{i}}\left(1-x_{i}\right)}
$$

To bound the denominator use induction: $J_{1}=\left\{j_{1}, \ldots, j_{r}\right\}$
$\operatorname{Pr}\left(\cap_{j \in J_{1}} \overline{A_{j}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)=\operatorname{Pr}\left(\overline{A_{j_{1}}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right) \operatorname{Pr}\left(\overline{A_{j}} \mid \overline{A_{j_{1}}} \cap_{j \in J_{2}} \overline{A_{j}}\right) \cdots \operatorname{Pr}\left(\overline{A_{j r}} \mid \cap_{s=1}^{r-1} \overline{A_{s}} \cap_{j \in J_{2}}\right.$

Proof of LLL

If there are numbers x_{1}, \ldots, x_{n} such that

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right) \leq x_{i} \prod_{j \in[n] \backslash C_{j}}\left(1-x_{j}\right), i=1, \ldots, n, J \subset C_{i}
$$

then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{j \in[n]}\left(1-x_{j}\right)
$$

- $\operatorname{Pr}\left(\cap_{i=1}^{n} \overline{A_{i}}\right)=\operatorname{Pr}\left(\overline{A_{1}}\right) \operatorname{Pr}\left(\overline{A_{2}} \mid \overline{A_{1}}\right) \operatorname{Pr}\left(\overline{A_{3}} \mid \overline{A_{2}} \cap \overline{A_{1}}\right) \cdots \operatorname{Pr}\left(\overline{A_{n}} \mid \cap_{i=1}^{n-1} \overline{A_{i}}\right)$.
- For each $J \subset[n]$ and $i \notin J, \operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right) \leq x_{i}$.

By induction on $j=|J|$. Set $J_{1}=J \backslash C_{i}$ and $J_{2}=J \cap C_{i}$

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right)=\frac{\operatorname{Pr}\left(A_{i} \cap\left(\cap_{j \in J_{1}} \overline{A_{j}}\right) \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)}{\operatorname{Pr}\left(\cap_{j \in J_{1}} \overline{A_{j}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)} \leq \frac{\operatorname{Pr}\left(A_{i}\right)}{\prod_{j \in[n] \backslash C_{i}}\left(1-x_{i}\right)}
$$

To bound the denominator use induction: $J_{1}=\left\{j_{1}, \ldots, j_{r}\right\}$
$\operatorname{Pr}\left(\cap_{j \in J_{1}} \overline{A_{j}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)=\operatorname{Pr}\left(\overline{A_{j_{1}}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right) \operatorname{Pr}\left(\overline{A_{j}} \mid \overline{A_{j_{1}}} \cap_{j \in J_{2}} \overline{A_{j}}\right) \cdots \operatorname{Pr}\left(\overline{A_{j r}} \mid \cap_{s=1}^{r-1} \overline{A_{s}} \cap_{j \in J_{2}}\right.$

Lopsided LLL

Theorem (Erdős, Spencer, 1991)
Let A_{1}, \ldots, A_{n} be events in a probability space. Let $C_{1}, \ldots, C_{n} \subset[n]$ and $x_{1}, \ldots, x_{n} \in(0,1)$ such that

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right) \leq x_{i} \prod_{j \in J}\left(1-x_{j}\right), i=1, \ldots, n, J \subset[n] \backslash C_{i}
$$

then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{j \in[n]}\left(1-x_{j}\right)
$$

- A graph G with vertex set $\left\{A_{1}, \ldots, A_{n}\right\}$ is a negative dependence graph if

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right) \leq \operatorname{Pr}\left(A_{i}\right), i=1, \ldots, n, J \subset N\left[A_{i}\right]
$$

- Independency can be replaced by negative correlation.

Rainbow matchings

Theorem (Erdős, Spencer, 1991)

Every edge-coloring of $K_{n, n}$ in which every color is used at most $k \leq n / 4 e$ times contains a rainbow matching.

Rainbow matchings

Theorem (Erdős, Spencer, 1991)

Every edge-coloring of $K_{n, n}$ in which every color is used at most $k \leq n / 4 e$ times contains a rainbow matching.

- Choose a random matching M
- $A_{e, e^{\prime}}$: the monochromatic pair $\left\{e, e^{\prime}\right\}$ of independent edges is in M.
- Define a graph G on these events where $A_{e, e^{\prime}}$ is adjacent to $A_{\mu, u^{\prime}}$ whenever $\left\{e, e^{\prime}\right\} \cap\left\{u, u^{\prime}\right\}=\emptyset$: its maximum degree is at most 4nk.
- $\operatorname{Pr}\left(A_{e, e^{\prime}} \mid \cap_{\left\{u, u^{\prime}\right\} \in J} \overline{A_{u, u^{\prime}}}\right) \leq 1 / n(n-1)$ for all set J of pairs nonincident with e, e^{\prime}.

- G is a negative dependency graph and probabilities of bad events are small enough: aply LLLL (symmetric version)

Rainbow matchings

Theorem (Erdős, Spencer, 1991)

Every edge-coloring of $K_{n, n}$ in which every color is used at most $k \leq n / 4 e$ times contains a rainbow matching.

- A Latin transversal in a Latin square is equivalent to a rainbow matching of a proper edge-coloring of $K_{n, n}(k=n)$ (Ryser, Brualdi-Stein conjectures for Latin squares)
- Every proper edge-coloring of $K_{n, n}$ contains a rainbow matching of size $n-c \log ^{2} n$ (Hatami-Shor, 2008).
- Every graph which is the union of n edge-disjoint matchings with size $n+o(n)$ has a rainbow matching (Prokovsky 2015; Haggkvist-Johansson 2008) (Aharoni-Berger conjecture is that size $n+1$ is enough)

Part 2: A counting device with LLLL

LLL provides a lower bound

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{i}\left(1-x_{i}\right)
$$

A graph G on $\left\{A_{1}, \ldots, A_{n}\right\}$ is an ϵ-near positive dependency graph if

- $\operatorname{Pr}\left(A_{i} \cap A_{j}\right)=0$ for $i j \in E(G)$ and
- $\operatorname{Pr}\left(A_{i} \mid \cap_{j \in S} \overline{A_{j}}\right) \geq(1-\epsilon) \operatorname{Pr}\left(A_{i}\right), \forall S \subset V \backslash N\left[A_{i}\right]$.

Theorem (Lu, Székely)
If G is an ϵ-near positive dependency graph on A_{1}, \ldots, A_{k} then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \leq \prod_{i}\left(1-(1-\epsilon) \operatorname{Pr}\left(A_{i}\right)\right) .
$$

Combination of the two bounds give tight asymptotic enumeration of derangements, latin rectangles,...

A counting device with LLLL

Theorem (Lu, Székely, 2009)

If G is an ϵ-near positive dependency graph on A_{1}, \ldots, A_{k} then

$$
\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right) \geq \prod_{i}\left(1-(1-\epsilon) \operatorname{Pr}\left(A_{i}\right)\right)
$$

- $\operatorname{Pr}\left(\cap_{i=1}^{n} \overline{A_{i}}\right)=\operatorname{Pr}\left(\overline{A_{1}}\right) \operatorname{Pr}\left(\overline{A_{2}} \mid \overline{A_{1}}\right) \operatorname{Pr}\left(\overline{A_{3}} \mid \overline{A_{2}} \cap \overline{A_{1}}\right) \cdots \operatorname{Pr}\left(\overline{A_{n}} \mid \cap_{i=1}^{n-1} \overline{A_{i}}\right)$.
- For each $J \subset[n]$ and $i \notin J, \operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right) \geq(1-\epsilon) \operatorname{Pr}\left(A_{i}\right)$. Set $J_{1}=J \cap N\left(A_{i}\right)$ and $J_{2}=J \backslash N\left(A_{i}\right)$

$$
\operatorname{Pr}\left(A_{i} \mid \cap_{j \in J} \overline{A_{j}}\right)=\frac{\operatorname{Pr}\left(A_{i} \cap\left(\cap_{j \in J_{1}} \overline{A_{j}}\right) \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)}{\operatorname{Pr}\left(\cap_{j \in J_{1}} \overline{A_{j}} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)} \geq \operatorname{Pr}\left(A_{i} \mid \cap_{j \in J_{2}} \overline{A_{j}}\right)
$$

Example: Enumeration of rainbow matchings

$K_{n, n}$ edge-colored, each color appears at most n / k times.
G graph with vertex set $\mathcal{M}=\left\{A_{e, e^{\prime}}:\left\{e, e^{\prime}\right\}\right.$ monochromatic pair $\}$ and eges

$$
A_{e, e^{\prime}}, A_{u, u^{\prime}} \text { whenever }\left\{e, e^{\prime}\right\} \cap\left\{u, u^{\prime}\right\} \neq \emptyset .
$$

- G is a negative dependency graph.
- $\operatorname{Pr}\left(\cap_{i=1}^{n} \overline{A_{i}}\right) \geq e^{-(1+16 / k) \mu}, \mu=\sum_{\left(e, e^{\prime}\right) \in \mathcal{M}} \operatorname{Pr}\left(A_{e, e^{\prime}}\right)$.
- Actually, for $I \cap J=\emptyset, \operatorname{Pr}\left(\cap_{i \in I} \overline{A_{i}} \mid \cap_{j \in J} \overline{A_{j}}\right) \geq \prod_{i \in I}\left(1-x_{i}\right)$.
- G is an ϵ-near positive dependence graph with $\epsilon=1-e^{-\left(2 / k+32 / k^{2}+o(1)\right)}$.
- $\operatorname{Pr}\left(A_{e, e^{\prime}} \cap A_{u, u^{\prime}}\right)=0$ for adjacent events.
- With $B=\cap_{j \in J} \overline{A_{j}}$,

$$
\operatorname{Pr}\left(A_{i} \mid B\right) \geq(1-\epsilon) \operatorname{Pr}\left(A_{i}\right) \Leftrightarrow \operatorname{Pr}\left(B \mid A_{i}\right) \geq(1-\epsilon) \operatorname{Pr}(B)
$$

- $\operatorname{Pr}\left(B \mid A_{i}\right)=\operatorname{Pr}\left(B^{\prime}\right), B^{\prime}$ an event in $K_{n-2, n-2}$. Use LLLL to in it to get the desired lower bound.

Example: Enumeration of rainbow matchings

Theorem (Perarnau, Serra, 2013)

The number $z_{n, k}$ of rainbow perfect matchings in a proper edge coloring of $K_{n, n}$ which uses each color at most n / k times, $k \geq 12, n \geq 200$, satisfies

$$
c_{1}^{n} n!\leq z_{n, k} \leq c_{2}^{n} n!
$$

for some $0<c_{1}<c_{2}<1$ which depend only on k.

- Vardi Conjecture: The number z_{n} of latin transversals of the cyclic group of order n satisfies

$$
c_{1}^{n} n!<z_{n}<c_{2}^{n} n!
$$

for some constants $0<c_{1}<c_{2}<1$.

- (McKay, McLeod, Wanless, 2006; Cavenagh, Greenhill, Wanless, 2008)

$$
a^{n}<z_{n}<b^{n} \sqrt{n} n!
$$

where $a=3.246$ and $b=0.614$.

Counting with LLL: A general framework for matchings

- \mathcal{M} a collection of (partial) matchings of $K_{2 n}$ or $K_{n, n}$
- A_{M} denotes the family of matchings extending $M \in \mathcal{M}$.
- $G_{\mathcal{M}}$ graph with vertex set $\left\{A_{M}: M \in \mathcal{M}\right\}$ and A_{M} adjacent to $A_{M^{\prime}}$ whenever $M \cup M^{\prime}$ is not a matching (conflicting).

Theorem (Lu and Székely, 2009)

$G_{\mathcal{M}}$ is a negative dependence graph.

- \mathcal{M} is δ-sparse, $\delta<1 / 16 r, r=\max _{M \in \mathcal{M}}|M|$ if
- \mathcal{M} is an antichain (by inclusion)
- $\sum_{i} \Delta_{i} p(n, i) \leq 1 / 8 r-\delta, \Delta_{i}$ max degree of the hypergraph of matchings with i edges.
- For each $F, \sum_{M \in N(F) \cap C} q(n, M) \leq \delta, C$ set of nonconflicting with F.

Theorem (Lu and Székely, 2009)

$G_{\mathcal{M}}$ is an ϵ-near-positive dependence graph for some (specific) $\epsilon=\epsilon\left(\delta, r, d_{i}\right)$.

Counting with LLL: A general framework for matchings

Theorem (Lu and Székely, 2009)

Let \mathcal{M} be a regular familiy of matchings of $K_{2 n}$ or $K_{n, n}$ and $\mu=\sum_{M} \operatorname{Pr}\left(A_{M}\right)$. If \mathcal{M} is δ-sparse, $\delta=o\left(\mu^{-1}\right)$ and $\mu=o\left(\sqrt{n} r^{-3 / 2}\right)$ then

$$
\operatorname{Pr}\left(\cap \overline{A_{M}}\right)=(1+o(1)) e^{-\mu} .
$$

- Derangements: \mathcal{M} the edges (i, i) of $K_{n, n} . r=\mu=1$.
- k-cicle free permutations: $\mathcal{M} k$-matchings sending K to K^{\prime} which are minimal with this property. $r=k, \mu=1 / k$, one can choose $\delta=1 / n$.

- Latin rectangles, enumeration of d-regular graphs, ...

(A pause) Rainbow matchings with random colorings

Random edge-coloring of $K_{n, n}$ with $s=k n$ colors, $k \geq 1$.

- Uniform model: Choose randomly and independently one of s colors for each edge of $K_{n, n}$
All edge-colorings of $K_{n, n}$ with at most s colors appear with the same probability.
- Regular model: Choose a perfect matching in $K_{n^{2}, n^{2}}$. Identify one stable set with $E\left(K_{n, n}\right)$ and partition the other one in s parts (colors) with n / k elements each.
All equitable edge-colorings of $K_{n, n}$ using each of s colors n / k times appear with the same probability.

(A pause) Rainbow matchings with random colorings

Theorem (Perarnau, Serra, 2013)
Every random edge-coloring of $K_{n, n}$ in the uniform or regular models has a rainbow matching whp.

Uniform model

- X_{M} indicator function that M is rainbow. $X=\sum_{M} X_{M}$.

$$
\mathbb{E}(X)=n!\mathbb{E}\left(X_{M}\right)=n!\operatorname{Pr}\left(X_{M}=1\right)=\prod_{i=1}^{n}\left(1-\frac{i}{s}\right)=n!e^{-(c(k)+o(1)) n},
$$

- $\operatorname{Pr}(X=0) \leq \mathbb{E}\left(\left|X-\mu_{X}\right| \geq \mu_{X}\right) \leq \sigma_{X}^{2} / \mu_{X}^{2}=O\left(n^{-1}\right)$ (second moment method)

$$
\mathbb{E}\left(X_{M} X_{N}\right)=\operatorname{Pr}\left(X_{M}=1\right) \operatorname{Pr}\left(X_{N}=1 \mid X_{M}=1\right)=e^{\frac{\alpha(2) z^{2}}{2 s}} \operatorname{Pr}\left(X_{M}=1\right)
$$

$z=|M \cap N|$, and upper bound the number of pairs M, N with $z=|M \cap N|$.

(A pause) Rainbow matchings with random colorings

Theorem (Perarnau, Serra, 2013)
Every random edge-coloring of $K_{n, n}$ in the uniform or regular models has a rainbow matching whp.

- One gets $\operatorname{Pr}\left(\left(K_{n, n}, c\right)\right.$ has a rainbow matching $)=e^{-(c(k)+o(1)) n / k}$.
- Unfortunately $\operatorname{Pr}\left(\right.$ random edge coloring is proper) $\sim e^{-n^{2}}$: too small for an a.a.s. to Ryser conjecture.
- There are more than $(n / 2)^{n^{2}}$ edge-colorings of $K_{n, n}$ with n colors which do not contain rainbow matchings:

$$
\operatorname{Pr}\left(\left(K_{n, n}, c\right) \text { has no rainbow matching }\right) \geq 1 / 2^{n^{2}}
$$

- There is no good model for random Latin squares.

Part 3: Algorithmic version of LLL

Lóvasz proof is nonconstructive:
can we find an element in $\cap_{i} \overline{A_{i}}$ (which has small probability)

- Beck (1991) proposes an algorithm with certain constrains.
- Particular examples (e.g. acyclic coloring) have been worked out.
- Moser (2008) finds an elegant simple solution to the algorithmic issue.

Theorem (Moser, Tardos (2010))

Let X_{1}, \ldots, X_{m} be independent random variables.
Let A_{1}, \ldots, A_{n} be events such that A_{i} is determined by $\left\{X_{i}: i \in C_{i}\right\}$ (but is independent of the remaining variables). Set the dependency graph with edge $A_{i} A_{j}$ whenever $C_{i} \cap C_{j} \neq \emptyset$.
If there are numbers $x_{1}, \ldots, x_{n} \in(0,1)$ such that $\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{j \in N\left[A_{i}\right]}(1-x j)$ then $\operatorname{Pr}\left(\cap_{i} \overline{A_{i}}\right)>0$.
Moreover a point in $\cap_{i} \overline{A_{i}}$ can be found by a randomized algorithm in expected time at most $\sum_{i} x_{i} /\left(1-x_{i}\right)$.

Algorithmic version of LLL

The proof of the theorem consists of an algorithm which finds a point in $\cap_{i} \overline{A_{i}}$.

```
MT Algorithm
for all j=1,\ldots,m
    vj}\leftarrow\mathrm{ a random evaluation of }\mp@subsup{X}{j}{
while some }\mp@subsup{A}{i}{}\mathrm{ occurs
    choose }\mp@subsup{A}{i}{}\mathrm{ occurring
    for all }\mp@subsup{X}{j}{}\in\mp@subsup{C}{i}{
        v
return ( }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{m}{}
```


Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$
$v_{j} \leftarrow$ a new random evaluation of X_{j}
return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- $C=\left(E_{1}, E_{2}, \cdots, E_{t}, \cdots\right)$ the log of the algorithm, $E_{t} \in\left\{A_{1}, \ldots, A_{n}\right\}$ the event resampled at step t.

Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$
$v_{j} \leftarrow$ a new random evaluation of X_{j}
return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- $C=\left(E_{1}, E_{2}, \cdots, E_{t}, \cdots\right)$ the log of the algorithm, $E_{t} \in\left\{A_{1}, \ldots, A_{n}\right\}$ the event resampled at step t.
- Construct a witness rooted tree $\tau(C, t)$ recursively (backwards) as follows:
E_{t}
Place E_{t} at the root.

Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$
$v_{j} \leftarrow$ a new random evaluation of X_{j}
return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- $C=\left(E_{1}, E_{2}, \cdots, E_{t-1}, E_{t}, \cdots\right)$ the \log of the algorithm, $E_{t} \in\left\{A_{1}, \ldots, A_{n}\right\}$ the event resampled at step t.
- Construct a witness rooted tree $\tau(C, t)$ recursively (backwards) as follows:

Look for the neighbour of E_{t-1} in the dependency graph deepest in the tree and add E_{t-1} as a child to it.

Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$
$v_{j} \leftarrow$ a new random evaluation of X_{j}
return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- $C=\left(E_{1}, E_{2}, \cdots, E_{t-2}, E_{t-1}, E_{t}, \cdots\right)$ the \log of the algorithm, $E_{t} \in\left\{A_{1}, \ldots, A_{n}\right\}$ the event resampled at step t.
- Construct a witness rooted tree $\tau(C, t)$ recursively (backwards) as follows:

Look for the neighbour of E_{t-1} in the dependency graph deepest in the tree and add E_{t-1} as a child to it.
If no neighbour of E_{t-2} is in the tree then leave the tree untouched,

Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$
$v_{j} \leftarrow$ a new random evaluation of X_{j}
return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- Such a labeled rooted tree τ appears in the (random) C if $\tau=\tau(C, t)$ for some $t . \mathcal{T}_{A}$ is the family of trees rooted at A.
- If the event A is resampled N_{A} times, then there are N_{A} distinct trees occurring in C rooted at A.
- the probability that τ appears in C is at most $\prod_{E \in V(\tau)} \operatorname{Pr}(E)$. (We assume we pick evaluations of variables from a sequence)

$$
\mathbb{E}\left(N_{A}\right)=\sum_{\tau \in \mathcal{T}_{A}} \operatorname{Pr}(\tau \text { appears in } C)=\sum_{\tau \in \mathcal{T}_{A}} \prod_{E \in V(\tau)} \operatorname{Pr}(E)
$$

Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$

```
        v
```

return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- For a given tree $\tau \in \mathcal{T}_{A}$ we consider the Galton-Watson tree rooted at A where at each step we add a child $A_{j} \in N[B]$ to each vertex B independently with probability x_{j}.
- The probability that the resulting tree is τ is

$$
p_{\tau}=\frac{x_{i}}{1-x_{i}} \prod_{A_{j} \in V(\tau)}\left(x_{j} \prod_{A_{r} \in N\left[A_{j}\right]}\left(1-x_{r}\right)\right) .
$$

Algorithmic version of LLL

for all $j=1, \ldots, m$
$v_{j} \leftarrow$ a random evaluation of X_{j}
while some A_{i} occurs
choose A_{i} occurring
for all $X_{j} \in C_{i}$
$v_{j} \leftarrow$ a new random evaluation of X_{j}
return $\left(v_{1}, \ldots, v_{m}\right)$
Analysis of the algorithm

- From the assumptions on $\operatorname{Pr}\left(A_{j}\right) \leq x_{j} \prod_{A_{r} \in N\left[A_{j}\right]}\left(1-x_{r}\right)$, if $A=A_{i}$

$$
\mathbb{E}\left(N_{A}\right)=\sum_{\tau \in \mathcal{T}_{A}} \prod_{E \in V(\tau)} \operatorname{Pr}(E) \leq \frac{x_{i}}{1-x_{i}} \sum_{\tau \in \mathcal{T}_{A}} p_{\tau} \leq \frac{x_{i}}{1-x_{i}} .
$$

- The algorithm terminates in expected time at most $\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i}}$

Acyclic coloring again

Theorem (Esperet, Parreau (2013), Giotis. Kirousis, Psaromiligkos,

 Thillikos (2015))The acyclic chromatic number of a graph G with maximum degree Δ is at most

$$
a(G) \leq 4 \Delta-4 .
$$

- G can be edge-colored with $2 \Delta-1$ colors to obtain a proper coloring with no bichromatic 4-cycles.
- Order the edges of G, e_{1}, \ldots, e_{n}, and the even cycles. Use $K=\lceil(2+\gamma)(\Delta-1)\rceil+1$ colors.
- At step i color e_{i} randomly subject to preserve 4-acyclicity.
- If a bichromatic $2 k$-cycle appears, choose C the smallest such one and Recolor(C)
Recolor(C)
- Recolor the edges of C preserving 4-acyclicity
- While some edge of C belongs to a bichromatic cycle, choose C^{\prime} the smallest one and Recolor(C^{\prime}).

Algorithmic version of LLL

- The MT algorithm can be derandomized. For the symmetric case it provides a linear time algorithm.
- Several versions have been proposed. In particular for eliminating the condition on independent random variables.
- In applications explicit procedures for sampling the variables must be made explicit.
- By implementing the algorithm in particular problems some improvements may be obtained from known results.

