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Multidisciplinary research

Pure Mathematics:

Graph Theory
Random Structures and Algorithms
Modelling

Applied Computer Science:

...

Social Science: for example,

Homophily, contagion and the decay of community
structure in self-organizing networks (PNAS paper!)
Social learning in a large, evolving network (BlackBerry)
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Multidisciplinary research

Applied Computer Science:

Utilizing big data for business-to-business matching and
recommendation system (ComLinked Corp., 2014-15)
A self-organizing dynamic network model increasing the
efficiency of outdoor digital billboards (KPM, 2014)
Exploiting Big Data for Customized Online News
Recommendation System (The Globe and Mail, 2014)
Personalized Mobile Recommender System (BlackBerry,
2013-14)
Intelligent Rating System (Mako, 2012-13)
Dynamic clustering and prediction of taxi service demand
(Winston, 2012)
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Multidisciplinary research

Applied Computer Science (currently):

Web Visitor Engagement Measurement and Maximization
(The Globe and Mail, 2014-15)
Hypergraphs and their applications (Tutte Institute for
Mathematics and Computing)
Relationship Mapping Analytics for Fundraising and Sales
Prospect Research (Charter Press Ltd.)

Applied Computer Science (near future):

Network Modeling of Trust in Online Scientific Information
Sources (Bell Labs)
. . .

Prałat Modelling self-organizing networks



Introduction Spatial Preferred Attachment (SPA) Model Future work

Outline

1 Introduction

2 Spatial Preferred Attachment (SPA) Model

3 Future work

Prałat Modelling self-organizing networks



Introduction Spatial Preferred Attachment (SPA) Model Future work

Big Data Era

Every human-technology interaction, or sensor network,
generates new data points that can be viewed, based on the
type of interaction, as a self-organizing network.
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The web graph

nodes: web pages edges: hyperlinks
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Social networks

nodes: people edges: social interaction
(e.g. Facebook friendship)
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Social networks

nodes: scientists edges: co-authorship

Prałat Modelling self-organizing networks



Introduction Spatial Preferred Attachment (SPA) Model Future work

Are these networks similar?
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Are these networks similar?

Answer: Yes!

large scale
‘small world’ property
(e.g. low diameter of O(log n), high clustering coefficient)
degree distribution
(power-law, the number of nodes of degree k is
proportional to k−γ)
bad expansion
etc.
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Why model self-organizing networks?

uncover the generative mechanisms underlying
self-organizing networks,
models are a predictive tool,
community detection,
improving search engines (the web graph),
spam and worm defense,
nice mathematical challenges.
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Why model self-organizing networks?

uncover the generative mechanisms underlying
self-organizing networks,
models are a predictive tool,
community detection,
improving search engines (the web graph),
spam and worm defense,
nice mathematical challenges.

(For example, PA model justifies “rich get richer” principle.)
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A good graph model should...

...reproduce experimentally observed graph properties:
degree distribution follows a power law,
small average distance between nodes, (“small world”),
locally dense, globally sparse,
expansion properties (conductance),...

...include a credible model for agent behaviour guiding the
formation of the link structure,
...agents should not need global knowledge of the network
to determine their link environment.
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Common assumptions in the study of real-life networks

Communities in a social network can be recognized as
densely linked subgraphs.

Web pages with many common neighbours contain related
topics.
Co-authors usually have similar research interests, etc.
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Underlying metric

Such assumptions, commonly used in experimental and
heuristic treatments of real-life networks, imply that there is an
a priori “community structure” or “relatedness measure” of the
nodes, which is reflected by the link structure of the graph.

The network is a visible manifestation of an underlying
hidden reality.
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Spatial graph models

Nodes correspond to points in a (high-dimensional) feature
space.
The metric distance between nodes is a measure of
“closeness.”
The edge generation is influenced by the position and
relative distance of the nodes.

This gives a basis for reverse engineering: given a graph, and
assuming a spatial model, it is possible to estimate the
distribution of nodes in the feature space from information
contained in the graph structure.
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Spatial Preferred Attachment (SPA) Model

Nodes are points in Euclidean space (randomly and
uniformly distributed).

We let S be the unit hypercube in Rm, equipped with the
torus metric derived from any of the Lp norms. This means
that for any two points x and y in S,

d(x , y) = min
{
||x − y + u||p : u ∈ {−1,0,1}m

}
.
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Spatial Preferred Attachment (SPA) Model

Nodes are points in Euclidean space (randomly and
uniformly distributed).
Each node has a “sphere of influence” centered at the
node. The size is determined by the in-degree of the node.

|S(v , t)| = A1deg−(v , t) + A2

t
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Spatial Preferred Attachment (SPA) Model

Nodes are points in Euclidean space (randomly and
uniformly distributed).
Each node has a “sphere of influence” centered at the
node. The size is determined by the in-degree of the node.
A new node v can only link to an existing node u if v falls
within the sphere of influence of u.
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Spatial Preferred Attachment (SPA) Model

Nodes are points in Euclidean space (randomly and
uniformly distributed).
Each node has a “sphere of influence” centered at the
node. The size is determined by the in-degree of the node.
A new node v can only link to an existing node u if v falls
within the sphere of influence of u.
If v falls into the sphere of influence u, it will link to u with
probability p.
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Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model
from previous models:

A new node can choose its links purely based on local
information.
Since a new node links to each visible node independently,
the out-degree is not a constant nor chosen according to a
pre-determined distribution, but arises naturally from the
model.
The varying size of the influence regions allows for the
occasional long links, edges between nodes that are
spaced far apart. (This implies a certain “small world”
property.)
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Spatial Preferred Attachment (SPA) Model

A simulation of the SPA model on the unit square with
t = 5,000 and p = 1
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Degree distribution

Power law with exponent x = 1 + 1
p .

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)
A.a.s.

N(0, t) = (1 + o(1))
t

1 + p
,

and for all k satisfying 1 ≤ k ≤
(

t
log8 t

) p
4p+2 ,

N(k , t) = (1 + o(1))
pk

1 + p + kp
t

k−1∏
j=0

j
1 + p + jp

.

(The differential equations method is used.)

Prałat Modelling self-organizing networks



Introduction Spatial Preferred Attachment (SPA) Model Future work

A little taste of DEs method

Definition
A martingale is a sequence X0,X1, . . . of random variables
defined on the random process such that

E(Xn+1 | X0,X1, . . . ,Xn) = Xn.

In most applications, the martingale satisfies the property that
E(Xn+1 | X0,X1, . . . ,Xn) = E(Xn+1 | Xn) = Xn.

Example
Toss a coin n times. Let Sn be the difference between the
number of heads and the number of tails after n tosses.
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A little taste of DEs method

Theorem (Hoeffding-Azuma inequality)

Let X0,X1, . . . be a martingale. Suppose that there exist
constants ck > 0 such that

|Xk − Xk−1| ≤ ck

for each k ≤ n. Then, for every t > 0,

P(Xn ≥ EXn + t) ≤ exp

(
− t2

2
∑n

k=1 c2
k

)
,

P(Xn ≤ EXn − t) ≤ exp

(
− t2

2
∑n

k=1 c2
k

)
.
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A little taste of DEs method

E(N(0, t + 1)− N(0, t) | N(0, t)) = 1− N(0, t)pA2

t

We first transform N(0, t) into something close to a martingale.
It provides some insight if we define real function f (x) to model
the behaviour of the scaled random variable N(0,xn)

n . If we
presume that the changes in the function correspond to the
expected changes of random variable, we obtain the following
differential equation

f ′(x) = 1− f (x)
pA2

x

with the initial condition f (0) = 0.
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A little taste of DEs method

The general solution of this equation can be put in the form

f (x)xpA2 − x1+pA2

1 + pA2
= C.

Consider the following real-valued function

H(x , y) = yxpA2 − x1+pA2

1 + pA2
.

(We expect H(wt) = H(t ,N(0, t)) to be close to zero.)

E(H(wt+1)− H(wt) | Gt) = O(tpA2−1)

|H(wt+1)− H(wt)| = O(tpA2 log2 n).

Use generalized Azuma-Hoeffding inequality: a.a.s.

|H(wt)− H(wt0)| = O(n1/2+pA2 log3 n).
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Degree distribution

Out-degree: An important difference between the SPA model
and many other models is that the out-degree is not a
parameter of the model, but is the result of a stochastic
process.

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)
A.a.s.

max
0≤i≤t

deg+(vi , t) ≥ (1 + o(1))p
log t

log log t
.

However, a.a.s. all nodes have out-degree O(log2 t).

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)

A.a.s. deg+(vt , t) = O(log2 t).
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Sparse cuts

V ′t V ′′t

Let us partition the vertex set Vt as follows:

V ′t =
{

x = (x1, x2, . . . , xm) ∈ Vt : x1 <
1
2

}
and V ′′t = Vt \ V ′t .
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Sparse cuts

V ′t V ′′t

Theorem (Cooper, Frieze, Prałat)

A.a.s. the following holds |V ′t | = (1 + o(1))t/2,
|V ′′t | = (1 + o(1))t/2, and

|E(V ′t ,V
′′
t )| = O(tmax{1−1/m,pA1} log5 t) = o(t).
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Diameter

Let l(vi , vj) denote the length of the shortest directed path from
vj to vi if such a path exists, and let l(vi , vj) = 0 otherwise.

The directed diameter of a graph Gt is defined as

D(Gt) = max
1≤i<j≤t

l(vi , vj).
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Let l(vi , vj) denote the length of the shortest directed path from
vj to vi if such a path exists, and let l(vi , vj) = 0 otherwise.

The directed diameter of a graph Gt is defined as

D(Gt) = max
1≤i<j≤t

l(vi , vj).

Theorem (Cooper, Frieze, Prałat)
There exists absolute constant c1 such that a.a.s.

D(Gt) ≤ c1 log t .
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Diameter

Theorem (Cooper, Frieze, Prałat)
There exists absolute constant c1 such that a.a.s.

D(Gt) ≤ c1 log t .

Theorem (Cooper, Frieze, Prałat)
There exists absolute constant c2 such that a.a.s.

D(Gt) ≥
c2 log t
log log t

.

(The lower bound requires the additional assumption that
A1 < 3A2, and it is showed for dimension 2 only. However, it
can be easily generalized.)
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Estimating distnaces

The distance between u and v can be estimated from the graph
properties (cn(u, v ,n), deg−(u) and deg−(v)).

Theorem (Janssen, Prałat, Wilson)
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Estimating distnaces

The distance between u and v can be estimated from the graph
properties (cn(u, v ,n), deg−(u) and deg−(v)).

Actual distance vs. estimated distance from simulated data
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Giant component

Conjecture (Cooper, Frieze, Prałat)

p3 := (2A1 + 2A2)
−1 is the threshold for the giant component.
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Conjecture

The clustering coefficient of a vertex of degree k is of order 1/k .
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Common directions

Adapt the model to specific types of real-world networks
Find the right parameters for power law exponent etc.
Validate the model by comparing graph properties
‘Social learning in evolving networks’ — design a model
with vertices moving
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Spatial Preferred Attachment (SPA) Model

Generalize the model:
Node and edge deletion
Adding edges to existing nodes
Updating the out-links of a node
Shifting coordinates (“learning process”)

Undirected graphs
Non-uniform distribution of points

Use the model to estimate the underlying geometry of the
nodes.
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Story 1: Social Learning (BlackBerry)

Consider two homophily hypotheses:

the likelihood of tie formation between two actors increases
with greater similarities in the actors’ tastes
the likelihood of tie deletion between two actors increases
with greater differences in the actors’ tastes

The role of social influence—third main hypothesis:

actors tend to adopt the tastes of others they share direct
connections with
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Story 2: GEO-P model and domination number

0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

D
S

 S
iz

e
 &

 U
p

p
e

r 
b

o
u

n
d

Number of Nodes

FB100 DS Size & MGEO-P Upperbound

1-core DC

2-core DC

3-core DC

4-core DC

5-core DC

Upperbound

Prałat Modelling self-organizing networks


	Introduction
	Spatial Preferred Attachment (SPA) Model
	Future work

