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Multidisciplinary research

Pure Mathematics:

@ Graph Theory
@ Random Structures and Algorithms
@ Modelling

Applied Computer Science:
° ..
Social Science: for example,

@ Homophily, contagion and the decay of community
structure in self-organizing networks (PNAS paper!)

@ Social learning in a large, evolving network (BlackBerry)
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Multidisciplinary research

Applied Computer Science:

@ Utilizing big data for business-to-business matching and
recommendation system (ComLinked Corp., 2014-15)

@ A self-organizing dynamic network model increasing the
efficiency of outdoor digital billboards (KPM, 2014)

@ Exploiting Big Data for Customized Online News
Recommendation System (The Globe and Mail, 2014)

@ Personalized Mobile Recommender System (BlackBerry,
2013-14)

@ Intelligent Rating System (Mako, 2012-13)

@ Dynamic clustering and prediction of taxi service demand
(Winston, 2012)
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Multidisciplinary research

Applied Computer Science (currently):

@ Web Visitor Engagement Measurement and Maximization
(The Globe and Mail, 2014-15)

@ Hypergraphs and their applications (Tutte Institute for
Mathematics and Computing)

@ Relationship Mapping Analytics for Fundraising and Sales
Prospect Research (Charter Press Ltd.)

Applied Computer Science (near future):

@ Network Modeling of Trust in Online Scientific Information
Sources (Bell Labs)
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Introduction
Big Data Era

0011 |
Q
00107

Every human-technology interaction, or sensor network,
generates new data points that can be viewed, based on the
type of interaction, as a self-organizing network.
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Introduction

The web graph

nodes: web pages edges: hyperlinks
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Introduction
Social networks

nodes: people  edges: social interaction
(e.g. Facebook friendship)
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Introduction

Social networks

nodes: scientists edges: co-authorship

%ﬁ AT
AN %I
An induced’subgf‘apl'\\ bf the collaboration
graph with authors of Erdés number ¢ 2.
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Introduction
Are these networks similar?

Prafat Modelling self-organizing networks



Introduction
Are these networks similar?

Answer: Yes!

@ large scale

@ ‘small world’ property
(e.g. low diameter of O(log n), high clustering coefficient)

@ degree distribution
(power-law, the number of nodes of degree k is
proportional to k=7)

@ bad expansion
@ efc.
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Introduction

Why model self-organizing networks?

@ uncover the generative mechanisms underlying
self-organizing networks,

models are a predictive tool,

community detection,

improving search engines (the web graph),
spam and worm defense,

nice mathematical challenges.
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Introduction

Why model self-organizing networks?

@ uncover the generative mechanisms underlying
self-organizing networks,

models are a predictive tool,

community detection,

improving search engines (the web graph),
spam and worm defense,

nice mathematical challenges.

(For example, PA model justifies “rich get richer” principle.)
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Introduction

A good graph model should...

...reproduce experimentally observed graph properties:
e degree distribution follows a power law,

e small average distance between nodes, (“small world”),
e locally dense, globally sparse,

e expansion properties (conductance),...
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Introduction

A good graph model should...

...reproduce experimentally observed graph properties:
e degree distribution follows a power law,

e small average distance between nodes, (“small world”),
e locally dense, globally sparse,

e expansion properties (conductance),...

@ ...include a credible model for agent behaviour guiding the
formation of the link structure,
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Introduction

A good graph model should...

...reproduce experimentally observed graph properties:
e degree distribution follows a power law,

e small average distance between nodes, (“small world”),
e locally dense, globally sparse,

e expansion properties (conductance),...

@ ...include a credible model for agent behaviour guiding the
formation of the link structure,

@ ...agents should not need global knowledge of the network
to determine their link environment.
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Introduction

Common assumptions in the study of real-life networks

@ Communities in a social network can be recognized as
densely linked subgraphs.
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Introduction

Common assumptions in the study of real-life networks

@ Communities in a social network can be recognized as
densely linked subgraphs.

@ Web pages with many common neighbours contain related
topics.
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Introduction

Common assumptions in the study of real-life networks

@ Communities in a social network can be recognized as
densely linked subgraphs.

@ Web pages with many common neighbours contain related
topics.
@ Co-authors usually have similar research interests, etc.
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Introduction

Underlying metric

Such assumptions, commonly used in experimental and
heuristic treatments of real-life networks, imply that there is an
a priori “community structure” or “relatedness measure” of the
nodes, which is reflected by the link structure of the graph.

The network is a visible manifestation of an underlying
hidden reality.
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Spatial graph models

@ Nodes correspond to points in a (high-dimensional) feature
space.

@ The metric distance between nodes is a measure of
“closeness.”

@ The edge generation is influenced by the position and
relative distance of the nodes.
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Spatial graph models

@ Nodes correspond to points in a (high-dimensional) feature
space.

@ The metric distance between nodes is a measure of
“closeness.”

@ The edge generation is influenced by the position and
relative distance of the nodes.

This gives a basis for reverse engineering: given a graph, and
assuming a spatial model, it is possible to estimate the
distribution of nodes in the feature space from information
contained in the graph structure.
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Spatial Preferred Attachment (SPA) Model

Outline

9 Spatial Preferred Attachment (SPA) Model
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

@ Nodes are points in Euclidean space (randomly and
uniformly distributed).

We let S be the unit hypercube in R, equipped with the
torus metric derived from any of the L, norms. This means
that for any two points x and y in S,

dix,y)=min{|[x =y +ullp : ue{-1,0,1}"}.
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

@ Nodes are points in Euclidean space (randomly and
uniformly distributed).

@ Each node has a “sphere of influence” centered at the
node. The size is determined by the in-degree of the node.

_ Aqdeg” (v, ) + Az

S(v, 1) :
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

@ Nodes are points in Euclidean space (randomly and
uniformly distributed).

@ Each node has a “sphere of influence” centered at the
node. The size is determined by the in-degree of the node.

@ A new node v can only link to an existing node u if v falls
within the sphere of influence of u.

o~

\4
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

@ Nodes are points in Euclidean space (randomly and
uniformly distributed).

@ Each node has a “sphere of influence” centered at the
node. The size is determined by the in-degree of the node.

@ A new node v can only link to an existing node u if v falls
within the sphere of influence of u.

@ If v falls into the sphere of influence u, it will link to u with
probability p.

N

\4
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model
from previous models:

@ A new node can choose its links purely based on local
information.
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model
from previous models:

@ A new node can choose its links purely based on local
information.

@ Since a new node links to each visible node independently,
the out-degree is not a constant nor chosen according to a
pre-determined distribution, but arises naturally from the
model.
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model
from previous models:

@ A new node can choose its links purely based on local
information.

@ Since a new node links to each visible node independently,
the out-degree is not a constant nor chosen according to a
pre-determined distribution, but arises naturally from the
model.

@ The varying size of the influence regions allows for the
occasional long links, edges between nodes that are
spaced far apart. (This implies a certain “small world”
property.)
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Spatial Preferred Attachment (SPA) Model

Spatial Preferred Attachment (SPA) Model

. S

A simulation of the SPA model on the unit square with
t=5,000and p =1

Pratat




Spatial Preferred Attachment (SPA) Model

Degree distribution

Power law with exponent x = 1 + ,13.

Theorem (Aiello, Bonato, Cooper, Janssen, Pratat)
A.a.s.

N, ) =(1+ o(1))m,

and for all k satisfying1 < k < (IO gts t) w2

% k—1

p j
N(k,t)=(1 )t || ———-
0=+ oyt I

(The differential equations method is used.)
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Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

Definition
A martingale is a sequence Xp, X1, ... of random variables
defined on the random process such that

E(Xn+1 ‘ XO, X1 g oo 7Xn) - Xn.

In most applications, the martingale satisfies the property that
E(Xne1 | Xo, X1, ., Xn) = E(Xnp1 | Xn) = Xn.

Prafat Modelling self-organizing networks



Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

Definition
A martingale is a sequence Xp, X1, ... of random variables
defined on the random process such that

E(Xn+1 ‘ XO, X1 g oo 7Xn) - Xn.

In most applications, the martingale satisfies the property that
E(Xnp1 | X0, X1,.. ., Xn) = E(Xn1 | Xn) = Xa.

Toss a coin ntimes. Let S, be the difference between the
number of heads and the number of tails after n tosses.

Prafat Modelling self-organizing networks



Spatial Preferred Attachment (SPA) Model
A little taste of DEs method

Theorem (Hoeffding-Azuma inequality)

Let Xy, X1, ... be a martingale. Suppose that there exist
constants cx > 0 such that

| Xk — Xk—1| < ck

for each k < n. Then, for every t > 0,

23 k-1 G

t2
k=1 ~k

2
P(Xp > EX,+1t) < exp( t),
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Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

E(N(O, 1)~ N(O,1) | N(0,1) = 1 - MO DP%e

We first transform N(0, t) into something close to a martingale.
It provides some insight if we define real function f(x) to model
the behaviour of the scaled random variable M If we
presume that the changes in the function correspond to the
expected changes of random variable, we obtain the following
differential equation

ff(x)=1- f(x)’DTA2

with the initial condition f(0) = 0.

Prafat Modelling self-organizing networks



Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

The general solution of this equation can be put in the form
14+pAz

X _c

1+ pAs

f(x)xPe —
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Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

The general solution of this equation can be put in the form
14+pAz

X _c

1+ pAs

f(x)xPe —

Consider the following real-valued function

x1+pA

1+ pAs

(We expect H(w;) = H(t, N(0,t)) to be close to zero.)

H(x,y) = yxP% —
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Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

The general solution of this equation can be put in the form
X1+pA2

f(x)xPPe — =C
( ) 1 —|—pA2
Consider the following real-valued function
1-+pA2
H(x,y) = yxPle — X .
(x.y)=y 1 oA

(We expect H(w;) = H(t, N(0,t)) to be close to zero.)

E(H(Wi11) — HWy) | G) = O(t"%")
IHWi 1) — Hwy)| = O(tP*1log? n).
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Spatial Preferred Attachment (SPA) Model

A little taste of DEs method

The general solution of this equation can be put in the form
X1+pA2

f(x)xPPe — =C
( ) 1 —|—pA2
Consider the following real-valued function
1-+pA2
H(x,y) = yxPle — X .
(x.y)=y 1 oA

(We expect H(w;) = H(t, N(0,t)) to be close to zero.)

E(H(Wi11) — HWy) | G) = O(t"%")
IHWi 1) — Hwy)| = O(tP*1log? n).

Use generalized Azuma-Hoeffding inequality: a.a.s.

|H(w;) — H(wy,)| = O(n'/?P%2 10g® ).
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Spatial Preferred Attachment (SPA) Model

Degree distribution

Out-degree: An important difference between the SPA model
and many other models is that the out-degree is not a
parameter of the model, but is the result of a stochastic
process.

Theorem (Aiello, Bonato, Cooper, Janssen, Pratat)

A.a.s.

logt
(ggggtdeg (vi,t) > (1 + 0(1))plog o

Prafat Modelling self-organizing networks



Spatial Preferred Attachment (SPA) Model

Degree distribution

Out-degree: An important difference between the SPA model
and many other models is that the out-degree is not a
parameter of the model, but is the result of a stochastic
process.

Theorem (Aiello, Bonato, Cooper, Janssen, Pratat)

A.a.s.

logt
(gg?gtdeg (vi,t) > (1 + 0(1))plog o

However, a.a.s. all nodes have out-degree O(log? t).

Theorem (Aiello, Bonato, Cooper, Janssen, Pratat)

A.a.s. degt (v, t) = O(log?® t).
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Spatial Preferred Attachment (SPA) Model

Sparse cuts

v, e /!
Let us partition the vertex set V; as follows:

]
Vi = {XZ(Xan,---,Xm)G Vi Xy <2}

and V{ = Vi \ V].
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Spatial Preferred Attachment (SPA) Model

Sparse cuts

Theorem (Cooper, Frieze, Pratat)

A.a.s. the following holds | V{| = (1 + o(1))t/2,
[V{'| = (1+o0(1))t/2, and

[E(VY, Vi) = Ot =1/mPAitlog® t) = oft).
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Spatial Preferred Attachment (SPA) Model

Diameter

Let /(v;, v;) denote the length of the shortest directed path from
v to v; if such a path exists, and let /(v;, v;) = 0 otherwise.

The directed diameter of a graph G; is defined as

D(G;) = max (v, V).

1<i<j<t
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Spatial Preferred Attachment (SPA) Model

Diameter

Let /(v;, v;) denote the length of the shortest directed path from
v to v; if such a path exists, and let /(v;, v;) = 0 otherwise.

The directed diameter of a graph G; is defined as

D(G;) = max (v, V).

1<i<j<t

Theorem (Cooper, Frieze, Pratat)

There exists absolute constant ¢y such that a.a.s.

D(G;) < cqlogt.
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Spatial Preferred Attachment (SPA) Model

Diameter

Theorem (Cooper, Frieze, Pratat)

There exists absolute constant ¢y such that a.a.s.

D(Gt) < cqlogt.

Theorem (Cooper, Frieze, Pratat)
There exists absolute constant ¢, such that a.a.s.

cologt
D > .
(G) = loglog t

(The lower bound requires the additional assumption that
Aq < 3Ap, and it is showed for dimension 2 only. However, it
can be easily generalized.)
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Spatial Preferred Attachment (SPA) Model

Estimating distnaces

The distance between u and v can be estimated from the graph
properties (cn(u, v, n), deg™ (u) and deg™ (v)).

Theore anssen, Pratat, Wilson)

Theorem 3.1. Let w = w(n) be any function tending to infinity together with n.
The following holds a.a.s. Let v, and v be vertices such that
k = deg(vi,n) > deg(vr,n) = £ > w?logn
in a graph generated by the SPA model. Let d = d(v, ve) be the distance between
v and v in the metric space. Finally, let T = f~(¢/(wlogn)). Then,
Case 1. Ifd > e(wlogn/T)/™ for some € > 0, then
en(ug, v, ) = O(wlogn).

Case 2. If k> (1+ )¢ for some € > 0 and

s (M2) (22" (()) o

then
(v o5, m) = (1+ o(1))pL.
k= (1+0D) and d < (k/m)/™ = (1+ o(1))(¢/n)!m, then
(v, o5, ) = (1+ 0(1))pt as well
Case 3. If k> (1+ )£ for some e >0 and
Vm
(%) = (%) <d < (wlogn/T)!™, )

then

(ean? i pAr/m
en(ve, vi,m) = Ciy 7 P e (1 +0 ((i—t) )) ; 0]

where iy = f'(k) and i, = f'(€) and C = pA* AT e
If k= (14 0(1))€ and e(k/n)!/™ < d < (wlogn/T)\/™ for some & >0,

then
. 44) )

Pratat



Spatial Preferred Attachment (SPA) Model

Estimating distnaces

The distance between u and v can be estimated from the graph
properties (cn(u, v, n), deg™ (uv) and deg™ (v)).

Actual distance vs. estimated distance from simulated data
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Future work

Outline

Q Future work
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Future work
Giant component

Conjecture (Cooper, Frieze, Pratat)

ps = (2A; + 2A5)~ ! is the threshold for the giant component.

B

@A =1,A=1 (b)A =1,A=3 (c)A =3, A =1

The clustering coefficient of a vertex of degree k is of order 1/k.

Prafat Modelling self-organizing networks




Future work
Common directions

@ Adapt the model to specific types of real-world networks
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Future work
Common directions

@ Adapt the model to specific types of real-world networks
@ Find the right parameters for power law exponent etc.
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Future work
Common directions

@ Adapt the model to specific types of real-world networks
@ Find the right parameters for power law exponent etc.
@ Validate the model by comparing graph properties
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Future work
Common directions

@ Adapt the model to specific types of real-world networks

@ Find the right parameters for power law exponent etc.

@ Validate the model by comparing graph properties

@ ‘Social learning in evolving networks’ — design a model
with vertices moving
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Future work

Spatial Preferred Attachment (SPA) Model

@ Generalize the model:

Node and edge deletion

Adding edges to existing nodes
Updating the out-links of a node

Shifting coordinates (“learning process”)
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Future work

Spatial Preferred Attachment (SPA) Model

@ Generalize the model:
e Node and edge deletion
e Adding edges to existing nodes
e Updating the out-links of a node
e Shifting coordinates (“learning process”)

@ Undirected graphs
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Future work

Spatial Preferred Attachment (SPA) Model

@ Generalize the model:

e Node and edge deletion

e Adding edges to existing nodes

e Updating the out-links of a node

e Shifting coordinates (“learning process”)
@ Undirected graphs
@ Non-uniform distribution of points
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Future work

Spatial Preferred Attachment (SPA) Model

@ Generalize the model:

e Node and edge deletion

e Adding edges to existing nodes

e Updating the out-links of a node

e Shifting coordinates (“learning process”)
@ Undirected graphs
@ Non-uniform distribution of points

@ Use the model to estimate the underlying geometry of the
nodes.
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Future work

Story 1: Social Learning (BlackBerry)

Consider two homophily hypotheses:

@ the likelihood of tie formation between two actors increases
with greater similarities in the actors’ tastes

@ the likelihood of tie deletion between two actors increases
with greater differences in the actors’ tastes

The role of social influence—third main hypothesis:

@ actors tend to adopt the tastes of others they share direct
connections with
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Story 2: GEO-P model and domination number

FB100 DS Size & MGEO-P Upperbound
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