

Modelling self-organizing networks

Paweł Prałat

Department of Mathematics, Ryerson University, Toronto, ON

Cargese Fall School on Random Graphs
(September 2015)

Outline

1 Introduction

2 Spatial Preferred Attachment (SPA) Model

3 Future work

Multidisciplinary research

Pure Mathematics:

- Graph Theory
- Random Structures and Algorithms
- Modelling

Applied Computer Science:

- ...

Social Science:

for example,

- *Homophily, contagion and the decay of community structure in self-organizing networks* (PNAS paper!)
- *Social learning in a large, evolving network* (BlackBerry)

Multidisciplinary research

Applied Computer Science:

- *Utilizing big data for business-to-business matching and recommendation system* (ComLinked Corp., 2014-15)
- *A self-organizing dynamic network model increasing the efficiency of outdoor digital billboards* (KPM, 2014)
- *Exploiting Big Data for Customized Online News Recommendation System* (The Globe and Mail, 2014)
- *Personalized Mobile Recommender System* (BlackBerry, 2013-14)
- *Intelligent Rating System* (Mako, 2012-13)
- *Dynamic clustering and prediction of taxi service demand* (Winston, 2012)

Multidisciplinary research

Applied Computer Science (currently):

- *Web Visitor Engagement Measurement and Maximization* (The Globe and Mail, 2014-15)
- *Hypergraphs and their applications* (Tutte Institute for Mathematics and Computing)
- *Relationship Mapping Analytics for Fundraising and Sales Prospect Research* (Charter Press Ltd.)

Applied Computer Science (near future):

- *Network Modeling of Trust in Online Scientific Information Sources* (Bell Labs)
- ...

Outline

1 Introduction

2 Spatial Preferred Attachment (SPA) Model

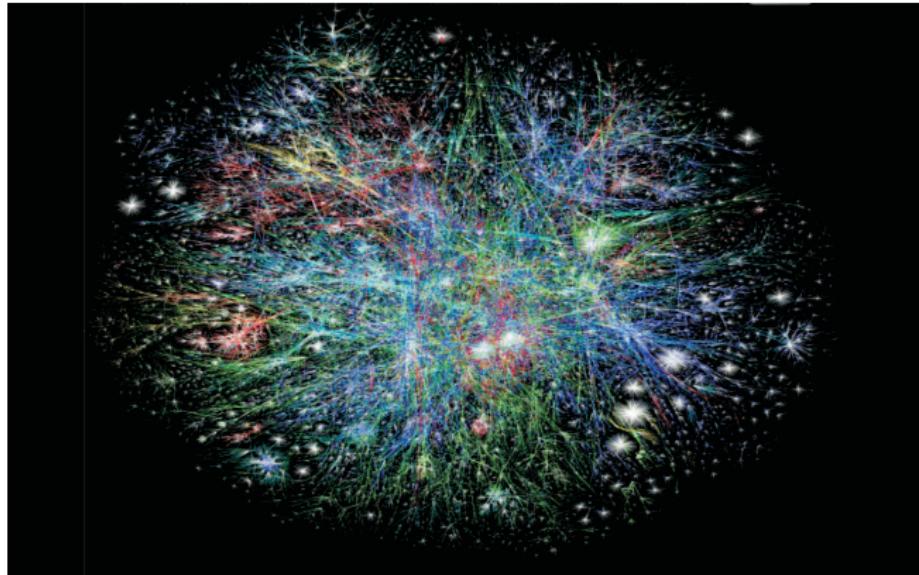
3 Future work

Big Data Era

Every human-technology interaction, or sensor network, generates new data points that can be viewed, based on the type of interaction, as a self-organizing network.

The web graph

nodes: *web pages* edges: *hyperlinks*

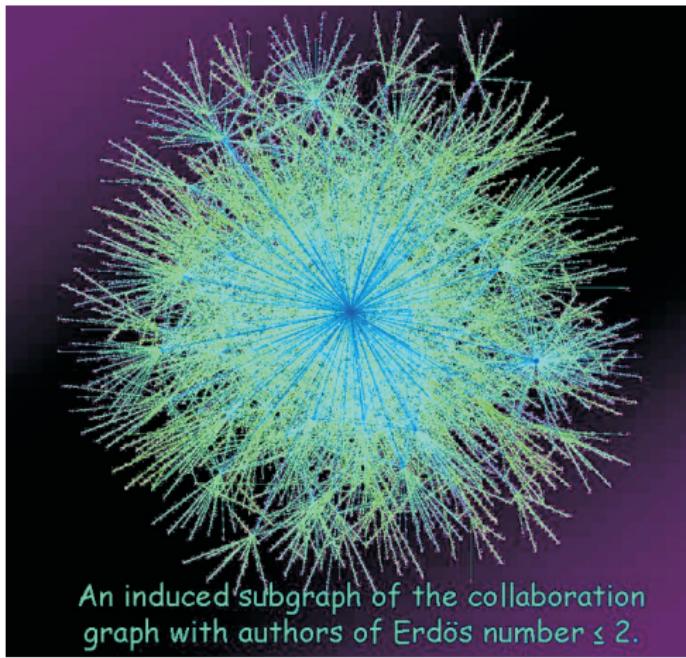


Social networks

nodes: *people* edges: *social interaction*
(e.g. Facebook friendship)

Social networks

nodes: *scientists* edges: *co-authorship*



Are these networks similar?

Are these networks similar?

Answer: **Yes!**

- large scale
- ‘small world’ property
(e.g. low diameter of $O(\log n)$, high clustering coefficient)
- degree distribution
(power-law, the number of nodes of degree k is proportional to $k^{-\gamma}$)
- bad expansion
- etc.

Why model self-organizing networks?

- uncover the generative mechanisms underlying self-organizing networks,
- models are a predictive tool,
- community detection,
- improving search engines (the web graph),
- spam and worm defense,
- nice mathematical challenges.

Why model self-organizing networks?

- uncover the generative mechanisms underlying self-organizing networks,
- models are a predictive tool,
- community detection,
- improving search engines (the web graph),
- spam and worm defense,
- nice mathematical challenges.

(For example, PA model justifies “rich get richer” principle.)

A good graph model should...

- ...reproduce experimentally observed graph properties:
 - degree distribution follows a power law,
 - small average distance between nodes, (“small world”),
 - locally dense, globally sparse,
 - expansion properties (conductance),...
- ...include a credible model for agent behaviour guiding the formation of the link structure,
- ...agents should not need global knowledge of the network to determine their link environment.

A good graph model should...

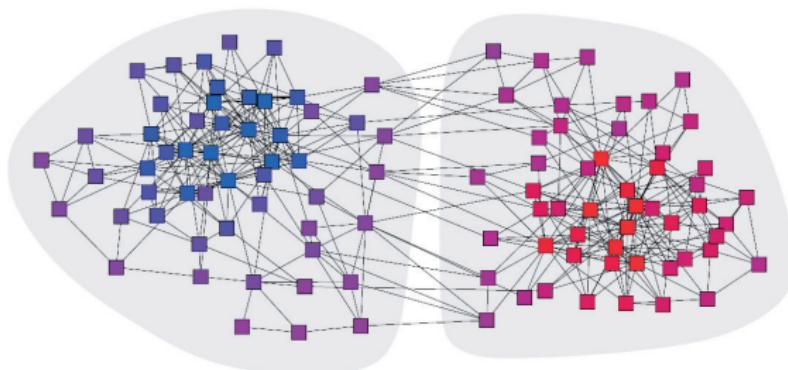
- ...reproduce experimentally observed graph properties:
 - degree distribution follows a power law,
 - small average distance between nodes, (“small world”),
 - locally dense, globally sparse,
 - expansion properties (conductance),...
- ...include a credible model for agent behaviour guiding the formation of the link structure,
- ...agents should not need global knowledge of the network to determine their link environment.

A good graph model should...

- ...reproduce experimentally observed graph properties:
 - degree distribution follows a power law,
 - small average distance between nodes, (“small world”),
 - locally dense, globally sparse,
 - expansion properties (conductance),...
- ...include a credible model for agent behaviour guiding the formation of the link structure,
- ...agents should not need global knowledge of the network to determine their link environment.

Common assumptions in the study of real-life networks

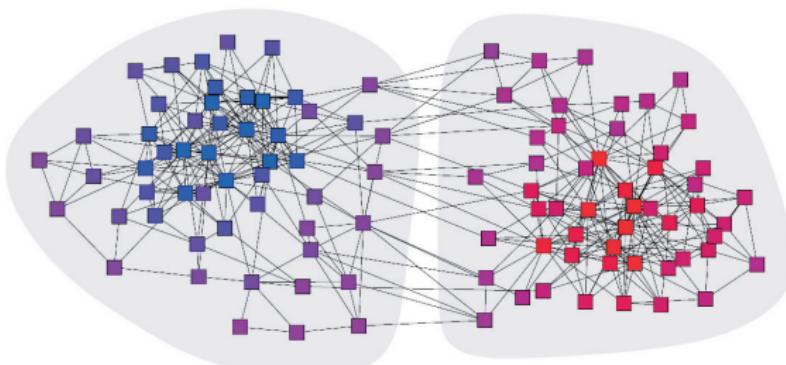
- Communities in a social network can be recognized as densely linked subgraphs.



- Web pages with many common neighbours contain related topics.
- Co-authors usually have similar research interests, etc.

Common assumptions in the study of real-life networks

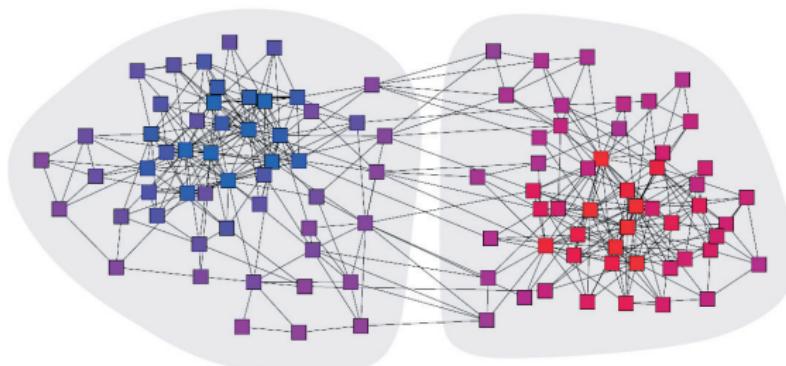
- Communities in a social network can be recognized as densely linked subgraphs.



- Web pages with many common neighbours contain related topics.
- Co-authors usually have similar research interests, etc.

Common assumptions in the study of real-life networks

- Communities in a social network can be recognized as densely linked subgraphs.



- Web pages with many common neighbours contain related topics.
- Co-authors usually have similar research interests, etc.

Underlying metric

Such assumptions, commonly used in experimental and heuristic treatments of real-life networks, imply that there is an *a priori* “community structure” or “relatedness measure” of the nodes, which is reflected by the link structure of the graph.

The network is a visible manifestation of an underlying hidden reality.

Spatial graph models

- Nodes correspond to points in a (high-dimensional) feature space.
- The metric distance between nodes is a measure of “closeness.”
- The edge generation is influenced by the position and relative distance of the nodes.

This gives a basis for reverse engineering: given a graph, and assuming a spatial model, it is possible to estimate the distribution of nodes in the feature space from information contained in the graph structure.

Spatial graph models

- Nodes correspond to points in a (high-dimensional) feature space.
- The metric distance between nodes is a measure of “closeness.”
- The edge generation is influenced by the position and relative distance of the nodes.

This gives a basis for reverse engineering: given a graph, and assuming a spatial model, it is possible to estimate the distribution of nodes in the feature space from information contained in the graph structure.

Outline

1 Introduction

2 Spatial Preferred Attachment (SPA) Model

3 Future work

Spatial Preferred Attachment (SPA) Model

- Nodes are points in *Euclidean space* (randomly and uniformly distributed).

We let S be the unit hypercube in \mathbb{R}^m , equipped with the torus metric derived from any of the L_p norms. This means that for any two points x and y in S ,

$$d(x, y) = \min \{ \|x - y + u\|_p : u \in \{-1, 0, 1\}^m \}.$$

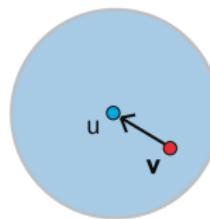
Spatial Preferred Attachment (SPA) Model

- Nodes are points in *Euclidean space* (randomly and uniformly distributed).
- Each node has a “*sphere of influence*” centered at the node. The size is determined by the *in-degree* of the node.

$$|S(v, t)| = \frac{A_1 \deg^-(v, t) + A_2}{t}$$

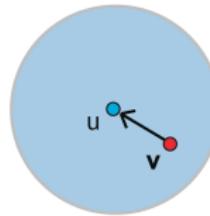
Spatial Preferred Attachment (SPA) Model

- Nodes are points in *Euclidean space* (randomly and uniformly distributed).
- Each node has a “*sphere of influence*” centered at the node. The size is determined by the *in-degree* of the node.
- A new node v can only link to an existing node u if v falls within the sphere of influence of u .



Spatial Preferred Attachment (SPA) Model

- Nodes are points in *Euclidean space* (randomly and uniformly distributed).
- Each node has a “*sphere of influence*” centered at the node. The size is determined by the *in-degree* of the node.
- A new node v can only link to an existing node u if v falls within the sphere of influence of u .
- If v falls into the sphere of influence u , it will link to u with probability p .



Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model from previous models:

- A new node can choose its links purely based on *local* information.
- Since a new node links to each visible node independently, the out-degree is not a constant nor chosen according to a pre-determined distribution, but arises naturally from the model.
- The varying size of the influence regions allows for the occasional *long links*, edges between nodes that are spaced far apart. (This implies a certain “small world” property.)

Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model from previous models:

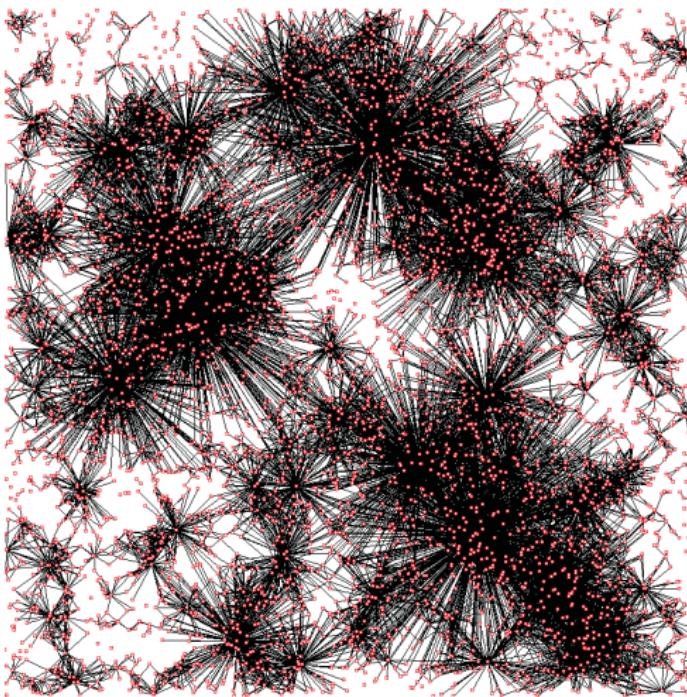
- A new node can choose its links purely based on *local* information.
- Since a new node links to each visible node independently, the out-degree is not a constant nor chosen according to a pre-determined distribution, but arises naturally from the model.
- The varying size of the influence regions allows for the occasional *long links*, edges between nodes that are spaced far apart. (This implies a certain “small world” property.)

Spatial Preferred Attachment (SPA) Model

There are at least three features that distinguish the SPA model from previous models:

- A new node can choose its links purely based on *local* information.
- Since a new node links to each visible node independently, the out-degree is not a constant nor chosen according to a pre-determined distribution, but arises naturally from the model.
- The varying size of the influence regions allows for the occasional *long links*, edges between nodes that are spaced far apart. (This implies a certain “small world” property.)

Spatial Preferred Attachment (SPA) Model



A simulation of the SPA model on the unit square with
 $t = 5,000$ and $p = 1$

Degree distribution

Power law with exponent $x = 1 + \frac{1}{p}$.

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)

A.a.s.

$$N(0, t) = (1 + o(1)) \frac{t}{1 + p},$$

and for all k satisfying $1 \leq k \leq \left(\frac{t}{\log^8 t}\right)^{\frac{p}{4p+2}}$,

$$N(k, t) = (1 + o(1)) \frac{p^k}{1 + p + kp} t \prod_{j=0}^{k-1} \frac{j}{1 + p + jp}.$$

(The differential equations method is used.)

A little taste of DEs method

Definition

A **martingale** is a sequence X_0, X_1, \dots of random variables defined on the random process such that

$$\mathbb{E}(X_{n+1} \mid X_0, X_1, \dots, X_n) = X_n.$$

In most applications, the martingale satisfies the property that $\mathbb{E}(X_{n+1} \mid X_0, X_1, \dots, X_n) = \mathbb{E}(X_{n+1} \mid X_n) = X_n$.

Example

Toss a coin n times. Let S_n be the difference between the number of heads and the number of tails after n tosses.

A little taste of DEs method

Definition

A **martingale** is a sequence X_0, X_1, \dots of random variables defined on the random process such that

$$\mathbb{E}(X_{n+1} \mid X_0, X_1, \dots, X_n) = X_n.$$

In most applications, the martingale satisfies the property that $\mathbb{E}(X_{n+1} \mid X_0, X_1, \dots, X_n) = \mathbb{E}(X_{n+1} \mid X_n) = X_n$.

Example

Toss a coin n times. Let S_n be the difference between the number of heads and the number of tails after n tosses.

A little taste of DEs method

Theorem (Hoeffding-Azuma inequality)

Let X_0, X_1, \dots be a martingale. Suppose that there exist constants $c_k > 0$ such that

$$|X_k - X_{k-1}| \leq c_k$$

for each $k \leq n$. Then, for every $t > 0$,

$$\mathbb{P}(X_n \geq \mathbb{E}X_n + t) \leq \exp\left(-\frac{t^2}{2 \sum_{k=1}^n c_k^2}\right),$$

$$\mathbb{P}(X_n \leq \mathbb{E}X_n - t) \leq \exp\left(-\frac{t^2}{2 \sum_{k=1}^n c_k^2}\right).$$

A little taste of DEs method

$$\mathbb{E}(N(0, t+1) - N(0, t) \mid N(0, t)) = 1 - \frac{N(0, t)pA_2}{t}$$

We first transform $N(0, t)$ into something close to a martingale. It provides some insight if we define real function $f(x)$ to model the behaviour of the scaled random variable $\frac{N(0, xn)}{n}$. If we presume that the changes in the function correspond to the expected changes of random variable, we obtain the following differential equation

$$f'(x) = 1 - f(x) \frac{pA_2}{x}$$

with the initial condition $f(0) = 0$.

A little taste of DEs method

The general solution of this equation can be put in the form

$$f(x)x^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2} = C.$$

Consider the following real-valued function

$$H(x, y) = yx^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2}.$$

(We expect $H(\mathbf{w}_t) = H(t, N(0, t))$ to be close to zero.)

$$\begin{aligned}\mathbb{E}(H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t) \mid G_t) &= O(t^{pA_2-1}) \\ |H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t)| &= O(t^{pA_2} \log^2 n).\end{aligned}$$

Use generalized Azuma-Hoeffding inequality: a.a.s.

$$|H(\mathbf{w}_t) - H(\mathbf{w}_{t_0})| = O(n^{1/2+pA_2} \log^3 n).$$

A little taste of DEs method

The general solution of this equation can be put in the form

$$f(x)x^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2} = C.$$

Consider the following real-valued function

$$H(x, y) = yx^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2}.$$

(We expect $H(\mathbf{w}_t) = H(t, N(0, t))$ to be close to zero.)

$$\begin{aligned}\mathbb{E}(H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t) \mid \mathcal{G}_t) &= O(t^{pA_2-1}) \\ |H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t)| &= O(t^{pA_2} \log^2 n).\end{aligned}$$

Use generalized Azuma-Hoeffding inequality: a.a.s.

$$|H(\mathbf{w}_t) - H(\mathbf{w}_{t_0})| = O(n^{1/2+pA_2} \log^3 n).$$

A little taste of DEs method

The general solution of this equation can be put in the form

$$f(x)x^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2} = C.$$

Consider the following real-valued function

$$H(x, y) = yx^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2}.$$

(We expect $H(\mathbf{w}_t) = H(t, N(0, t))$ to be close to zero.)

$$\begin{aligned}\mathbb{E}(H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t) \mid \mathcal{G}_t) &= O(t^{pA_2-1}) \\ |H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t)| &= O(t^{pA_2} \log^2 n).\end{aligned}$$

Use generalized Azuma-Hoeffding inequality: a.a.s.

$$|H(\mathbf{w}_t) - H(\mathbf{w}_{t_0})| = O(n^{1/2+pA_2} \log^3 n).$$

A little taste of DEs method

The general solution of this equation can be put in the form

$$f(x)x^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2} = C.$$

Consider the following real-valued function

$$H(x, y) = yx^{pA_2} - \frac{x^{1+pA_2}}{1+pA_2}.$$

(We expect $H(\mathbf{w}_t) = H(t, N(0, t))$ to be close to zero.)

$$\begin{aligned}\mathbb{E}(H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t) \mid G_t) &= O(t^{pA_2-1}) \\ |H(\mathbf{w}_{t+1}) - H(\mathbf{w}_t)| &= O(t^{pA_2} \log^2 n).\end{aligned}$$

Use generalized Azuma-Hoeffding inequality: a.a.s.

$$|H(\mathbf{w}_t) - H(\mathbf{w}_{t_0})| = O(n^{1/2+pA_2} \log^3 n).$$

Degree distribution

Out-degree: An important difference between the SPA model and many other models is that the out-degree is not a parameter of the model, but is the result of a stochastic process.

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)

A.a.s.

$$\max_{0 \leq i \leq t} \deg^+(v_i, t) \geq (1 + o(1))p \frac{\log t}{\log \log t}.$$

However, a.a.s. all nodes have out-degree $O(\log^2 t)$.

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)

A.a.s. $\deg^+(v_t, t) = O(\log^2 t)$.

Degree distribution

Out-degree: An important difference between the SPA model and many other models is that the out-degree is not a parameter of the model, but is the result of a stochastic process.

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)

A.a.s.

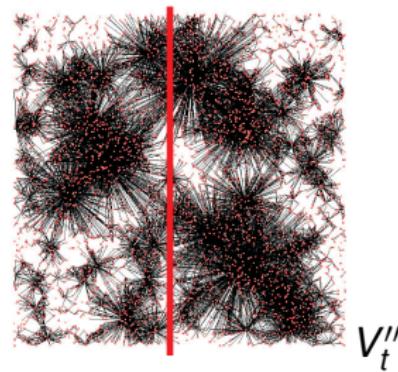
$$\max_{0 \leq i \leq t} \deg^+(v_i, t) \geq (1 + o(1))p \frac{\log t}{\log \log t}.$$

However, a.a.s. all nodes have out-degree $O(\log^2 t)$.

Theorem (Aiello, Bonato, Cooper, Janssen, Prałat)

A.a.s. $\deg^+(v_t, t) = O(\log^2 t)$.

Sparse cuts

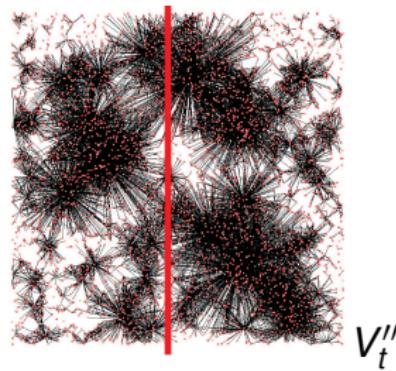


Let us partition the vertex set V_t as follows:

$$V'_t = \left\{ x = (x_1, x_2, \dots, x_m) \in V_t : x_1 < \frac{1}{2} \right\}$$

and $V''_t = V_t \setminus V'_t$.

Sparse cuts



Theorem (Cooper, Frieze, Prałat)

A.a.s. the following holds $|V'_t| = (1 + o(1))t/2$, $|V''_t| = (1 + o(1))t/2$, and

$$|E(V'_t, V''_t)| = O(t^{\max\{1-1/m, pA_1\}} \log^5 t) = o(t).$$

Diameter

Let $l(v_i, v_j)$ denote the length of the shortest directed path from v_j to v_i if such a path exists, and let $l(v_i, v_j) = 0$ otherwise.

The directed diameter of a graph G_t is defined as

$$D(G_t) = \max_{1 \leq i < j \leq t} l(v_i, v_j).$$

Diameter

Let $l(v_i, v_j)$ denote the length of the shortest directed path from v_j to v_i if such a path exists, and let $l(v_i, v_j) = 0$ otherwise.

The directed diameter of a graph G_t is defined as

$$D(G_t) = \max_{1 \leq i < j \leq t} l(v_i, v_j).$$

Theorem (Cooper, Frieze, Prałat)

There exists absolute constant c_1 such that a.a.s.

$$D(G_t) \leq c_1 \log t.$$

Diameter

Theorem (Cooper, Frieze, Prałat)

There exists absolute constant c_1 such that a.a.s.

$$D(G_t) \leq c_1 \log t.$$

Theorem (Cooper, Frieze, Prałat)

There exists absolute constant c_2 such that a.a.s.

$$D(G_t) \geq \frac{c_2 \log t}{\log \log t}.$$

(The lower bound requires the additional assumption that $A_1 < 3A_2$, and it is showed for dimension 2 only. However, it can be easily generalized.)

Estimating distances

The distance between u and v can be estimated from the graph properties ($cn(u, v, n)$, $\deg^-(u)$ and $\deg^-(v)$).

Theorem (Janssen, Prałat, Wilson)

Theorem 3.1. Let $\omega = \omega(n)$ be any function tending to infinity together with n . The following holds a.a.s. Let v_k and v_ℓ be vertices such that

$$k = \deg(v_k, n) \geq \deg(v_\ell, n) = \ell \geq \omega^2 \log n$$

in a graph generated by the SPA model. Let $d = d(v_k, v_\ell)$ be the distance between v_k and v_ℓ in the metric space. Finally, let $T = f^{-1}(\ell/(\omega \log n))$. Then,

Case 1. If $d \geq \varepsilon(\omega \log n/T)^{1/m}$ for some $\varepsilon > 0$, then

$$cn(v_\ell, v_k, n) = O(\omega \log n).$$

Case 2. If $k \geq (1 + \varepsilon)\ell$ for some $\varepsilon > 0$ and

$$d \leq \left(\frac{A_1 k + A_2}{c_m n} \right)^{1/m} - \left(\frac{A_1 \ell + A_2}{c_m n} \right)^{1/m} = \Theta \left(\left(\frac{k}{n} \right)^{1/m} \right), \quad (5)$$

then

$$cn(v_\ell, v_k, n) = (1 + o(1))p\ell.$$

If $k = (1 + o(1))\ell$ and $d \ll (k/n)^{1/m} = (1 + o(1))(\ell/n)^{1/m}$, then $cn(v_\ell, v_k, n) = (1 + o(1))p\ell$ as well.

Case 3. If $k \geq (1 + \varepsilon)\ell$ for some $\varepsilon > 0$ and

$$\left(\frac{A_1 k + A_2}{c_m n} \right)^{1/m} - \left(\frac{A_1 \ell + A_2}{c_m n} \right)^{1/m} < d \ll (\omega \log n/T)^{1/m}, \quad (6)$$

then

$$cn(v_\ell, v_k, n) = C i_k^{-\frac{(pA_1)^2}{1-pA_1}} i_\ell^{-pA_1} d^{-\frac{m p A_1}{1-pA_1}} \left(1 + O \left(\left(\frac{i_k}{i_\ell} \right)^{pA_1/m} \right) \right), \quad (7)$$

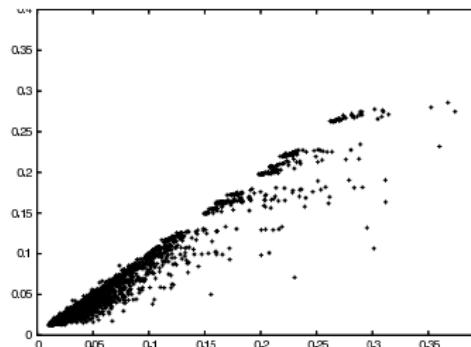
where $i_k = f^{-1}(k)$ and $i_\ell = f^{-1}(\ell)$ and $C = pA_1^{-1} A_2^{\frac{1}{1-pA_1}} c_m^{-\frac{pA_1}{1-pA_1}}$.

If $k = (1 + o(1))\ell$ and $\varepsilon(k/n)^{1/m} < d \ll (\omega \log n/T)^{1/m}$ for some $\varepsilon > 0$, then

$$cn(v_\ell, v_k, n) = \Theta \left(i_k^{-\frac{(pA_1)^2}{1-pA_1}} i_\ell^{-pA_1} d^{-\frac{m p A_1}{1-pA_1}} \right).$$

Estimating distances

The distance between u and v can be estimated from the graph properties ($cn(u, v, n)$, $\deg^-(u)$ and $\deg^-(v)$).



Actual distance vs. estimated distance from simulated data

Outline

1 Introduction

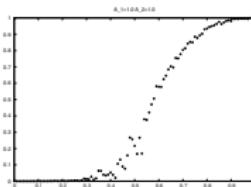
2 Spatial Preferred Attachment (SPA) Model

3 Future work

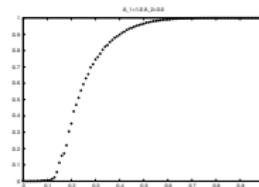
Giant component

Conjecture (Cooper, Frieze, Prałat)

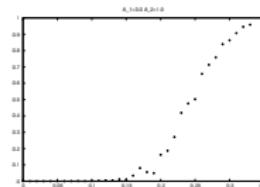
$p_3 := (2A_1 + 2A_2)^{-1}$ is the threshold for the giant component.



(a) $A_1 = 1, A_2 = 1$



(b) $A_1 = 1, A_2 = 3$



(c) $A_1 = 3, A_2 = 1$

Conjecture

The clustering coefficient of a vertex of degree k is of order $1/k$.

Common directions

- Adapt the model to specific types of real-world networks
- Find the right parameters for power law exponent etc.
- Validate the model by comparing graph properties
- ‘Social learning in evolving networks’ — design a model with vertices moving

Common directions

- Adapt the model to specific types of real-world networks
- Find the right parameters for power law exponent etc.
- Validate the model by comparing graph properties
- ‘Social learning in evolving networks’ — design a model with vertices moving

Common directions

- Adapt the model to specific types of real-world networks
- Find the right parameters for power law exponent etc.
- Validate the model by comparing graph properties
- ‘Social learning in evolving networks’ — design a model with vertices moving

Common directions

- Adapt the model to specific types of real-world networks
- Find the right parameters for power law exponent etc.
- Validate the model by comparing graph properties
- ‘Social learning in evolving networks’ — design a model with vertices moving

Spatial Preferred Attachment (SPA) Model

- Generalize the model:
 - Node and edge deletion
 - Adding edges to existing nodes
 - Updating the out-links of a node
 - Shifting coordinates (“learning process”)
- Undirected graphs
- Non-uniform distribution of points

- Use the model to estimate the underlying geometry of the nodes.

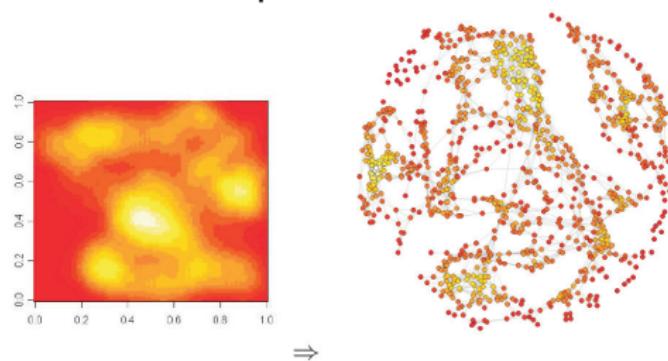
Spatial Preferred Attachment (SPA) Model

- Generalize the model:
 - Node and edge deletion
 - Adding edges to existing nodes
 - Updating the out-links of a node
 - Shifting coordinates (“learning process”)
- Undirected graphs
- Non-uniform distribution of points

- Use the model to estimate the underlying geometry of the nodes.

Spatial Preferred Attachment (SPA) Model

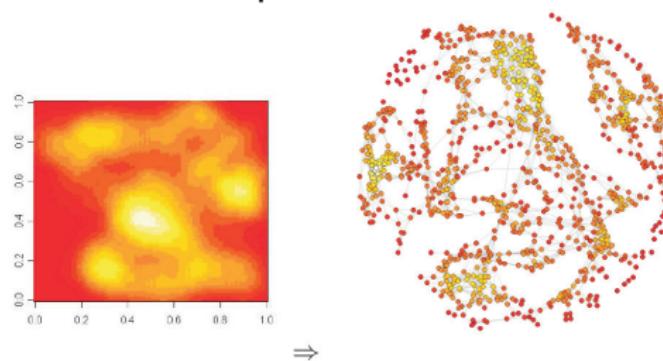
- Generalize the model:
 - Node and edge deletion
 - Adding edges to existing nodes
 - Updating the out-links of a node
 - Shifting coordinates (“learning process”)
- Undirected graphs
- Non-uniform distribution of points



- Use the model to estimate the underlying geometry of the nodes.

Spatial Preferred Attachment (SPA) Model

- Generalize the model:
 - Node and edge deletion
 - Adding edges to existing nodes
 - Updating the out-links of a node
 - Shifting coordinates (“learning process”)
- Undirected graphs
- Non-uniform distribution of points



- Use the model to estimate the underlying geometry of the nodes.

Story 1: Social Learning (BlackBerry)

Consider two homophily hypotheses:

- the likelihood of tie formation between two actors increases with greater similarities in the actors' tastes
- the likelihood of tie deletion between two actors increases with greater differences in the actors' tastes

The role of social influence—third main hypothesis:

- actors tend to adopt the tastes of others they share direct connections with

Story 2: GEO-P model and domination number

