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Tutte’s conjecture

Definition
A nowhere-zero 3-flow in an undirected graph G = (V ,E) is an
orientation of its edges and a function f assigning a number
f (e) ∈ {1,2} to any oriented edge e such that for any vertex
v ∈ V , ∑

e∈D+(v)

f (e)−
∑

e∈D−(v)

f (e) = 0,

where D+(v) is the set of all edges emanating from v , and
D−(v) is the set of all edges entering v .

Conjecture (Tutte, 1972)
Any 4-edge connected graph admits a nowhere-zero 3-flow.
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Tutte’s conjecture

Conjecture (Tutte, 1972)
Any 4-edge connected graph admits a nowhere-zero 3-flow.

For a long time, it was not even known whether or not there is a
finite k so that any k -edge connected graph has a
nowhere-zero 3-flow. . .

Theorem (Lai, Zhang, 1992)

k = 4 log2 n works for any n-vertex graph.

Theorem (Alon, Linial, Meshulam, 1991)
k = 2 log2 n works for any n-vertex graph (somewhat implicit
but stronger form).
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Tutte’s conjecture

Conjecture (Tutte, 1972)
Any 4-edge connected graph admits a nowhere-zero 3-flow.

. . .now we know!

Theorem (Thomassen, 2012)
Every 8-edge-connected graph admits a nowhere-zero 3-flow.

Theorem (Lovász, Thomassen, Wu, Zhang, 2013)

Every 6-edge-connected graph admits a nowhere-zero 3-flow.
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Tutte’s conjecture

Conjecture (Tutte, 1972)
Any 4-edge connected graph admits a nowhere-zero 3-flow.

A graph admits a nowhere-zero 3-flow if and only if it has an
edge orientation in which the difference between the outdegree
and the indegree of any vertex is divisible by 3 (see, e.g.,
Seymour).

It is enough to prove the conjecture for 5-regular graphs (see,
e.g., da Silva and Dahab).

Conjecture (Tutte, 1972, equivalent form)
Every 4-edge connected 5-regular graph has an edge
orientation in which every outdegree is either 4 or 1.
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Jaeger’s conjecture

Conjecture (Tutte, 1972, equivalent form)
Every 4-edge connected 5-regular graph has an edge
orientation in which every outdegree is either 4 or 1.

Conjecture (Jaeger, 1988, equivalent form)

For any fixed integer p ≥ 1, every 4p-edge connected,
(4p + 1)-regular graph has a mod (2p + 1)-orientation, that is,
an edge orientation in which every outdegree is either 3p + 1 or
p.

Still open and appears to be difficult!
Our goal: prove that its assertion holds for almost all
(4p + 1)-regular graphs.
Fact: typical (4p + 1)-regular graph is (4p + 1)-edge connected.
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Jaeger conjecture — result

Gn,d — the probability space of random d = (4p + 1)-regular
n-vertex graphs with uniform probability distribution (d is fixed;
n is even since d is odd).

A property holds ‘asymptotically almost surely’ (a.a.s.) if the
probability that a member G ∈ Gn,d satisfies the property tends
to 1 as n→∞.

Theorem (Alon and Prałat, 2011)
There exists a finite p0 so that for any fixed integer p > p0, a
random (4p + 1)-regular graph G admits, a.a.s., a
mod (2p + 1)-orientation, that is, an orientation in which every
outdegree is either 3p + 1 or p.
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Jaeger conjecture — main observation
Theorem (Lai , Shao, Wu, and Zhou, 2009)

Let G be a (4p + 1)-regular graph for some p ∈ Z+. Then
G = (V ,E) has a mod (2p + 1)-orientation iff there is a partition
V = V+ ∪ V− with |V+| = |V−| such that for any S ⊆ V,

|E(S,Sc)| ≥ (2p + 1)
∣∣|S ∩ V+| − |S ∩ V−|

∣∣.
Theorem (Alon and Prałat, 2011)

There exists c > 0 so that the following holds. Let G = (V ,E)
be a random d = (4p + 1)-regular graph for some p ∈ N. Then,
a.a.s. V has a partition V = V+ ∪ V− with |V+| = |V−| such
that for any S ⊆ V,

|E(S,Sc)| ≥
(

2p +
1

2
√

2
√

p − cp3/8
) ∣∣|S ∩ V+| − |S ∩ V−|

∣∣.
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Tutte conjecture — result

The lower bound for p0 was not optimized, but it could not be
reduced to p0 = 1. Using the small subgraph conditioning
method of Robinson and Wormald we show the following.

Theorem (Prałat and Wormald, 2015+)
A random 5-regular graph Gn on n vertices a.a.s. admits a
nowhere-zero flow over Z3, that is, an edge orientation in which
every out-degree is either 1 or 4.
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Spectral graph theory

The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of a graph are the
eigenvalues of its adjacency matrix.

The value of λ = max(|λ2|, |λn|) for a random d-regular graphs
has been studied extensively.

Theorem (Friedman)
For every ε > 0 and G ∈ Gn,d ,

P(λ(G) ≤ 2
√

d − 1 + ε) = 1− o(1) .
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Expander Mixing Lemma

Lemma (Alon, Chung, 1988)

Let G be any d-regular graph with n vertices and set λ = λ(G).
Then for all S,T ⊆ V∣∣∣∣|E(S,T )| − d |S||T |

n

∣∣∣∣ ≤ λ√|S||T | .
(Note that S ∩ T does not have to be empty; |E(S,T )| is
defined to be the number of edges between S \ T to T plus
twice the number of edges that contain only vertices of S ∩ T .)
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Dense bisection

Condition
There exists a partition V = V+ ∪ V− with |V+| = |V−| = |V |/2
such that for any S ⊆ V,

|E(S,Sc)| ≥
(

2p +
1

2
√

2
√

p − cp3/8
) ∣∣|S ∩ V+| − |S ∩ V−|

∣∣.
Observation: For S = V+ (or S = V−) we need

|E(V+,V−)| ≥ (2p + Ω(
√

p))|V+| =
dn
4

+ Ω(
√

dn).

Therefore, it is natural to start with a proof that there is such a
dense bisection.
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Dense bisection

Proof.
- Since a random regular graph has only O(1) triangles in
expectation, a.a.s. there are o(n) triangles.
- Delete an arbitrary edge of each triangle.
- Apply the result of Shearer (1992) who showed that a
triangle-free graph G = (V ,E) with degree sequence
(d1,d2, . . . ,dn) has a cut of size at least |E |/2 + 1

8
√

2

∑n
i=1
√

di .
- Therefore, a.a.s. there is a cut (A,Ac) with

|E(A,Ac)| ≥ dn
4

+
1

8
√

2

√
dn − o(n).
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Dense bisection

Proof.
- The Expander Mixing Lemma implies that, a.a.s.(

1
2
− 1

d1/4

)
n < |A| <

(
1
2

+
1

d1/4

)
n.

- Now it is enough to modify the cut (A,Ac) by shifting at most
n/d1/4 vertices, to get a bisection cut (V+,V−) so that
|V+| = |V−| and |V+ \ A|+ |A \ V+| ≤ n/d1/4.
- Thus, we get that

|E(V+,V−)| ≥ dn
4

+
1

8
√

2

√
dn − 8d3/8n − o(n).
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Pairing model Pn,d (n = 6, d = 3)
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Pairing model Pn,d

The probability of a random pairing corresponding to a given
simple graph G is independent of the graph, hence the
restriction of the probability space of random pairings to simple
graphs is precisely Gn,d .

Moreover, a random pairing generates a simple graph with
probability asymptotic to e(1−d2)/4 depending on d .

Therefore, any event holding a.a.s. over the probability space of
random pairings also holds a.a.s. over the corresponding space
Gn,d .
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Consider Pn,5. Let Y be the number of valid orientations.

EY =

( n
n/2

)
5n(5n/2)!

M(5n)
∼
(

25
8

)n/2√
5,

where
M(s) =

s!

(s/2)!2s/2

is the number of perfect matchings of s points.

Indeed, there are
( n

n/2

)
ways to select in-vertices (since exactly

half of the vertices must be such), 5n ways to select one special
point in each vertex, which determines each point to be either
in or out, (5n/2)! ways to pair up the points so that each “in” is
paired with an “out”, and M(5n) pairings in total.
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It can be shown that

EY (Y − 1) ∼
(

25
8

)n 25√
21
,

and so
EY 2

(EY )2 ∼
5√
21
.

The second moment method fails, but just barely.

Solution: Under such circumstances, we can hope to apply the
small subgraph conditioning method.
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Small subgraph conditioning method

The distribution of Y is affected by the presence of certain
small but not too common subgraphs in the random
graph—usually the short cycles of given lengths.

Conditioning on the small subgraph counts affects EY , altering
it by some constant factor.

Luckily and yet mysteriously, such conditioning reduces the
variance of Y , to the point that conditioning on the numbers of
enough small subgraphs reduces the variance to any desired
small fraction of (EY )2.

compute some joint moments of Y with short cycle counts,
. . .then hope for the best (all constants work out).
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Let Xk (k ≥ 1) be the number of cycles of length k in Pn,5. It is
known that for each k ≥ 1, X1,X2, . . . ,Xk are asymptotically
independent Poisson random variables with

EXk =

(
n
k

)
(k − 1)!

2
5k4k M(5n − 2k)

M(5n)
→ λk :=

4k

2k
.

The next step is to show that for each k ≥ 1, there is a constant
µk such that

E(YXk )

EY
→ µk

and, more generally, such that the joint factorial moments
satisfy

E(Y [X1]j1 · · · [Xk ]jk )

EY
→

k∏
i=1

µji
i

for any fixed j1, . . . , jk .
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

We need to find the number of triples (P,C,O) where P is a
pairing, C a k -cycle of P and O an orientation of P (and then
divide by M(5n)). In fact, we count the triples (P,C,O) which
have i vertices on C with in-degree 2 in C (these are
in-vertices).
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

The number of ways to choose the pairs of (i.e. inducing the
edges of) the cycle.
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

The number of ways to select the remaining in- and
out-vertices.
Vertices on the cycle: i of in-degree 2 in C (in-vertices), i of
out-degree 2 in C (out-vertices), k − 2i of in/out degree 1 in C
(in- or out- vertices).
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

The number of ways to choose the special points of the vertices
of C.
It only needs to be done for vertices of in-degree 0 or 2 in C;
vertices of in-degree 1 in the cycle have their special point
already determined.
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

The number of ways to choose the special points of vertices
outside C.
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

The number of ways to pair up the points of appropriate types.
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E(YXk )

EY
∼

∑
0≤i≤k/2

ai
(5 · 4)k [n]k

( n−2i
n/2−i

)
32i5n−k (5n/2− k)!

2k
( n

n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai

2k

(
8
5

)k (3
2

)2i

,

where ai is the number of orientations of the cycle C of length k
with i vertices of in-degree 2.

Hence,

µk :=
1

2k
·
(

8
5

)k ∑
0≤i≤k/2

ai

(
3
2

)2i

.
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To find ai , one can select the 2i vertices of C that are to have
in- or out-degree 2 in C. Since there are exactly two ways to
orient C, ai = 2

(k
2i

)
, and this is the coefficient of x2i in

q(x) := 2 (1 + x)k . It follows that

∑
0≤i≤k/2

ai

(
3
2

)2i

=
1
2

(
q(3/2) + q(−3/2)

)
=

(
5
2

)k

+

(
−1

2

)k

,

and thus
µk =

1
2k
(
4k + (−4/5)k).
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The final step is to compute

δk =
µk

λk
− 1 =

(
−1

5

)k

and then, using − log(1− x) =
∑

k≥1 xk/k ,

exp
(∑

k≥1

λkδ
2
k

)
= exp

(
1
2

∑
k≥1

1
k

(
4

25

)k )

= exp
(
−1

2
log
(

1− 4
25

))
=

5√
21
.

The fact that this is coincides with the asymptotic value of EY 2

(EY )2

implies that P(Y > 0) ∼ 1.
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