

# Almost all 5-regular graphs have a 3-flow

Paweł Prałat

Department of Mathematics, Ryerson University

(joint work with Nick Wormald)

Cargèse fall school on random graphs, September 2015

# Outline

1 Introduction

2 Results

3 Jaeger conjecture

4 Tutte conjecture

# Outline

1 Introduction

2 Results

3 Jaeger conjecture

4 Tutte conjecture

# Tutte's conjecture

## Definition

A **nowhere-zero 3-flow** in an undirected graph  $G = (V, E)$  is an **orientation** of its edges and a function  $f$  assigning a number  $f(e) \in \{1, 2\}$  to any oriented edge  $e$  such that for any vertex  $v \in V$ ,

$$\sum_{e \in D^+(v)} f(e) - \sum_{e \in D^-(v)} f(e) = 0,$$

where  $D^+(v)$  is the set of all edges emanating from  $v$ , and  $D^-(v)$  is the set of all edges entering  $v$ .

## Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

# Tutte's conjecture

## Definition

A **nowhere-zero 3-flow** in an undirected graph  $G = (V, E)$  is an **orientation** of its edges and a function  $f$  assigning a number  $f(e) \in \{1, 2\}$  to any oriented edge  $e$  such that for any vertex  $v \in V$ ,

$$\sum_{e \in D^+(v)} f(e) - \sum_{e \in D^-(v)} f(e) = 0,$$

where  $D^+(v)$  is the set of all edges emanating from  $v$ , and  $D^-(v)$  is the set of all edges entering  $v$ .

## Conjecture (Tutte, 1972)

Any **4-edge connected graph admits a nowhere-zero 3-flow**.

# Tutte's conjecture

## Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

For a long time, it was not even known whether or not there is a finite  $k$  so that any  $k$ -edge connected graph has a nowhere-zero 3-flow...

## Theorem (Lai, Zhang, 1992)

$k = 4 \log_2 n$  works for any  $n$ -vertex graph.

## Theorem (Alon, Linial, Meshulam, 1991)

$k = 2 \log_2 n$  works for any  $n$ -vertex graph (somewhat implicit but stronger form).

# Tutte's conjecture

## Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

For a long time, it was not even known whether or not there is a finite  $k$  so that any  $k$ -edge connected graph has a nowhere-zero 3-flow...

## Theorem (Lai, Zhang, 1992)

$k = 4 \log_2 n$  works for any  $n$ -vertex graph.

## Theorem (Alon, Linial, Meshulam, 1991)

$k = 2 \log_2 n$  works for any  $n$ -vertex graph (somewhat implicit but stronger form).

# Tutte's conjecture

Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

...now we know!

Theorem (Thomassen, 2012)

*Every 8-edge-connected graph admits a nowhere-zero 3-flow.*

Theorem (Lovász, Thomassen, Wu, Zhang, 2013)

*Every 6-edge-connected graph admits a nowhere-zero 3-flow.*

# Tutte's conjecture

## Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

A graph admits a nowhere-zero 3-flow if and only if it has an edge orientation in which the difference between the outdegree and the indegree of any vertex is divisible by 3 (see, e.g., Seymour).

It is enough to prove the conjecture for 5-regular graphs (see, e.g., da Silva and Dahab).

## Conjecture (Tutte, 1972, equivalent form)

*Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1.*

# Tutte's conjecture

## Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

A graph admits a nowhere-zero 3-flow if and only if it has an edge orientation in which the difference between the outdegree and the indegree of any vertex is divisible by 3 (see, e.g., Seymour).

It is enough to prove the conjecture for 5-regular graphs (see, e.g., da Silva and Dahab).

## Conjecture (Tutte, 1972, equivalent form)

*Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1.*

# Tutte's conjecture

## Conjecture (Tutte, 1972)

*Any 4-edge connected graph admits a nowhere-zero 3-flow.*

A graph admits a nowhere-zero 3-flow if and only if it has an edge orientation in which the difference between the outdegree and the indegree of any vertex is divisible by 3 (see, e.g., Seymour).

It is enough to prove the conjecture for 5-regular graphs (see, e.g., da Silva and Dahab).

## Conjecture (Tutte, 1972, equivalent form)

*Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1.*

# Jaeger's conjecture

Conjecture (Tutte, 1972, equivalent form)

*Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1.*

Conjecture (Jaeger, 1988, equivalent form)

*For any fixed integer  $p \geq 1$ , every  $4p$ -edge connected,  $(4p+1)$ -regular graph has a mod  $(2p+1)$ -orientation, that is, an edge orientation in which every outdegree is either  $3p+1$  or  $p$ .*

Still open and appears to be difficult!

Our goal: prove that its assertion holds for almost all  $(4p+1)$ -regular graphs.

Fact: typical  $(4p+1)$ -regular graph is  $(4p+1)$ -edge connected.

# Jaeger's conjecture

Conjecture (Tutte, 1972, equivalent form)

*Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1.*

Conjecture (Jaeger, 1988, equivalent form)

*For any fixed integer  $p \geq 1$ , every  $4p$ -edge connected,  $(4p + 1)$ -regular graph has a mod  $(2p + 1)$ -orientation, that is, an edge orientation in which every outdegree is either  $3p + 1$  or  $p$ .*

Still open and appears to be difficult!

**Our goal:** prove that its assertion holds for **almost all**  $(4p + 1)$ -regular graphs.

Fact: typical  $(4p + 1)$ -regular graph is  $(4p + 1)$ -edge connected.

# Outline

1 Introduction

2 Results

3 Jaeger conjecture

4 Tutte conjecture

# Jaeger conjecture — result

$\mathcal{G}_{n,d}$  — the probability space of random  $d = (4p + 1)$ -regular  $n$ -vertex graphs with uniform probability distribution ( $d$  is fixed;  $n$  is even since  $d$  is odd).

A property holds ‘asymptotically almost surely’ (a.a.s.) if the probability that a member  $G \in \mathcal{G}_{n,d}$  satisfies the property tends to 1 as  $n \rightarrow \infty$ .

**Theorem** (Alon and Prałat, 2011)

*There exists a finite  $p_0$  so that for any fixed integer  $p > p_0$ , a random  $(4p + 1)$ -regular graph  $G$  admits, a.a.s., a mod  $(2p + 1)$ -orientation, that is, an orientation in which every outdegree is either  $3p + 1$  or  $p$ .*

# Jaeger conjecture — result

$\mathcal{G}_{n,d}$  — the probability space of random  $d = (4p + 1)$ -regular  $n$ -vertex graphs with uniform probability distribution ( $d$  is fixed;  $n$  is even since  $d$  is odd).

A property holds ‘asymptotically almost surely’ (a.a.s.) if the probability that a member  $G \in \mathcal{G}_{n,d}$  satisfies the property tends to 1 as  $n \rightarrow \infty$ .

Theorem (Alon and Prałat, 2011)

*There exists a finite  $p_0$  so that for any fixed integer  $p > p_0$ , a random  $(4p + 1)$ -regular graph  $G$  admits, a.a.s., a mod  $(2p + 1)$ -orientation, that is, an orientation in which every outdegree is either  $3p + 1$  or  $p$ .*

# Jaeger conjecture — result

$\mathcal{G}_{n,d}$  — the probability space of random  $d = (4p + 1)$ -regular  $n$ -vertex graphs with uniform probability distribution ( $d$  is fixed;  $n$  is even since  $d$  is odd).

A property holds ‘asymptotically almost surely’ (a.a.s.) if the probability that a member  $G \in \mathcal{G}_{n,d}$  satisfies the property tends to 1 as  $n \rightarrow \infty$ .

Theorem (Alon and Prałat, 2011)

*There exists a finite  $p_0$  so that for any fixed integer  $p > p_0$ , a random  $(4p + 1)$ -regular graph  $G$  admits, a.a.s., a mod  $(2p + 1)$ -orientation, that is, an orientation in which every outdegree is either  $3p + 1$  or  $p$ .*

# Jaeger conjecture — main observation

Theorem (Lai, Shao, Wu, and Zhou, 2009)

Let  $G$  be a  $(4p + 1)$ -regular graph for some  $p \in \mathbb{Z}^+$ . Then  $G = (V, E)$  has a mod  $(2p + 1)$ -orientation iff there is a partition  $V = V^+ \cup V^-$  with  $|V^+| = |V^-|$  such that for any  $S \subseteq V$ ,

$$|E(S, S^c)| \geq (2p + 1)|S \cap V^+| - |S \cap V^-|.$$

Theorem (Alon and Prałat, 2011)

There exists  $c > 0$  so that the following holds. Let  $G = (V, E)$  be a random  $d = (4p + 1)$ -regular graph for some  $p \in \mathbb{N}$ . Then, a.a.s.  $V$  has a partition  $V = V^+ \cup V^-$  with  $|V^+| = |V^-|$  such that for any  $S \subseteq V$ ,

$$|E(S, S^c)| \geq \left(2p + \frac{1}{2\sqrt{2}}\sqrt{p} - cp^{3/8}\right) |S \cap V^+| - |S \cap V^-|.$$

# Jaeger conjecture — main observation

Theorem (Lai, Shao, Wu, and Zhou, 2009)

Let  $G$  be a  $(4p + 1)$ -regular graph for some  $p \in \mathbb{Z}^+$ . Then  $G = (V, E)$  has a mod  $(2p + 1)$ -orientation **iff** there is a partition  $V = V^+ \cup V^-$  with  $|V^+| = |V^-|$  such that for any  $S \subseteq V$ ,

$$|E(S, S^c)| \geq (2p + 1)|S \cap V^+| - |S \cap V^-|.$$

Theorem (Alon and Prałat, 2011)

There exists  $c > 0$  so that the following holds. Let  $G = (V, E)$  be a random  $d = (4p + 1)$ -regular graph for some  $p \in \mathbb{N}$ . Then, a.a.s.  $V$  has a partition  $V = V^+ \cup V^-$  with  $|V^+| = |V^-|$  such that for any  $S \subseteq V$ ,

$$|E(S, S^c)| \geq \left(2p + \frac{1}{2\sqrt{2}}\sqrt{p} - cp^{3/8}\right) |S \cap V^+| - |S \cap V^-|.$$

# Tutte conjecture — result

The lower bound for  $p_0$  was not optimized, but it could not be reduced to  $p_0 = 1$ . Using the **small subgraph conditioning** method of Robinson and Wormald we show the following.

**Theorem (Prałat and Wormald, 2015+)**

*A random 5-regular graph  $G_n$  on  $n$  vertices a.a.s. admits a nowhere-zero flow over  $\mathbb{Z}_3$ , that is, an edge orientation in which every out-degree is either 1 or 4.*

# Tutte conjecture — result

The lower bound for  $p_0$  was not optimized, but it could not be reduced to  $p_0 = 1$ . Using the **small subgraph conditioning** method of Robinson and Wormald we show the following.

## Theorem (Prałat and Wormald, 2015+)

*A random 5-regular graph  $G_n$  on  $n$  vertices a.a.s. admits a nowhere-zero flow over  $\mathbb{Z}_3$ , that is, an edge orientation in which every out-degree is either 1 or 4.*

# Outline

1 Introduction

2 Results

3 Jaeger conjecture

4 Tutte conjecture

# Spectral graph theory

The **eigenvalues**  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$  of a graph are the eigenvalues of its adjacency matrix.

The value of  $\lambda = \max(|\lambda_2|, |\lambda_n|)$  for a random  $d$ -regular graphs has been studied extensively.

## Theorem (Friedman)

For every  $\varepsilon > 0$  and  $G \in \mathcal{G}_{n,d}$ ,

$$\mathbb{P}(\lambda(G) \leq 2\sqrt{d-1} + \varepsilon) = 1 - o(1).$$

# Spectral graph theory

The **eigenvalues**  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$  of a graph are the eigenvalues of its adjacency matrix.

The value of  $\lambda = \max(|\lambda_2|, |\lambda_n|)$  for a random  $d$ -regular graphs has been studied extensively.

## Theorem (Friedman)

For every  $\varepsilon > 0$  and  $G \in \mathcal{G}_{n,d}$ ,

$$\mathbb{P}(\lambda(G) \leq 2\sqrt{d-1} + \varepsilon) = 1 - o(1).$$

# Expander Mixing Lemma

Lemma (Alon, Chung, 1988)

Let  $G$  be any  $d$ -regular graph with  $n$  vertices and set  $\lambda = \lambda(G)$ .  
Then for all  $S, T \subseteq V$

$$\left| |E(S, T)| - \frac{d|S||T|}{n} \right| \leq \lambda \sqrt{|S||T|}.$$

(Note that  $S \cap T$  does not have to be empty;  $|E(S, T)|$  is defined to be the number of edges between  $S \setminus T$  to  $T$  plus twice the number of edges that contain only vertices of  $S \cap T$ .)

# Dense bisection

## Condition

*There exists a partition  $V = V^+ \cup V^-$  with  $|V^+| = |V^-| = |V|/2$  such that for any  $S \subseteq V$ ,*

$$|E(S, S^c)| \geq \left(2p + \frac{1}{2\sqrt{2}}\sqrt{p} - cp^{3/8}\right) ||S \cap V^+| - |S \cap V^-||.$$

Observation: For  $S = V^+$  (or  $S = V^-$ ) we need

$$|E(V^+, V^-)| \geq (2p + \Omega(\sqrt{p}))|V^+| = \frac{dn}{4} + \Omega(\sqrt{dn}).$$

Therefore, it is natural to start with a proof that there is such a dense bisection.

# Dense bisection

## Condition

*There exists a partition  $V = V^+ \cup V^-$  with  $|V^+| = |V^-| = |V|/2$  such that for any  $S \subseteq V$ ,*

$$|E(S, S^c)| \geq \left(2p + \frac{1}{2\sqrt{2}}\sqrt{p} - cp^{3/8}\right) ||S \cap V^+| - |S \cap V^-||.$$

Observation: For  $S = V^+$  (or  $S = V^-$ ) we need

$$|E(V^+, V^-)| \geq (2p + \Omega(\sqrt{p}))|V^+| = \frac{dn}{4} + \Omega(\sqrt{dn}).$$

Therefore, it is natural to start with a proof that there is such a dense bisection.

# Dense bisection

## Proof.

- Since a random regular graph has only  $O(1)$  triangles in expectation, a.a.s. there are  $o(n)$  triangles.
- Delete an arbitrary edge of each triangle.
- Apply the result of Shearer (1992) who showed that a triangle-free graph  $G = (V, E)$  with degree sequence  $(d_1, d_2, \dots, d_n)$  has a cut of size at least  $|E|/2 + \frac{1}{8\sqrt{2}} \sum_{i=1}^n \sqrt{d_i}$ .
- Therefore, a.a.s. there is a cut  $(A, A^c)$  with

$$|E(A, A^c)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}} \sqrt{dn} - o(n).$$



# Dense bisection

## Proof.

- Since a random regular graph has only  $O(1)$  triangles in expectation, a.a.s. there are  $o(n)$  triangles.
- Delete an arbitrary edge of each triangle.
- Apply the result of **Shearer** (1992) who showed that a triangle-free graph  $G = (V, E)$  with degree sequence  $(d_1, d_2, \dots, d_n)$  has a cut of size at least  $|E|/2 + \frac{1}{8\sqrt{2}} \sum_{i=1}^n \sqrt{d_i}$ .
- Therefore, a.a.s. there is a cut  $(A, A^c)$  with

$$|E(A, A^c)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}} \sqrt{dn} - o(n).$$



# Dense bisection

## Proof.

- Since a random regular graph has only  $O(1)$  triangles in expectation, a.a.s. there are  $o(n)$  triangles.
- Delete an arbitrary edge of each triangle.
- Apply the result of **Shearer** (1992) who showed that a triangle-free graph  $G = (V, E)$  with degree sequence  $(d_1, d_2, \dots, d_n)$  has a cut of size at least  $|E|/2 + \frac{1}{8\sqrt{2}} \sum_{i=1}^n \sqrt{d_i}$ .
- Therefore, a.a.s. there is a cut  $(A, A^c)$  with

$$|E(A, A^c)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}} \sqrt{dn} - o(n).$$



# Dense bisection

## Proof.

- Since a random regular graph has only  $O(1)$  triangles in expectation, a.a.s. there are  $o(n)$  triangles.
- Delete an arbitrary edge of each triangle.
- Apply the result of **Shearer** (1992) who showed that a triangle-free graph  $G = (V, E)$  with degree sequence  $(d_1, d_2, \dots, d_n)$  has a cut of size at least  $|E|/2 + \frac{1}{8\sqrt{2}} \sum_{i=1}^n \sqrt{d_i}$ .
- Therefore, a.a.s. there is a cut  $(A, A^c)$  with

$$|E(A, A^c)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}} \sqrt{dn} - o(n).$$



# Dense bisection

## Proof.

- The **Expander Mixing Lemma** implies that, a.a.s.

$$\left(\frac{1}{2} - \frac{1}{d^{1/4}}\right)n < |A| < \left(\frac{1}{2} + \frac{1}{d^{1/4}}\right)n.$$

- Now it is enough to modify the cut  $(A, A^c)$  by shifting at most  $n/d^{1/4}$  vertices, to get a bisection cut  $(V^+, V^-)$  so that  $|V^+| = |V^-|$  and  $|V^+ \setminus A| + |A \setminus V^+| \leq n/d^{1/4}$ .
- Thus, we get that

$$|E(V^+, V^-)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}}\sqrt{dn} - 8d^{3/8}n - o(n).$$



# Dense bisection

## Proof.

- The **Expander Mixing Lemma** implies that, a.a.s.

$$\left(\frac{1}{2} - \frac{1}{d^{1/4}}\right)n < |A| < \left(\frac{1}{2} + \frac{1}{d^{1/4}}\right)n.$$

- Now it is enough to modify the cut  $(A, A^c)$  by shifting at most  $n/d^{1/4}$  vertices, to get a bisection cut  $(V^+, V^-)$  so that  $|V^+| = |V^-|$  and  $|V^+ \setminus A| + |A \setminus V^+| \leq n/d^{1/4}$ .

- Thus, we get that

$$|E(V^+, V^-)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}}\sqrt{dn} - 8d^{3/8}n - o(n).$$



# Dense bisection

## Proof.

- The **Expander Mixing Lemma** implies that, a.a.s.

$$\left(\frac{1}{2} - \frac{1}{d^{1/4}}\right)n < |A| < \left(\frac{1}{2} + \frac{1}{d^{1/4}}\right)n.$$

- Now it is enough to modify the cut  $(A, A^c)$  by shifting at most  $n/d^{1/4}$  vertices, to get a bisection cut  $(V^+, V^-)$  so that  $|V^+| = |V^-|$  and  $|V^+ \setminus A| + |A \setminus V^+| \leq n/d^{1/4}$ .
- Thus, we get that

$$|E(V^+, V^-)| \geq \frac{dn}{4} + \frac{1}{8\sqrt{2}}\sqrt{dn} - 8d^{3/8}n - o(n).$$



# Outline

1 Introduction

2 Results

3 Jaeger conjecture

4 Tutte conjecture

# Pairing model $\mathcal{P}_{n,d}$ ( $n = 6$ , $d = 3$ )



# Pairing model $\mathcal{P}_{n,d}$ ( $n = 6$ , $d = 3$ )



# Pairing model $\mathcal{P}_{n,d}$ ( $n = 6, d = 3$ )



# Pairing model $\mathcal{P}_{n,d}$ ( $n = 6$ , $d = 3$ )



# Pairing model $\mathcal{P}_{n,d}$ ( $n = 6$ , $d = 3$ )



# Pairing model $\mathcal{P}_{n,d}$ ( $n = 6$ , $d = 3$ )



# Pairing model $\mathcal{P}_{n,d}$

The probability of a random pairing corresponding to a given simple graph  $G$  is independent of the graph, hence the **restriction** of the probability space of random pairings **to simple graphs** is precisely  $\mathcal{G}_{n,d}$ .

Moreover, a random pairing generates a **simple** graph with probability asymptotic to  $e^{(1-d^2)/4}$  depending on  $d$ .

Therefore, any event holding a.a.s. over the probability space of random pairings also holds a.a.s. over the corresponding space  $\mathcal{G}_{n,d}$ .

# Pairing model $\mathcal{P}_{n,d}$

The probability of a random pairing corresponding to a given simple graph  $G$  is independent of the graph, hence the **restriction** of the probability space of random pairings **to simple graphs** is precisely  $\mathcal{G}_{n,d}$ .

Moreover, a random pairing generates a **simple** graph with probability asymptotic to  $e^{(1-d^2)/4}$  depending on  $d$ .

Therefore, any event holding a.a.s. over the probability space of random pairings also holds a.a.s. over the corresponding space  $\mathcal{G}_{n,d}$ .

# Pairing model $\mathcal{P}_{n,d}$

The probability of a random pairing corresponding to a given simple graph  $G$  is independent of the graph, hence the **restriction** of the probability space of random pairings **to simple graphs** is precisely  $\mathcal{G}_{n,d}$ .

Moreover, a random pairing generates a **simple** graph with probability asymptotic to  $e^{(1-d^2)/4}$  depending on  $d$ .

Therefore, any event holding a.a.s. over the probability space of random pairings also holds a.a.s. over the corresponding space  $\mathcal{G}_{n,d}$ .

Consider  $\mathcal{P}_{n,5}$ . Let  $Y$  be the number of valid orientations.

$$\mathbb{E} Y = \frac{\binom{n}{n/2} 5^n (5n/2)!}{M(5n)} \sim \left( \frac{25}{8} \right)^{n/2} \sqrt{5},$$

where

$$M(s) = \frac{s!}{(s/2)! 2^{s/2}}$$

is the number of perfect matchings of  $s$  points.

Indeed, there are  $\binom{n}{n/2}$  ways to select in-vertices (since exactly half of the vertices must be such),  $5^n$  ways to select one special point in each vertex, which determines each point to be either in or out,  $(5n/2)!$  ways to pair up the points so that each “in” is paired with an “out”, and  $M(5n)$  pairings in total.

Consider  $\mathcal{P}_{n,5}$ . Let  $Y$  be the number of valid orientations.

$$\mathbb{E} Y = \frac{\binom{n}{n/2} 5^n (5n/2)!}{M(5n)} \sim \left( \frac{25}{8} \right)^{n/2} \sqrt{5},$$

where

$$M(s) = \frac{s!}{(s/2)! 2^{s/2}}$$

is the number of perfect matchings of  $s$  points.

Indeed, there are  $\binom{n}{n/2}$  ways to select in-vertices (since exactly half of the vertices must be such),  $5^n$  ways to select one special point in each vertex, which determines each point to be either in or out,  $(5n/2)!$  ways to pair up the points so that each “in” is paired with an “out”, and  $M(5n)$  pairings in total.

Consider  $\mathcal{P}_{n,5}$ . Let  $Y$  be the number of valid orientations.

$$\mathbb{E} Y = \frac{\binom{n}{n/2} 5^n (5n/2)!}{M(5n)} \sim \left( \frac{25}{8} \right)^{n/2} \sqrt{5},$$

where

$$M(s) = \frac{s!}{(s/2)! 2^{s/2}}$$

is the number of perfect matchings of  $s$  points.

Indeed, there are  $\binom{n}{n/2}$  ways to select in-vertices (since exactly half of the vertices must be such),  $5^n$  ways to select one special point in each vertex, which determines each point to be either in or out,  $(5n/2)!$  ways to pair up the points so that each “in” is paired with an “out”, and  $M(5n)$  pairings in total.

Consider  $\mathcal{P}_{n,5}$ . Let  $Y$  be the number of valid orientations.

$$\mathbb{E} Y = \frac{\binom{n}{n/2} 5^n (5n/2)!}{M(5n)} \sim \left( \frac{25}{8} \right)^{n/2} \sqrt{5},$$

where

$$M(s) = \frac{s!}{(s/2)! 2^{s/2}}$$

is the number of perfect matchings of  $s$  points.

Indeed, there are  $\binom{n}{n/2}$  ways to select in-vertices (since exactly half of the vertices must be such),  $5^n$  ways to select one special point in each vertex, which determines each point to be either in or out,  $(5n/2)!$  ways to pair up the points so that each “in” is paired with an “out”, and  $M(5n)$  pairings in total.

Consider  $\mathcal{P}_{n,5}$ . Let  $Y$  be the number of valid orientations.

$$\mathbb{E} Y = \frac{\binom{n}{n/2} 5^n (5n/2)!}{M(5n)} \sim \left( \frac{25}{8} \right)^{n/2} \sqrt{5},$$

where

$$M(s) = \frac{s!}{(s/2)! 2^{s/2}}$$

is the number of perfect matchings of  $s$  points.

Indeed, there are  $\binom{n}{n/2}$  ways to select in-vertices (since exactly half of the vertices must be such),  $5^n$  ways to select one special point in each vertex, which determines each point to be either in or out,  $(5n/2)!$  ways to pair up the points so that each “in” is paired with an “out”, and  $M(5n)$  pairings in total.

It can be shown that

$$\mathbb{E} Y(Y - 1) \sim \left(\frac{25}{8}\right)^n \frac{25}{\sqrt{21}},$$

and so

$$\frac{\mathbb{E} Y^2}{(\mathbb{E} Y)^2} \sim \frac{5}{\sqrt{21}}.$$

The **second moment method** fails, but just barely.

**Solution:** Under such circumstances, we can hope to apply the **small subgraph conditioning method**.

It can be shown that

$$\mathbb{E}Y(Y-1) \sim \left(\frac{25}{8}\right)^n \frac{25}{\sqrt{21}},$$

and so

$$\frac{\mathbb{E} Y^2}{(\mathbb{E} Y)^2} \sim \frac{5}{\sqrt{21}}.$$

The **second moment method** fails, but just barely.

**Solution:** Under such circumstances, we can hope to apply the **small subgraph conditioning method**.

It can be shown that

$$\mathbb{E} Y(Y - 1) \sim \left(\frac{25}{8}\right)^n \frac{25}{\sqrt{21}},$$

and so

$$\frac{\mathbb{E} Y^2}{(\mathbb{E} Y)^2} \sim \frac{5}{\sqrt{21}}.$$

The **second moment method** fails, but just barely.

**Solution:** Under such circumstances, we can hope to apply the **small subgraph conditioning method**.

# Small subgraph conditioning method

The distribution of  $Y$  is affected by the presence of certain small but not too common subgraphs in the random graph—usually the short cycles of given lengths.

Conditioning on the small subgraph counts affects  $\mathbb{E} Y$ , altering it by some constant factor.

Luckily and yet mysteriously, such conditioning reduces the variance of  $Y$ , to the point that conditioning on the numbers of enough small subgraphs reduces the variance to any desired small fraction of  $(\mathbb{E} Y)^2$ .

- compute some joint moments of  $Y$  with short cycle counts,
- ...then hope for the best (all constants work out).

# Small subgraph conditioning method

The distribution of  $Y$  is affected by the presence of certain small but not too common subgraphs in the random graph—usually the short cycles of given lengths.

Conditioning on the small subgraph counts affects  $\mathbb{E} Y$ , altering it by some constant factor.

Luckily and yet mysteriously, such conditioning reduces the variance of  $Y$ , to the point that conditioning on the numbers of enough small subgraphs reduces the variance to any desired small fraction of  $(\mathbb{E} Y)^2$ .

- compute some joint moments of  $Y$  with short cycle counts,
- ...then hope for the best (all constants work out).

Let  $X_k$  ( $k \geq 1$ ) be the number of cycles of length  $k$  in  $\mathcal{P}_{n,5}$ . It is known that for each  $k \geq 1$ ,  $X_1, X_2, \dots, X_k$  are asymptotically independent Poisson random variables with

$$\mathbb{E}X_k = \binom{n}{k} \frac{(k-1)!}{2} 5^k 4^k \frac{M(5n-2k)}{M(5n)} \rightarrow \lambda_k := \frac{4^k}{2k}.$$

The next step is to show that for each  $k \geq 1$ , there is a constant  $\mu_k$  such that

$$\frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} \rightarrow \mu_k$$

and, more generally, such that the joint factorial moments satisfy

$$\frac{\mathbb{E}(Y[X_1]_{j_1} \cdots [X_k]_{j_k})}{\mathbb{E}Y} \rightarrow \prod_{i=1}^k \mu_i^{j_i}$$

for any fixed  $j_1, \dots, j_k$ .

Let  $X_k$  ( $k \geq 1$ ) be the number of cycles of length  $k$  in  $\mathcal{P}_{n,5}$ . It is known that for each  $k \geq 1$ ,  $X_1, X_2, \dots, X_k$  are asymptotically independent Poisson random variables with

$$\mathbb{E}X_k = \binom{n}{k} \frac{(k-1)!}{2} 5^k 4^k \frac{M(5n-2k)}{M(5n)} \rightarrow \lambda_k := \frac{4^k}{2k}.$$

The next step is to show that for each  $k \geq 1$ , there is a constant  $\mu_k$  such that

$$\frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} \rightarrow \mu_k$$

and, more generally, such that the joint factorial moments satisfy

$$\frac{\mathbb{E}(Y[X_1]_{j_1} \cdots [X_k]_{j_k})}{\mathbb{E}Y} \rightarrow \prod_{i=1}^k \mu_i^{j_i}$$

for any fixed  $j_1, \dots, j_k$ .

$$\begin{aligned} \frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i}, \end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

We need to find the number of triples  $(P, C, O)$  where  $P$  is a pairing,  $C$  a  $k$ -cycle of  $P$  and  $O$  an orientation of  $P$  (and then divide by  $M(5n)$ ). In fact, we count the triples  $(P, C, O)$  which have  $i$  vertices on  $C$  with in-degree 2 in  $C$  (these are in-vertices).

$$\begin{aligned} \frac{\mathbb{E}(YX_k)}{\mathbb{E} Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i}, \end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

The number of ways to choose the pairs of (i.e. inducing the edges of) the cycle.

$$\begin{aligned} \frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i}, \end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

The number of ways to select the remaining in- and out-vertices.

Vertices on the cycle:  $i$  of in-degree 2 in  $C$  (in-vertices),  $i$  of out-degree 2 in  $C$  (out-vertices),  $k - 2i$  of in/out degree 1 in  $C$  (in- or out- vertices).

$$\begin{aligned} \frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i}, \end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

The number of ways to choose the special points of the vertices of  $C$ .

It only needs to be done for vertices of in-degree 0 or 2 in  $C$ ; vertices of in-degree 1 in the cycle have their special point already determined.

$$\begin{aligned} \frac{\mathbb{E}(YX_k)}{\mathbb{E} Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i}, \end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

The number of ways to choose the special points of vertices outside  $C$ .

$$\begin{aligned}\frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i},\end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

The number of ways to pair up the points of appropriate types.

$$\begin{aligned} \frac{\mathbb{E}(YX_k)}{\mathbb{E}Y} &\sim \sum_{0 \leq i \leq k/2} a_i \frac{(5 \cdot 4)^k [n]_k \binom{n-2i}{n/2-i} 3^{2i} 5^{n-k} (5n/2 - k)!}{2k \binom{n}{n/2} 5^n (5n/2)!} \\ &\sim \sum_{0 \leq i \leq k/2} \frac{a_i}{2k} \left(\frac{8}{5}\right)^k \left(\frac{3}{2}\right)^{2i}, \end{aligned}$$

where  $a_i$  is the number of orientations of the cycle  $C$  of length  $k$  with  $i$  vertices of in-degree 2.

Hence,

$$\mu_k := \frac{1}{2k} \cdot \left(\frac{8}{5}\right)^k \sum_{0 \leq i \leq k/2} a_i \left(\frac{3}{2}\right)^{2i}.$$

To find  $a_i$ , one can select the  $2i$  vertices of  $C$  that are to have in- or out-degree 2 in  $C$ . Since there are exactly two ways to orient  $C$ ,  $a_i = 2 \binom{k}{2i}$ , and this is the coefficient of  $x^{2i}$  in  $q(x) := 2(1+x)^k$ . It follows that

$$\sum_{0 \leq i \leq k/2} a_i \left(\frac{3}{2}\right)^{2i} = \frac{1}{2} \left( q(3/2) + q(-3/2) \right) = \left(\frac{5}{2}\right)^k + \left(-\frac{1}{2}\right)^k,$$

and thus

$$\mu_k = \frac{1}{2k} (4^k + (-4/5)^k).$$

The final step is to compute

$$\delta_k = \frac{\mu_k}{\lambda_k} - 1 = \left(-\frac{1}{5}\right)^k$$

and then, using  $-\log(1 - x) = \sum_{k \geq 1} x^k/k$ ,

$$\begin{aligned} \exp\left(\sum_{k \geq 1} \lambda_k \delta_k^2\right) &= \exp\left(\frac{1}{2} \sum_{k \geq 1} \frac{1}{k} \left(\frac{4}{25}\right)^k\right) \\ &= \exp\left(-\frac{1}{2} \log\left(1 - \frac{4}{25}\right)\right) = \frac{5}{\sqrt{21}}. \end{aligned}$$

The fact that this coincides with the asymptotic value of  $\frac{\mathbb{E} Y^2}{(\mathbb{E} Y)^2}$  implies that  $\mathbb{P}(Y > 0) \sim 1$ .

**Theorem 4.1** ([56], see also [87]) Let  $\lambda_i > 0$  and  $\delta_i \geq -1$ ,  $i = 1, 2, \dots$ , be real numbers and suppose that for each  $n$  there are random variables  $X_i = X_i(n)$ ,  $i = 1, 2, \dots$ , and  $Y = Y(n)$  defined on the same probability space  $\mathcal{G} = \mathcal{G}(n)$  such that  $X_i$  is non-negative integer valued,  $Y$  is non-negative and  $\mathbf{E}Y > 0$  (for  $n$  sufficiently large). Suppose furthermore that

(a) For each  $k \geq 1$   $X_i$ ,  $i = 1, 2, \dots, k$  are asymptotically independent Poisson random variables with  $\mathbf{E}X_i \rightarrow \lambda_i$ ;

(b)

$$\frac{\mathbf{E}(Y[X_1]_{j_1} \cdots [X_k]_{j_k})}{\mathbf{E}Y} \rightarrow \prod_{i=1}^k (\lambda_i(1 + \delta_i))^{j_i}$$

for every finite sequence  $j_1, \dots, j_k$  of non-negative integers;

(c)  $\sum_i \lambda_i \delta_i^2 < \infty$ ;

(d)  $\frac{\mathbf{E}Y_n^2}{(\mathbf{E}Y_n)^2} \leq \exp \left( \sum_i \lambda_i \delta_i^2 \right) + o(1) \quad \text{as } n \rightarrow \infty.$

Then

$$\mathbf{P}(Y_n > 0) = \exp \left( - \sum_{\delta_i = -1} \lambda_i \right) + o(1),$$

and, provided  $\sum_{\delta_i = -1} \lambda_i < \infty$ ,

$$\bar{\mathcal{G}}^{(Y)} \approx \bar{\mathcal{G}}$$

where  $\bar{\mathcal{G}}$  is the probability space obtained from  $\mathcal{G}$  by conditioning on the event  $\bigwedge_{\delta_i = -1} (X_i = 0)$ .