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Cargèse, Corsica, September 20-26, 2015

INTRODUCTION TO RANDOM GRAPHS

Tomasz Łuczak
Adam Mickiewicz University,
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TWO MAIN RANDOM GRAPH MODELS

THE BINOMIAL RANDOM GRAPH G(n,p)

G(n,p) is the (random) graph on vertices {1,2, . . . ,n} in which
each of

(n
2

)
possible pairs appears as an edge independently

with probability p.

THE UNIFORM RANDOM GRAPH G(n,M)

G(n,M) is the (random) graph chosen uniformly at random from
the family of all graphs on vertices {1,2, . . . ,n} and M edges.
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WHAT DOES IT MEAN?

Given a graph G with vertex set [n]:

Pr(G(n,p) = G) = pe(G)(1− p)(n
2)−e(G).

while

Pr(G(n,M) = G) =

{
0 if e(G) 6= M

1/
((n

2)
M

)
if e(G) = M



ASYMPTOTICS

Typically, we are interested only in the asymptotic behaviour of
G(n,M) for very large n, where M = M(n).

For a given function M = M(n), we say that a property holds for
G(n,M) aas if the probability that it holds for G(n,M) tends to 1
as n→∞.

Of course, it is an abuse of language, as in many cases in
terminology in the theory of random structures.
In fact during this talk I will not be too meticulous in, say,
referring to some results – let me apologize for it in advance.
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ASYMPTOTICS

(Most of) asymptotic properties of G(n,M) and G(n,p)
are very similar, provided p = M

/(n
2

)
.

OBSERVATION

Results on G(n,M) are, in a way, more precise, since

Pr(G(n,M) = G) = Pr(G(n,p) = G|e(G(n,p)) = M),

i.e., roughly speaking,

G(n,M) = G(n,p)|
{

e(G(n,p)) = M
}
.

On the other hand, the binomial model G(n,p)
is often easier to handle.
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LET US START WITH SOMETHING EASY

THEOREM ERDŐS, RÉNYI’59

Let p(n) = 1
n (ln n + γ(n)). Then

lim
n→∞

Pr(G(n,p) is connected) =

{
0 if γ(n)→ −∞,
1 if γ(n)→∞.



. . . OR SOMETHING EVEN EASIER

THEOREM ERDŐS, RÉNYI’59

Let p(n) = 1
n (ln n + γ(n)). Then

lim
n→∞

Pr(δ(G(n,p)) > 0) =

{
0 if γ(n)→ −∞,
1 if γ(n)→∞.



THE FIRST MOMENT METHOD

MARKOV INEQUALITY

Let X be a non-negative, integer-valued random variable.
Then

Pr(X > 0) = Pr(X ≥ 1) ≤ EX .
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Moreover, let X count isolated vertices in G(n,p).
Then Pr(X > 0)→ 0 as n→∞.

Proof Note that X =
∑n

i=1 Xi , where

Xi =

{
1 if i is isolated
0 if i is not isolated
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Proof Note that X =
∑n

i=1 Xi , where

Xi =

{
1 if i is isolated
0 if i is not isolated

Indicator variables are easy to deal with, since

EXi = P(Xi = 1)

In our case

EXi = (1− p)n−1 = exp
(
− (n − 1) log(1− p)

)
= exp(−np + O(p + p2n)).
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EXi = exp(−np + O(p + p2n)).

If p(n) = 1
n (ln n + γ(n)), then

EX =
n∑

i=1

EXi = n exp(−np + O(p + p2n))

= (1 + o(1))e−γ ,

and so, for γ(n)→∞, we get

Pr(X > 0) ≤ EX → 0 .
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REMARK

If we apply the first moment method to the random variable Y
which counts non-trivial components in G(n,p) we get a much
stronger result.
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If p(n) = 1
n (ln n + γ(n)), where γ(n)→∞,

then G(n,p) is aas connected.
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BACK TO ISOLATED VERTICES

If If p(n) = 1
n (ln n + γ(n)), where γ(n)→ −∞, then

EX = (1 + o(1)) exp(−γ)→∞ .

Is it true that then

Pr(X > 0)→ 1, i.e. Pr(X = 0)→ 0?

Quite often (but by no means always) it is the case!
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THE SECOND MOMENT METHOD

OBSERVATION

If X counts structures which are “mostly weakly-dependent”,
then the expected number of ordered pairs of such structures is
roughly (EX )2, i.e.

EX (X − 1) = (1 + o(1))(EX )2 .

Then, for the variance of X , we have

VarX = EX (X − 1) + EX − (EX )2 = o
(
EX )2) .



CHEBYSHEV’S AND CAUCHY’S INEQUALITIES

Let us assume that EX →∞, EX (X − 1) = (1 + o(1))(EX )2,
and so VarX = o

(
EX )2) .

CHEBYSHEV’S INEQUALITY

Pr(X = 0) ≤ Pr(|X − EX | ≤ EX ) ≤ VarX
(EX )2 → 0 .

CAUCHY’S INEQUALITY

If X is an integer-valued, non-negative random variable, then

Pr(X > 0) = Pr(X ≥ 1) ≥ (EX )2

EX 2 =
(EX )2

EX (X − 1) + EX
→ 1 .
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If X is an integer-valued, non-negative random variable, then

Pr(X > 0) ≥ (EX )2

EX 2 .

CHEBYSHEV’S VS. CAUCHY’S

The left hand side of Chebyshev’s inequality can be larger than
one while Cauchy’s bound is always strictly positive!
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REVENONS À NOS MOUTONS

Let X be the number of isolated vertices in G(n,p), where
p(n) = 1

n (log n + γ(n)) and γ → −∞.

Then EX = (1 + o(1)e−γ →∞. What about EX (X − 1)?

EX (X − 1) = n(n − 1)(1− p)2(n−1)−1 =
n − 1

n(1− p)

[
n(1− p)n−1]2

= (1 + o(1))(EX )2.

Thus, Pr(X > 0)→ 1.
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THEOREM ERDŐS, RÉNYI’59

Let p(n) = 1
n (ln n + γ(n)). Then

(I) If γ → −∞, then aas G(n,p) contains isolated vertices
(and so aas it is not connected);

(II) If γ →∞, then aas G(n,p) is connected (and so contains
no isolated vertices).

Can we define (and prove) even stronger result which relates
connectivity to the absence of isolated vertices?
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THE HITTING TIME

THE RANDOM GRAPH PROCESS

G(n,M) can be viewed as the (M + 1)th stage of a Markov
chain {G(n,M) : 0 ≤ M ≤

(n
2

)
}, where we add edges to a graph

in a random order.

THE HITTING TIME

Let h1 = min{M : δ(G(n,M)) ≥ 1} and
hconn = min{M : G(n,M) is connected}.
Note that both h1 and hconn are random variables!

THEOREM ERDŐS, RÉNYI; BOLLOBÁS

Aas h1 = hconn.
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{G(n,p) : 0 ≤ p ≤ 1}

THE RANDOM GRAPH PROCESS (FOR G(n,p))
G(n,p) can also be viewed as a stage of a Markov process
{G(n,M) : 0 ≤ p ≤ 1}.
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THE HITTING TIMES FOR G(n,p)

We can define ĥ1 = min{p : δ(G(n,p)) ≥ 1} and
ĥconn = min{p : G(n,p) is connected}.
As in the case of h1 and hconn both ĥ1 and ĥconn are random
variables, but they take values in the interval [0,1].

THE HITTING TIMES

However, the statement that aas h1 = hconn is clearly equivalent
to the statement that aas ĥ1 = ĥconn.
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THE RANDOM GRAPH PROCESS: COUPLING

Since we can view G(n,M) as the stage of the random graph
process, for M1 ≤ M2 we have

G(n,M1) ⊆ G(n,M2) ,

and make sense out of it!

In a similar way, for p1 ≤ p2 we have

G(n,p1) ⊆ G(n,p2) .
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THE EVOLUTION OF THE RANDOM GRAPH

If M = o(
√

n) then aas G(n,p) consists of isolated vertices and
isolated edges.

If M = o(n(k−1)/k ) then aas all components of G(n,p) are trees
with at most k vertices.

If M = o(n) then aas all components of G(n,p) are trees of size
o(log n).
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THE RIGHT SCALING

THEOREM ERDŐS, RÉNYI’60
The “coagulation phase” takes place when M = (1/2 + o(1))n.

Thus, for instance, the largest component of G(n,0.4999n) has
aas Θ(log n) vertices, while the size of the largest component
of G(n,0.5001n) is aas Θ(n).

THEOREM BOLLOBÁS’84, ŁUCZAK’90

The components start to merge when they are of size Θ(n2/3).
It happens when M = n/2 + Θ(n2/3).
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THEOREM BOLLOBÁS’84, ŁUCZAK’90

The components start to merge when they are of size Θ(n2/3).
It happens when M = n/2 + Θ(n2/3).



THE RIGHT SCALING

THEOREM ERDŐS, RÉNYI’60
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TRIANGLES

THEOREM ERDŐS, RÉNYI’60
If np → 0, then aas G(n,p) contains no triangles.
If np →∞, then aas G(n,p) contains triangles.

This can be easily proved using the 1st and 2nd moment
method we mastered ten minutes ago.

PROBLEM

How fast does the probability Pr(G(n,p) 6⊇ K3) tends to 0 for
np →∞?
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LIPSCHITZ CONDITION

Take any graph parameter A and compute for each part of the
partition its “Lipschitz constant”.
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EXAMPLES

Consider a partition of the set of edges into
(n

2

)
singletons.

(i) The independence number α has Lipschitz constants 1,
since changing one edge cannot affect it by more than 1.

(ii) The chromatic number χ has also Lipschitz constants 1.

(iii) The number of triangles has Lipschitz constants n − 2.

(iv) The size of the maximum family of edge-disjoint triangles
has Lipschitz constants 1.
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AZUMA’S INEQUALITY

Let P be a partition, A be a graph parameter, and c1, . . . , ck
denote Lipschitz constants for P and A. Consider the random
variable X = A(G(n,p)) for some p. Then, for every t ,

Pr
(
|X − EX | ≥ t

)
≤ 2 exp

(
− t2

2
∑

i c2
i

)
.

In particular,

Pr(X = 0) ≤ 2 exp
(
− (EX )2

2
∑

i c2
i

)
.
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TIGHT CONCENTRATION RESULTS
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TALAGRAND’S INEQUALITY

Pr
(
|X − µX | ≥ t

)
≤ 4 exp

(
− t2

4w

)
,

where µX is the median of X and

w = max
Λ

{∑
i∈Λ

c2
i

}
where the maximum is taken over all certificates Λ for A.
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EXAMPLE

Consider a partition of the set of edges into n − 1 stars.

(i) In order to certificate that α(G) ≥ r it is enough to point out r
vertices which belong to this set.

(ii) There are no small certificates that χ(G) ≥ r .

(iii) The size of the certificate that the number of triangles is
larger than r is, of course, 3r .
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THE INDEPENDENCE NUMBER

Let X = α(G(n,p) and k = 2EX . Then random variable
X̄ = min{X , k} has roughly the same expectation (and median)
as X , but its certificate is at most 2EX .

From Azuma’s inequality we get

Pr(|X − EX | ≥ t) ≤ 2 exp
(
− t2/(2n)

)
,

while from Talagrand’s inequality, applied to X̄ , we get roughly

Pr(|X − EX | ≥ t) ≤ 4 exp
(
− t2/(8EX )

)
,

which is typically much stronger inequality.

In particular, for every γ →∞,

Pr(|X − EX | ≥ γ
√
EX )→ 0 .
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THE PROBABILITY THAT THERE ARE NO TRIANGLES

Let X denote the number of triangles in G(n,p) and X̄ be the
maximum size of the family of edge-disjoint triangles.
Let X̂ = min{X̄ ,2EX}.

Clearly the certificate for X̂ is at most 6EX . It is also not hard to
check that if EX ≤ 0.01np2, then EX̂ ≥ EX/3.

From Talagrand’s inequality we get

Pr(X = 0) = Pr(X̂ = 0) ≤ Pr(|X̂ − EX̂ | ≥ EX̂ )

≤ 4 exp
(
− (EX̂ )2

12EX

)
≤ 4 exp

(
− EX

108

)
.
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THE PROBABILITY THAT THERE ARE NO TRIANGLES

Pr(X = 0) ≤ 4 exp
(
− EX/108

)
.

On the other hand, from FKG inequality we get

Pr(X = 0) ≥ (1− p3)(n
3) = e−(1+o(1))(n

3)p3

= exp(
(
− (1 + o(1))EX

)
.
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REMARKS

THEOREM JANSON, ŁUCZAK, RUCIŃSKI ’90
Let X (H) count the number of copies of H in G(n,p). Then, for
every H, we have

Pr(X (H) = 0) = exp
(
−Θ(min

F⊆H
EX (F ))

)
.

Although we know that

Pr(X (K3) = 0) = exp
(
−Θ(min{EX (K3),EX (K2)})

)
,

for some p’s (such as p = n−1/2) we do not know what is the
correct value of a hidden constant.
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COROLLARY

COROLLARY

Let M = n3/2. Then aas we cannot destroy all triangles
in G(n,M) by removing 0.01M edges.

Proof Let Y count the number of subsets E of 0.01M edges
such that G(n,M) \ E contains no triangles. Then

EY =

(
M

0.01M

)
Pr(G(n,0.99M) 6⊇ K3) .

The first factor can be bounded from above by exp(−cM),
the second one, by our theorem and the equivalence results, is
smaller than exp(−c′M) and it turns out that c′ > c.
Hence EY → 0 and the assertion follows from the first moment
method.
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Two players: Maker and Breaker

Board: the set of edges of Kn
In each round:

I Maker claims (color) 1 edge
I Breaker claims (color) q edges

Maker wins if his graph contains a copy of H
otherwise the win comes to Breaker.
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THRESHOLD BIAS

The threshold bias q̄(n) = q̄A(n) is the maximum q
so that Maker can win MB(n,q,A).

i.e. Maker has a winning strategy to build a graph
with

(n
2

)/
(q + 1) edges which has property A.



MB(n,q,K3)

CLAIM FOLKLORE

In MB(n,q,K3), when Maker tries to build a triangle,
the threshold bias is Θ(

√
(n)).

More specifically:

I Maker has a winning strategy if q <
√

n,
I Breaker has a winning strategy if q > 2

√
n.



OUR AIM

CLAIM FOLKLORE

The threshold bias for MB(n,q,K3)
lies in the interval [

√
n,2
√

n].

We aim into the following exciting result.

THEOREM

The threshold bias for MB(n,q,K3)
is larger than 0.001

√
n.
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WELL...

If you are not very much impressed...

I can understand it...

but you should know that the method we shall present
(introduced by BEDNARSKA, ŁUCZAK’99) is the only
known method which gives the right order of bias for
every H!
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PROOF

THEOREM

Maker has a winning strategy in MB(n,0.001
√

n,K3).

Proof The (random) winning strategy for Maker: he selects his
edges blindly and randomly!
We shall argue that, with probability close to 1, Maker will
create a triangle in the first period of the game, when fewer than
0.5% of

(n
2

)
pairs have been claimed by either of the players.
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0.5% of
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pairs have been claimed by either of the players.

The edges chosen by Maker form a graph F̂ = G(n,M), with
M = n3/2.
However, not every such an edge is in his graph – because of
his strategy, some of the edges he selects has already been
claimed by Breaker and so they are ‘lost’ and will not belong
to F̂ .
However, since the choice is random, with a very large
probability fewer than 1% of edges of F̂ = G(n,M) have been
claimed by Breaker, i.e. more than 99% of edges of F̂ are in
Maker’s graph!
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PROOF

But we know that aas G(n,M) has the property that it contains
a triangle in every subgraph which have at least 0.99M edges!
Thus, the blind random strategy of Maker aas brings him a win!

But is this the end of the proof?
We have to prove that Maker has a strategy which guarantees
that he wins always (not just ‘almost always’)

.

This is the end (ADELE’12)!
Since only one of the player can have a winning strategy, if
Maker has got a strategy that wins sometimes, he has also got
a strategy which wins always (since Breaker cannot have
it).
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THE INDEPENDENCE NUMBER

PROBLEM

What is the independence number of G(n,p),
say, for p = log n/n?

FACT

Let p = log n/n, ε > 0 and k = n log log n/log n . Then, aas
α(G(n,p)) ≤ (2 + ε)k .

Proof The first moment method. Estimate EX , where X is the
number of independent subsets of size (2 + ε)k . Then

EX =

(
n

(2 + ε)k

)
(1− p)((2+ε)k

2 ) → 0 .
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OUR AIM

Let p = log n/n, ε > 0 and k = n log log n/log n. Then, aas

α(G(n,p)) ≥ 2(1− ε)k .

Let X count independent sets of size (2− ε)k .
Two random sets of this size share Θ(k2/n) vertices, so we
cannot expect that the existence of one set in such a pair is
“almost independent” from the existence of the second one.
After some (fairly long) calculations one can show that

EX (X − 1) ≥ (EX )2 exp
( 2k

(log log n)3
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THE SECOND MOMENT METHOD

EX (X − 1) ≥ (EX )2 exp
(
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)
.

CHEBYSHEV’S INEQUALITY

Pr(X = 0) ≤ VarX
(EX )2 but

VarX
(EX )2 � 1 (sic!)

CAUCHY’S INEQUALITY

Pr(X > 0) ≥ (EX )2

EX 2 ≥ exp
(
− 3k

(log log n)3

)

It seems that the 2nd moment method
is completely useless in this case!
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FRIEZE’S IDEA: COMBINE CAUCHY AND TALAGRAND!

The main idea of Frieze’s argument
We want to show that aas α(G(n,p)) ≥ (2− 3ε)k .

Talagrand’s inequality
P
(∣∣α(G(n,p))− Eα(G(n,p))

∣∣ ≥ t
)
≤ 4 exp

(
− t2/9k

)
,

states that α(G(n,p)) is sharply concentrated around its
expectation.

Thus, it is enough to show that Eα(G(n,p)) is close to 2k !

Let us assume that this is not the case, i.e. that

Eα(G(n,p)) ≤ (2− 2ε)k

and hope to get a contradiction.
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This is the contradiction we have been hoping for!



TRIANGLES: SOME FURTHER REMARKS

(EASY) COROLLARY OF LARGE DEVIATION INEQUALITIES

If M = n3/2, then aas we cannot destroy all triangles
in G(n,M) by removing 0.01M edges.

Here is a much harder result.

THEOREM HAXELL, KOHAYAKAWA, ŁUCZAK’96

If M = n3/2, then aas we cannot destroy all triangles
in G(n,M) by removing 0.49M edges.



TRIANGLES: SOME FURTHER REMARKS

(EASY) COROLLARY OF LARGE DEVIATION INEQUALITIES

If M = n3/2, then aas we cannot destroy all triangles
in G(n,M) by removing 0.01M edges.

Here is a much harder result.

THEOREM HAXELL, KOHAYAKAWA, ŁUCZAK’96

If M = n3/2, then aas we cannot destroy all triangles
in G(n,M) by removing 0.49M edges.



TRIANGLES: SOME FURTHER REMARKS

THEOREM HAXELL, KOHAYAKAWA, ŁUCZAK’96

If M = n3/2, then aas we cannot destroy all triangles
in G(n,M) by removing 0.49M edges.

All known proofs of the above theorem use either:
sparse version of the Regularity Lemma (by RÖDL
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ALTHOUGH THIS TALK WAS BROUGHT TO YOU

COMPLETELY COMMERCIAL-FREE...

THEOREM ERDŐS, RÉNYI’60
If np → 0, then aas G(n,p) contains no triangles.
If np →∞, then aas G(n,p) contains triangles.

THEOREM ERDŐS, RÉNYI’59

Let p(n) = 1
n (ln n + γ(n)). Then

lim
n→∞

Pr(G(n,p) is connected) =

{
0 if γ(n)→ −∞,
1 if γ(n)→∞.

We say that the property “G 6⊇ K3” has a coarse threshold,
while the property “G is connected” has a sharp threshold.
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THRESHOLDS

PROBLEM

Can we (combinatorially) characterize graph properties which
have sharp thresholds?

THEOREM FRIEDGUT

A property A has a coarse threshold if it is ‘local’.

Unfortunately, the definition of ‘locality’, needs some time to
explain, and it is not easy to apply this result to random
graphs...
but there exists a nice application to random groups.
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Thank you!



FURTHER READINGS

If you are interested in the subject, there are three books
on random graphs you might want to read.

B. Bollobás, Random graphs, Cambridge University Press,
2nd edition, 2011.

S. Janson, T. Łuczak, A. Ruciński, Random graphs, Wiley,
2000.

A. Frieze, M. Karoński, Introduction to random graphs,
Cambridge University Press, to be published this year.


