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QUOTE

I feel, random groups altogether may grow up
as healthy as random graphs, for example.

Misha Gromov Spaces and questions 1999



WHY DO WE CARE?

REASON NO. 3
Random (i.e. ‘typical’) graphs have got many ‘exotic’
properties.

We hope the same is true for random groups.
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PLAN OF THE TALK

I Random graphs (and matrices)
I Random groups: the first few

(natural, yet unsuccessful) approaches
I The cycle space and its generalizations
I Fundamental groups
I Finitely presented groups
I The evolution of the random triangular group



GRAPHS ARE MATRICES

REMARK

In the talk we shall often identify a graph G = (V ,E)
with its incidence matrix of dimension |V | × |E |.



GRAPHS ARE MATRICES

Example



1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1


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1

23

576

4
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1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1
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RANDOM GRAPH MODELS

THE BINOMIAL RANDOM GRAPH G(n,p)

G(n,p) is the (random) graph on vertices {1,2, . . . ,n} in which
each of

(n
2

)
possible pairs appears as an edge independently

with probability p.

THE UNIFORM RANDOM GRAPH G(n,M)

G(n,M) is the (random) graph chosen uniformly at random from
the family of all graphs on vertices {1,2, . . . ,n} and M edges.

THE UNLABELLED RANDOM GRAPH U(n,M)

U(n,M) is the unlabelled (random) graph chosen uniformly at
random from the family of all unlabelled graphs with n vertices
and M edges.
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ASYMPTOTICS

In this talk we are interested only in the asymptotic
behaviour of discrete random structures.
In particular, aas means ‘tending to 1 as n→∞’.



ASYMPTOTICS

(Most of) asymptotic properties of G(n,M) and G(n,p) are very
similar provided p = M

/(n
2

)
.

On the other hand, the asymptotic properties of G(n,M) and
U(n,M) are basically the same if M is large (say M � n ln n)
but when M is small (say M � n ln n) they can be quite
different.

This is because aas as soon as one before last isolated vertex
disappears G(n,M) becomes asymmetric.
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RANDOM GROUPS: THE FIRST ATTEMPT

DEFINITION OF ‘LABELLED’ RANDOM GROUP

Given n and M choose uniformly at random a subgroup
of the permutation group Sn with

at most

M elements.

DEFINITION OF ‘UNLABELLED’ RANDOM GROUP

Given M choose uniformly at random a group from
the family of all groups with

at most

M elements
(classified up to isomorphism).

Unfortunately, we do not have a slightest idea
how to deal with such random groups; counting
subgroups of Sn is already a big challenge!
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RANDOM GROUPS: THE SECOND ATTEMPT

DEFINITION OF A RANDOM GROUP

Given n and M choose uniformly at random M elements
of the permutation group Sn and consider a subgroup
of Sn generated by these M elements.

THEOREM DIXON’69
Aas two random elements of Sn generate either An or Sn.
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or, more specifically,
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RANDOM GROUPS: THE THIRD ATTEMPT

DEFINITION OF A RANDOM GROUP

Take the automorphism group of G(n,M).

METATHEOREM

Automorphism groups of finite random structures are not
very exciting (e.g. dense random structures are very often
asymmetric).
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THE CYCLE SPACE

DEFINITION

The cycle space of a graph G is the linear space (over F2)
which consists of all subgraphs of G with all degrees even
with the symmetric difference as the addition.

REMARK

The cycle space of G is spanned by cycles of G.
Moreover, given a graph G, it is very easy to find
a cycle basis of its cycle space.
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THE CYCLE SPACE IS THE RIGHT KERNEL

OF THE INCIDENCE MATRIX


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THE CYCLE SPACE IS THE RIGHT KERNEL

OF THE INCIDENCE MATRIX


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[

1 0 1 1 0 0 0 0 0 0 0 0
]
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When the cycle space of G(n,M) is spanned by some
special family of cycles?
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it contains a cycle.
The cycle structure of G(n,M) is well known
(and easy to study).
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THE CYCLE SPACE OF G(n,M)

QUESTION 2
When the cycle space of G(n,M) is spanned by some special
family of cycles?

For instance, when it is spanned by all triangles?

THEOREM DEMARCO, HAMM, KAHN’13
The threshold function for the property that the cycle space of
G(n,M) is spanned by its triangles is the same as the threshold
that each edge of G(n,M) is contained in a triangle.
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THE INCIDENCE MATRIX OF A 3-GRAPH

DEFINITION

A 3-graph G is a pair (V ,E), where V is the set of vertices
of G, and E is the set of 3-element subsets of V called edges.

DEFINITION

In the talk, by the incidence matrix of a 3-graph (V ,E) we mean
a zero-one matrix whose rows correspond to pairs of vertices,
and columns to edges of G, and 1 appears only if a pair of
vertices is contained in an edge.
Thus, every row contains precisely three ones.
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THE INCIDENCE MATRIX OF A 3-GRAPH

Example 

1 1
1 0
1 0
0 1
0 1
0 0





THE (HOMOLOGY) GROUP H2(G)

DEFINITION

The group H2(G) of a 3-graph G is
the right kernel of its incidence matrix.

EQUIVALENT COMBINATORIAL DEFINITION

For a 3-graph G = (V ,E) the group H2(G) is defined as the set
of all subsets of E ′ of E such that each pair of vertices is
contained in an even number of elements of E ′. The addition in
H2(G) is just the symmetric difference of sets.
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H2 (FOR 3-GRAPHS) IS MORE INTERESTING

THAN THE CYCLE SPACE (FOR GRAPHS)

FACT

There are no natural ‘combinatorial’ bases for H2(G).

FACT

There is no natural ‘combinatorial’ way to see
whether H2(G) 6= 0.
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COLLAPSIBILITY

DEFINITION

If in every subgraph H of a 3-graph G one can find an
edge e and a pair of vertices {v ,w} ⊂ e such that no
other edge of H contains {v ,w}, then we say that G is
collapsible.

OBSERVATION

If G is collapsible, then H2(G) = 0.



COLLAPSIBILITY

OBSERVATION

If a 3-graph G is collapsible, then H2(G) = 0.

OBSERVATION

Every subgraph of a graph G has a vertex of degree 1
(i.e. G is collapsible) if and only if G is a tree (i.e. its cycle
space is trivial).

FACT

There are non-collapsible 3-graphs G with H2(G) 6= 0.
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COLLAPSIBILITY

FACT

There are non-collapsible 3-graphs G with H2(G) 6= 0.

QUESTION

Is the collapsibility threshold for G3(n,M) the same as the
threshold for the property H2(G3(n,M)) 6= 0?

REMARK

This question is, in a way, analogous to the question on
the k -colorability threshold and the threshold for the
existence of k -core Mike Molloy mentioned in his talk.
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H2(G3(n,M))

The following results have been proved by different subsets of
the set {ARONSTADT, LINIAL, ŁUCZAK, MESHULAM, PELED}.

THEOREM

There are explicitly computable constants ah > ac > 0 such
that the threshold function for collapsibility of H2(G3(n,M)) is
Mc = (ac + o(1))n2, while the threshold function for the
property that H2(G3(n,M)) is nontrivial is Mh = (ah + o(1))n2.

THEOREM

For every constant a > 0 there exists a constant b > 0 such that
aas each subgraph of G3(n,M) of at most bn2 is collapsible.
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THE THEORY OF CODES

PROBLEM

Given k and n find the largest family of vectors from
{0,1}n such that the Hamming distance between each
pair of vectors is at least k .

REMARK

We are particularly interested in an efficient construction
which, furthermore, allows efficient error-correcting
procedure.
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LINEAR CODES

DEFINITION

A linear code is the right kernel of a parity-check matrix.

Thus, we are after a graph G with large H2(G) such that
each pair of vectors of H2(G) differ on more than k places.
But this condition holds whenever H2(G) contains no
vectors with fewer than k ones, e.g. for G in which each
subgraph on k edges is collapsible.
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RANDOM GROUPS: MORE GEOMETRIC APPROACH

IDEA

Consider a 3-graph as a geometric realization of a
2-dimensional simplicial complex,

i.e. imagine the 1-dimensional skeleton of
(n − 1)-dimensional simplex and glue into some
of its triangles 2-dimensional triangular cells.
Then study its fundamental group.
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π1(G3(n,M))

THEOREM BABSON, HOFFMAN, KAHLE’11

For every ε > 0, if M > n5/2+ε then aas π1(G3(n,M)) = 0,
while for M < n5/2−ε the group π1(G3(n,M)) is aas
non-trivial (and hyperbolic).

The proof is quite involved and applies some non-trivial
topological tools.
We do not know how to generalize it for Gk (n,M).
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GROUP PRESENTATIONS

G = 〈S|R〉

is a group which consists of words with letters a,b, . . . (as
well as its formal inverses a−1,b−1, . . . ) from an alphabet
S in which we can cancel all words from set R.



GROUP PRESENTATION

Example

In the group
G = 〈{a,b}|aba−1b−1〉

we have aba−1b−1 = e, i.e.

ab = aba−1b−1ba = aba−1b−1ba = ba ,

so
G = {anbm : a,b ∈ Z} = Z2 .
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FINITELY PRESENTED GROUPS ARE ‘2-DIMENSIONAL’

Thus,

G = 〈{a,b}|aba−1b−1〉 = π1(S1 × S1) = Z2,

and, in general, each finitely presented groups can be viewed
as the fundamental group of its (2-dimensional) presentation
complex.



VAN KEMPEN DIAGRAMS

Group presentation have a strong combinatorial flavour

If abc−1 = e and aba−1d = e, then

a−1dc = b−1a−1aba−1dabc−1c = b−1a−1aba−1dab = e.

-1

b
c

a a

a

d

b
-1

a

a

b

d

c
-1

-1



VAN KEMPEN DIAGRAMS

Group presentation have a strong combinatorial flavour

If abc−1 = e and aba−1d = e, then

a−1dc = b−1a−1aba−1dabc−1c = b−1a−1aba−1dab = e.

-1

b
c

a a

a

d

b
-1

a

a

b

d

c
-1

-1



VAN KEMPEN DIAGRAMS

Group presentation have a strong combinatorial flavour

If abc−1 = e and aba−1d = e, then

a−1dc = b−1a−1aba−1dabc−1c = b−1a−1aba−1dab = e.

-1

b
c

a a

a

d

b
-1

a

a

b

d

c
-1

-1



VAN KEMPEN DIAGRAMS

If abc−1 = e and aba−1d = e, then

ad−1c−1abdc−1d−1 = e.

a

a
a

bb

c

c d

d

-1

-1

-1 -1



FINITELY PRESENTED GROUPS ARE OFTEN HARD TO

STUDY

Presentations are sometimes hard to deal with,
both in theory

THEOREM

Given presentation 〈S|R〉 of a group Γ it is undecidable if
a given word is equivalent to 0 in Γ.

and in practice

Many properties of groups with natural short finite
presentations are unkown (e.g. it is not known if
Thompson group F is amenable).
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HOW TO DEFINE RANDOM GROUP?

Gromov’s idea:
Choose a random presentation!



RANDOM GROUP Γ(n, k ; p)

DEFINITION

Γ(n, k ; p) = 〈{g1,g2, . . . ,gn}|Rp〉
where each relation of length k belongs to Rp
independently with probability p.

GROMOV’83: Γ(2, k ; p), where p = p(k) and k →∞,
ŻUK’06: Γ(n,p) = Γ(n,3; p), where p = p(n) and n→∞.

Γ(n, k ; p) was formally introduced by
ANTONIUK, ŁUCZAK, ŚWIA̧TKOWSKI’14.
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THE EVOLUTION OF Γ(n,p)

THEOREM ŻUK’03
For every constant ε > 0 the following holds.

I If p ≤ n−2−ε then aas Γ(n,p) is free.
I If n−2+ε ≤ p ≤ n−3/2−ε, then aas Γ(n,p) is infinite,

hyperbolic, and has Kazdhan’s property (T).
I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.
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I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.
I If p ≤ n−3/2−ε, then aas Γ(n,p) is infinite and hyperbolic.
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COLLAPSING OF THE RANDOM GROUP

THEOREM ANTONIUK, ŁUCZAK, ŚWIA̧TKOWSKI’14

There exists a constant c > 0 such that if p ≥ cn−3/2,
then aas Γ(n,p) is trivial.

Proof Generate the random group Γ(n,p) = 〈S|R(n,p)〉 in
three steps, i.e. we use the fact that

R(n,p) ⊇ R1(n,p/3) ∪R2(n,p/3) ∪R3(n,p/3) .

Now let us split the set S of n generators into two roughly
equal parts S1 ∪ S2 and define an auxiliary graph on the vertex
set S1 ∪ S−1

1 .
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THE AUXILIARY GRAPH

S = S1 ∪ S2, the vertices in the left set are labelled by S1 ∪ S−1
1

the vertices in the right set by S2 ∪ S−1
2 .
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There exists a large green component which contains
more than half of all vertices of S1 ∪ S−1
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THE FIRST STAGE

All generators c in the green component are the same
and, since c = c−1, all of them are of rank 2.



THE SECOND STAGE

For each generators c in the green component we have
c2 = e & c3 = e =⇒ c = e.



THE THIRD STAGE



THE THIRD STAGE

a

b

aee = e =⇒ a = e,
bee = e =⇒ b = e. QED



LARGE GREEN COMPONENT

a

b

c

d

The probability that a and b are adjacent is roughly(
n
2

)
p2 ∼ 1

3
n2(cn−3/2)2 ≥ c′/n .



LARGE GREEN COMPONENT

a

b

c

d

Unfortunately, the events that the edges {a,b} and {b, c}
appear in the green graph are positively correlated.



LARGE GREEN COMPONENT

The green graph is a random graph but the existence of
its edges are positively correlated.

This is somewhat unfortunate, since otherwise we could
use the well known result on the phase transition by
ERDŐS, RÉNYI’60

.

Fortunately, we can apply an analogous BEHRISCH’07
result for the random intersection graph
(which, by the way, is one of a very few models of ‘small world graphs’
which have both the power law degree distribution and large
clustering coefficient; that is precisely why Paweł Prałat mentioned it
in his talk).
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COLLAPSING OF THE RANDOM GROUP REVISITED

THEOREM ŻUK’03
Let ε > 0. Then

I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.
I If p ≤ n−3/2−ε, then aas Γ(n,p) is infinite and hyperbolic.
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THEOREM ŻUK’03
Let ε > 0. Then

I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.
I If p ≤ n−3/2−ε, then aas Γ(n,p) is infinite and hyperbolic.

CONJECTURE ANTONIUK, ŁUCZAK, ŚWIA̧TKOWSKI’14

There exists a constant c′ > 0 such that if p ≤ c′n−3/2,
then aas Γ(n,p) is infinite (and hyperbolic).



COLLAPSING OF THE RANDOM GROUP REVISITED

THEOREM ŻUK’03
Let ε > 0. Then

I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.
I If p ≤ n−3/2−ε, then aas Γ(n,p) is infinite and hyperbolic.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK’15+
There exists a function c(n) such that for every ε > 0 the
following holds.

I If p ≥ (1 + ε)c(n)n−3/2, then aas Γ(n,p) is trivial.
I If p ≤ (1− ε)c(n)n−3/2, then aas Γ(n,p) is not trivial.



TWO TYPES OF THRESHOLDS

THE (COARSE) THRESHOLD FOR ‘G(n,p) ⊇ K3’
If np → 0, then aas G(n,p) 6⊇ K3, while
if np →∞, then aas G(n,p) ⊇ K3.

THE (SHARP) THRESHOLD FOR CONNECTIVITY

Let ω(n)→∞.
If p = 1

n (log n − ω(n)), then aas G(n,p) is not connected,
while if p = 1

n (log n + ω(n)), then aas G(n,p) is connected.



TWO TYPES OF THRESHOLDS

coarse sharp

Pp(T)

p

Pp(T)

p

We claim that the threshold for collapsing is of the latter kind.
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GENERAL THEORY OF (SHARP) THRESHOLDS

Suppose a random subset Rp of a set Ω is obtained choosing
elements of Ω independently at random with probability p.
Let A be an increasing property of subsets of Ω.

THEOREM FRIEDGUT+BOURGAIN’99
A property A has a coarse threshold if and only if it is ‘local’.

Example
Consider the following properties of Γ(n,p) = 〈S|R(n,p)〉
A1: five generators of Γ(n,p) are equivalent to the identity,
A2: all generators of Γ(n,p) are equivalent to the identity.

Then, A1 has a coarse threshold, while, as we see shortly,
the threshold for A2 is sharp.
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GENERAL THEORY OF (SHARP) THRESHOLDS

KAHN, KALAI, LINIAL’88
⇓

BOURGAIN, KAHN, KALAI, KATZNELSON, LINIAL’92
⇓

FRIEDGUT+BOURGAIN’99



SHARP THRESHOLD FOR COLLAPSING

THEOREM FRIEDGUT+BOURGAIN’99
A property A has a coarse threshold if and only if it is ‘local’.

THEOREM ANTONIUK, FRIEDGUT, ŁUCZAK’15+
The threshold for collapsing Γ(n,p) which occurs
for p ∼ n−3/2+o(1) is sharp.

Proof We have to show that collapsing is not ‘local’,
i.e. adding a few relations to Γ(n,p) does not change probability
of collapsing more than changing probability p to (1 + ε)p,
for some ε > 0.
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x1x2x6 = e & x3x5x4 = e & x1x3x6 = e



THE ‘LOCAL’ GRAPH

x2

x1

x3 x4

x5

x6

x1 = x2 = x3 = x4 = x5 = x6 = e



THE ‘LOCAL’ GRAPH

x1 = x2 = x3 = x4 = x5 = x6 = e



THE ‘LOCAL’ GRAPH

x1 = x2 = x3 = x4 = x5 = x6 = e



THE ‘LOCAL’ GRAPH

x

b

a

xab = e =⇒ ab = e =⇒ a = b−1



THE ‘LOCAL’ GRAPH

x

b

a

xab = e =⇒ ab = e =⇒ a = b−1



THE ‘LOCAL’ GRAPH

x

b

a

a = b−1

ρ1 = Θ(p)



THE ‘LOCAL’ GRAPH

x

b

a

a = b−1

ρ1 = Θ(p)



THE BLUE ‘LOCAL’ GRAPH

ρ1 = Θ(p)
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ρ2 = Θ(n2(εp)2)

� ρ1 = Θ(p) QED
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THE EVOLUTION OF THE RANDOM GROUP

THEOREM ŻUK’03
For every constant ε > 0 the following holds.

I If p ≤ n−2−ε then aas Γ(n,p) is free.
I If n−2+ε ≤ p ≤ n−3/2−ε, then aas Γ(n,p) is infinite,

hyperbolic, and has Kazdhan’s property (T).
I If p ≥ n−3/2+ε, then aas Γ(n,p) is trivial.
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Let ε > 0. Then there exists constants c2 ≥ c1 > 0 and
c4 ≥ c3 > 0 so that the following holds.

I If p ≤ (c1 − ε)n−2 then aas Γ(n,p) is free.
I If (c2 + ε)n−2 ≤ p ≤ (c3 − ε)n−2 log n, then aas Γ(n,p) is

not free but does not have Kazdhan’s property (T).
I If p ≥ (c4 + ε)n−2 log n, then aas Γ(n,p) has Kazdhan’s

property (T).
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c1 = c2.

THEOREM HOFFMAN, KAHLE, PAQUETTE’15+
c3 = c4.
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WHEN IS Γ(n,p) FREE?

THEOREM ANTONIUK, ŁUCZAK, PRYTUŁA,
PRZYTYCKI, ZALESKI’15+

There exist a constant c > 0 so that for every ε > 0
I If p ≤ (c − ε)n−2 then aas Γ(n,p) is free.
I If p ≥ (c + ε)n−2, then aas Γ(n,p) is not free.

THEOREM ANTONIUK, ŁUCZAK, PRYTUŁA,
PRZYTYCKI, ZALESKI’15+

Aas Γ(n,p) = 〈S|R(n,p)〉 becomes not free roughly
at the moment when for some S′ ⊆ S and R′ ⊆ R(n,p)
for each s ∈ S′ there exists at least two relators r1, r2 ∈ R′

which contains either s or s−1.
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OR IN MORE ACCESSIBLE LANGUAGE...

DEFINITION OF AN AUXILIARY RANDOM 3-GRAPH

Let H(n,p) be a 3-graph whose vertex set consists of
generators and the edge {a,b,d} appears only if the random
presentation of Γ(n,p) contains a relation of type ad−1b.
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IT IS HIGH TIME TO DEFINE HYPERBOLICITY

DEFINITION

A finitely generated group is hyperbolic if there exists a
constant c, such that for every word of length k which is
equal to e, there exists a van Kampen diagram with at
most ck cells which proves it.



HYPERBOLIC GROUP: EXAMPLE

Z2 = 〈{a,b}|aba−1b−1〉 is not hyperbolic: van Kampen
diagram showing that akbka−kb−k = e has k2 squares.

b ba

a
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The boundary of the infinite group is, roughly speaking, the set
of all infinite rays of its Cayley graph with a ‘natural’ topology.
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GROMOV’S BOUNDARY OF A GROUP

DEFINITION

The boundary of the infinite group is, roughly speaking,
the set of all infinite rays of its Cayley graph with a
‘natural’ topology.

Important example
The boundary of a free group has
the same topology as the Cantor set.
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PROBLEM

How to show that a group is not a free group?

It is enough to show that each subgraph
induced by the k -neighbourhood of a vertex
in the Cayley graph is connected.
Indeed, then Gromov’s boundary
(which is inverse limit of these graphs)
is connected (and compact).
Thus the group is not free.



WHEN IS A GROUP FREE?

PROBLEM

How to show that a group is not a free group?

It is enough to show that each subgraph
induced by the k -neighbourhood of a vertex
in the Cayley graph is connected.

Indeed, then Gromov’s boundary
(which is inverse limit of these graphs)
is connected (and compact).
Thus the group is not free.



WHEN IS A GROUP FREE?

PROBLEM

How to show that a group is not a free group?

It is enough to show that each subgraph
induced by the k -neighbourhood of a vertex
in the Cayley graph is connected.
Indeed, then Gromov’s boundary
(which is inverse limit of these graphs)
is connected (and compact).
Thus the group is not free.



KAZDHAN’S PROPERTY (T)

THEOREM HOFFMAN, KAHLE, PAQUETTE’15+
There exists a constant C such that for every ε > 0

I If p ≤ (c − ε)n−2 log n, then aas
Γ(n,p) has not got property (T).

I If p ≥ (c + ε)n−2 log n, then aas
Γ(n,p) has got property (T).



A FEW FINAL REMARKS

In the first part of the talk I have only presented results on
the right kernel of the incidence matrix whose elements
belonged to F2.

The left kernel of the incidence matrix is also interesting,
and F2 can be replaced by any ring (but incidence matrix
needs to be redefine in this case).

Furthermore, there are also other models of random
groups I have not mentioned.
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any result in this direction.
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THANK YOU!



Never run overtime.
Running overtime is the one fatal mistake
a lecturer can make.

Ten lessons I wish I had been taught
Gian-Carlo Rota



FURTHER READINGS

If anyone would like to know more about random groups, there
are three articles give a gentle introduction to the subject and a
glimpse on some recent (and a bit older) results in this area.

T.Łuczak, Randomly generated groups. In Survey in
Combinatorics 2015, London Math. Soc. Lecture Note Series
424, Cambridge University Press, 2015, 175-194.

M.Kahle, Topology of random simplicial complexes: a survey.
AMS Contemporary Volumes in Mathematics 620 (2014)
201-222.

Y.Ollivier, A January 2005 invitation to random groups, Ensaios
Matematicos [Mathematical Surveys] 10, Sociedade Brasileira
de Matematica, Rio de Janeiro, 2005.
with
Y.Ollivier, Random group update,
http://www.yann-ollivier.org/rech/publs/rgupdates.pdf.
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