UPPER LARGE DEVIATIONS FOR POWER-WEIGHTED EDGE LENGTHS IN SPATIAL RANDOM NETWORKS

DANIEL WILLHALM (UNIV. GRONINGEN)

ABSTRACT. We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e \in E} |e|^{\alpha}$ in Poisson-based spatial random networks. In the regime $\alpha > d$, we develop a set of sufficient conditions under which the upper large deviations asymptotics are characterized by a condensation phenomena, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed and undirected variants of the k-nearest neighbor graph, as well as suitable β -skeletons.