ISOLATED AND EXTREME POINTS IN HYPERBOLIC RANDOM GEOMETRIC GRAPHS

JOE YUKICH (LEHIGH UNIV.)

ABSTRACT. We consider the random geometric graph constructed on Poisson points in the Poincare disc of radius R and having curvature $-\alpha^2$. For $\alpha \in (1/2, \infty)$ we establish expectation and variance asymptotics as well as asymptotic normality for the number of isolated and extreme points in the random geometric graph as $R \to \infty$. The limit theory and renormalization for the number of isolated points are highly sensitive on the curvature parameter. In particular, for $\alpha \in (1/2, 1)$, the variance is super-linear, for $\alpha = 1$ the variance is linear with a logarithmic correction, whereas for $\alpha \in (1,\infty)$ the variance is linear. The central limit theorem fails for $\alpha \in (1/2, 1)$ but it holds for $\alpha \in (1,\infty)$. The talk is based on joint work with N. Fountoulakis.