Distance and Reconstruction in RGG: Breaking the $\Theta(r)$ error Josep Díaz

Joint work with:

{V.Dani, T.Hayes, C.McDiarmid, D.Mitsche, C.Moore, G.Perarnau, X.Pérez}

Oct. 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Random Geometric Graphs

Given $n \in \mathbb{N}$, a set $V = \{v_i\}_{i=1}^n$, together with an embedding $\Psi: V \to \mathbb{R}^2$ into a convex subset of \mathbb{R}^2 , for $S_n = [0, \sqrt{n}]^2$ (a realization), and given a threshold distance r > 0, define a random geometric graph $G = G(\Psi, r)$, where $v_i, v_j \in V$ are adjacent iff $d_E(\Psi(v_i), \Psi(v_j)) \leq r$.

Two main models of distribution of the *n* vertices in S_n :

The uniform distribution, where the number of vertices in a subset of S_n of area A follows a Binomial distribution, and

• Poisson distribution with intensity $\lambda = 1$.

Asymptotically both models have the same properties.

If the realization Ψ is deterministic and r is rescaled to 1 then $G = G(\Psi, r)$ is said to be a Unit Disk Graph.

Alternative input for a RGG: adjacency matrix

The RGG G is given by its adjacency matrix A_G .

- We don't have neither the realization Ψ, or the value of r.
- But from A_G we do know the sets V(G), E(G), and for u ∈ V(G) we know its degree δ(u).

$$A_{G} = \begin{array}{cccccc} v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ v_{1} & v_{2} & \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \end{pmatrix} \begin{array}{c} E = \{(v_{1}, v_{3}), (v_{1}, v_{5}), \ldots\} \\ |E| = 7 \\ \delta v_{4} = 4; \mathcal{N}(v_{2}) = \{v_{2}, v_{3}, v_{5}, v_{6}\} \end{array}$$

Using transitive closure we can evaluate any graph distance between two vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $d_E(v_i, v_j)?$

Estimating \hat{r}

Notice that i $X_V = \delta(v)$, $\mathbf{E}[X_v] = \frac{\pi r^2}{n}(n-1)$ and we exactly know the value $\delta(v)$, so we can get a sharp estimator \hat{r} for r.

Formally Díaz, McDiarmid, Mitsche-2019.

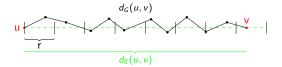
Thm. Let r = r(n) > 0 be s.t. $1/\sqrt{n} < r < \sqrt{n}$ as $n \to \infty$. and $\rho = \sqrt{n}/r$. Let $\omega(n)$ a function tending to infinity with n arbitrarily slowly Then there is an $O(n^2)$ time algorithm to compute an estimator \hat{r} s.t.

$$|\hat{r} - r| < \omega \cdot (n^{-1/2} + \rho^{-3/2})$$
 w.h.p.,

so that $\hat{r}/r \to 1$ in probability as $n \to \infty$.

Distances in RGG

Relate $d_E(u, v)$ and $d_G(u, v)$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Muthukrishnan, Panduragan (2005)
- Ellis, Martin, Yan (2007)
- Friedrich, Sauerwald, Martin, Yan (2007)
- Brandonjic, Elsässer, Sauerwald, Stauffer (2010)
- Merhabian, Wormald (2013)
- Díaz, Mitsche, Pérez, Perarnau (2016)
- Arias-Castro, Channarond, Pelletier, Verzelen (2017)
- Araya-Valdivia, De Castro (2019)
- Dani, Díaz, Hayes, Moore (2021)

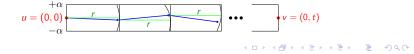
Bounding $d_G(u, v)$ with $d_E(u, v)$ Thm. (D,M,P,P-16) Given $G \in \mathcal{G}(\Psi, r)$, $\exists c < 6 \cdot 10^6$ s.t. if $r \ge 224(\log n)^{3/4}$, w.h.p. for any $u, v \in V(G)$:

$$\left\lfloor \frac{d_E(u,v)}{r} \right\rfloor \le d_G(u,v) \le \left\lceil \frac{d_E(u,v)}{r} + 1 + c \cdot \max\{\frac{n^{1/2}}{r^{7/3}}, \frac{n^{1/6}(\log n)^{2/3}}{r^{5/3}}\} \right\rceil.$$

If
$$r > n^{3/14}$$
, $\exists \epsilon(n) = o(1)$: $d_G(u, v) \leq \frac{d_E(u, v)}{r} + 1 + \epsilon(n)$,

If we want to bound $d_E(u, v)$: If $r > n^{3/14}$, $d_G(u, v)r - \underbrace{(1 + o(1))r}_{error \Theta(r)} \le d_E(u, v) \le d_G(u, v)r$.

Random greedy construction of path $u \rightarrow v$ in strip $d_E(u, v) \times 2\alpha$.

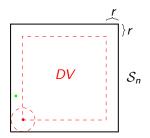


Breaking the $\Theta(r)$ error barrier: Deep vertices

Dani, Díaz, Hayes, Moore-21

The setting: Given an RGG G by A_G for u, v in V(G) we want to get bounds for $d_E(u, v)$ conditioned on $d_G(u, v)$.

Given an RGG G in S_n , define $v \in V(G)$ to be deep if there are $\geq 12r^2$ vertices at $d_G \leq 2$.



・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

For $r > r_c$, w.h.p $v \in V(G)$ is a deep vertex iff $v \in DV$.

Breaking the $\Theta(r)$ error barrier: Short distances

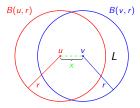
Let G be given by A_G and $u, v \in V(G)$, s.t. v is deep and $d_G(u, v) \leq 2$, so $d_E(u, v) = x \leq 2r$.

Thm. Given A_G , if $d_G(u, v) \leq 2$ and v is deep, then w.h.p.

$$\left| d_E(u,v) - \tilde{d}(u,v) \right| \leq c\sqrt{\log n}.$$

For $0 < x \le 2r$, for the lune (lense) $L = B(v, r) \setminus B(u, r)$, define F(x) = the area A(L) of L.

We want to approximate A(L) by the number of points in L, and compute $F^{-1}(A(L))$ to approximate $x = d_E(u, v)$.



Breaking the $\Theta(r)$ error barrier: Long distances

Thm. Given an RGG G, with $r > r_c$, for all $u, v \in V(G)$, w.h.p.

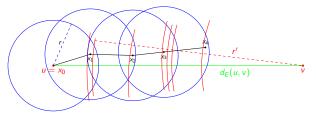
 $\lceil d_E(u,v)/r \rceil \leq d_G(u,v) \leq \lceil (d_E(u,v)+\kappa)/r \rceil,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where $\kappa/r = \Theta(d_E(u, v) \cdot r^{-7/3} + \log(n) \cdot r^{-4/3}).$

If $r = n^{\alpha}$ for $(0 < \alpha < 1/2)$ then $\kappa = O(n^{\beta})$ for $\beta = \frac{1}{2} - \frac{4}{3}\alpha$ $\alpha > 3/14$ then $\kappa = o(r)$.

Randomized greedy path $u \rightarrow v$



Breaking the $\Theta(r)$ error barrier: Hybrid distances

Cor. If $r = \Omega(n^{3/14})$ then $\kappa = o(r)$, and w.h.p.

 $d_G(u,v) \cdot r - (r+\kappa) \leq d_E(u,v) \leq d_G(u,v) \cdot r.$

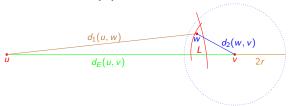
If we can find a w s.t. $d_E(u, w)$ is near a multiple of r, say tr, the error could be diminished: for $r > n^{3/14}$, $rd_G(u, v)$ is a good estimator for $d_E(u, v)$:

Let $u, w \in G$, for $r = n^{\alpha}$, if $\exists t \in \mathbb{N}$, and a $\delta > 0$ s.t. $tr - (\kappa + \delta) < d_E(u, w) < tr - \kappa$, then

$$d_G(u,w)r - \underbrace{(\kappa + \delta)}_{\text{error}} \leq d_E(u,w) \leq d_G(u,w)r.$$

うせん 同一人用 (一日) (日)

Breaking the $\Theta(r)$ error barrier: Hybrid distances



Thm. Given A_G , let $r = n^{\alpha}$ for $0 < \alpha < 1/2$. For all pairs $u, v \in V(G)$, with v deep define $\hat{d} = \min_{w \mid d_G(w,v) \le 2} (d_1(u,w) + d_2(w,v))$. Then w.h.p.

$$\hat{d}(u,v) - \underbrace{\hat{\epsilon}(u,v)}_{\text{error}} \leq d_E(u,v) \leq \hat{d}(u,v),$$

where

$$\hat{\epsilon}(u,v) \leq \begin{cases} n^{\frac{1}{2} - \frac{4}{3}\alpha} & \alpha < 3/8, \\ \sqrt{\log n} & 3/8 \leq \alpha < 1/2. \end{cases}$$

Therefore, for $r = n^{\alpha}$, $3/14 < \alpha < 1/2$, the error is o(r).

The reconstruction problem on 2D: S_n

Given as input the adjacency matrix A_G of RGG G on S_n , the goal is finding the realization $G(\Psi, r)$.

(i.e. Finding an embedding $\Phi: V \to S_n$, which recovers G.)

The reconstruction problem for deterministic UDG, is NP-hard Breu, Kirkpatrick, 1998.

Therefore, we only can aim to find an embedding $\Phi: V \to S_n$ that yields a "good approximation" for the hidden (latent) Ψ

Lots of work done on the reconstruction and related problems, for different classes of graphs and using different techniques, on constant smooth.

Finding an RGG from its adjacency matrix

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Displacement of Φ w.r.t. Ψ

Given A_G of a geometric graph G, our goal is to find an embedding Φ which is close to the hidden Ψ .

Given $\Phi, \Psi: V \to S_n$, the sup distance is defined by

$$d_{\max}(\Phi,\Psi) = \max_{v \in V} d_E(\Phi(v),\Psi(v)).$$

As there are 8 symmetries σ of the square S_n , define the symmetry-adjusted displacement d^* by

$$d^*(\Phi, \Psi) = \min_{\sigma} d_{\max}(\sigma \circ \Phi, \Psi).$$

Displacement is the most general measure of "closeness", when dealing with random graphs, but it is not the only one.

A solution to the reconstruction problem

Díaz, McDiarmid, Mitsche (2019)

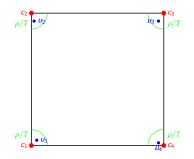
Given $G \in \mathcal{G}(\Psi, r)$ by its adjacency matrix A_G , we want to find an embedding Φ to the hidden Ψ , s.t. w.h.p. Φ approximates Ψ with minimal displacement, for the largest possible range of r.

Thm Given A_G for a hidden $G \in \mathcal{G}(\Psi, r)$, such that the range of the radius should be $n^{3/14} < r < \sqrt{n}$, fix $\varepsilon > 0$ be a small constant, there is an algorithm which in $O(n^2)$ -time outputs a Φ such that w.h.p. $d^*(\Psi, \Phi) \leq (1 + \varepsilon)r$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sketch of the proof

Using the vertex degrees, identify 4 vertices $C = \{u_1, u_2, u_3, u_4\}$ that w.h.p. are close to the 4 corners of S_n



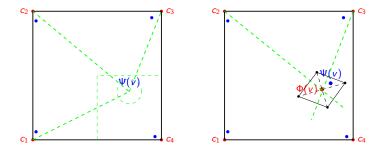
Algorithm

- 1. Pick u_1 as the vertex of min degree & place it in a corner. Mark it and all its neighbors.
- 2. Iteratively on the set of unmarked min-degree vertices, find the set C' with min-degree vertices.
- 3. Choose in C' the farthest vertex from u_1 and call it u_2 , place it in opposite corner.
- 4. Place the remaining 2 vertices in the 2 remaining corners.

Sketch of the proof

Let \mathcal{E}_1 be the event in which the 4 vertices in *C* are placed near the corners in \mathcal{S}_n .

Conditioning on \mathcal{E}_1 , for any $v \in V \setminus C$, we approximate $d_E(\Psi(v), \Psi(u_i))$ by using the $d_G(v, u_i)$ and then we place our estimate $\Phi(v)$ for $\Psi(v)$ at the intersection of the annuli centered on the 2 further away corners $\{u_i, u_j\}$.



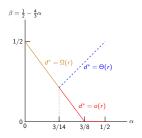
・ロト ・四ト ・ヨト ・ヨ

A better distortion for recovering $G \in S_n$ (Dani, Díaz, Hayes, Moore (2021)

Thm. Given A_G for $r = n^{\alpha}$ ($0 < \alpha < 1/2$), there is an $O(n^{2.373} \log(n))$ algorithm that w.h.p. reconstructs G, modulo the set of symmetries of S_n with $d^* = \Theta(\hat{\epsilon})$, i.e.

$$d^* = C \begin{cases} n^{\frac{1}{2} - \frac{4}{3}\alpha} & \text{if } \alpha < 3/8, \\ \sqrt{\log n} & \text{if } 3/8 \le \alpha < 1/2. \end{cases}$$

Notice that once we reconstruct the position of all vertices, we can get a good estimate on $d_E(u, v)$, $\forall u, v \in V$.



If $r = n^{\alpha}$ values of distortion d^* obtained by D,D,H,M-21 (red and blue) over D,McD,M-19 (dashed green) for the reconstruction problem.

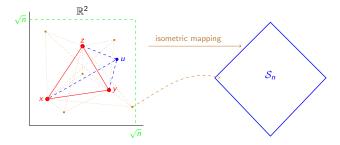
Sketch of the Algorithm

▶ Using Seidel's APSP compute $d_G(u, v)$, $\forall u, v \in V$.

- ► In \mathbb{R}^2 , choose deep x, y, z that form an acute triangle, with minimal length $\ell = \Omega(\sqrt{n})$. Estimate $\hat{d}(x, y), \hat{d}(y, z), \hat{d}(x, z)$, with error $\hat{\epsilon}$.
- For all other u ∈ V\{x, y, z}, estimate their relative position with recpect x, y, z, with error O(ê).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Do an isometric embedding from this graph into S_n.



Complexity of the previous algorithm

The complexity of the algorithm is dominated by the computations of All Pairs Shortest Path using Seidel's randomized algorithm, which is $O(n^{\omega} \log n)$, where $\omega \sim 2.373$.

It should be possible to lower the complexity to $O(n^2)$, by avoiding using Seidel's APSP algorithm.

Reconstruction of RGG on \mathbb{S}^2

Scatter u.a.r. *n* points on surface of \mathbb{S}^2 in \mathbb{R}^3 , according to a Poisson with $\lambda = 1$. Let $R = \sqrt{n/4\pi}$, so area $S_2 = n$. For a given *r*, two points *u*, *v* on \mathbb{S}^2 are connected if $g(u, v) \leq r$, where g(,) denotes the min geodesic distance.

For early definitions of RGG on \mathbb{S}^2 see for ex. Bubeck, Ding, Eldan, Rácz,2016

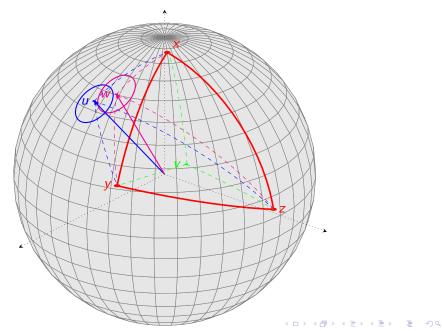
Thm. Let $r = n^{\alpha}$ for $0 < \alpha < 1/2$. There is an $O(n^{3.37} \log(n))$ algorithm that w.h.p. reconstructs the vertex positions of a RGG, modulo symmetries of S_2 , with

$$d^* = C \begin{cases} n^{\frac{1}{2} - \frac{4}{3}\alpha} & \text{if } \alpha < 3/8, \\ \sqrt{\log n} & \text{if } 3/8 \le \alpha < 1/2. \end{cases}$$

Conjecture: Similar techniques can work on most d-dimensional curved manifolds, for fixed d.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reconstruction of RGG on \mathbb{S}^2



Reconstruction of RGG in the *d*-dimensional hypercube

Consider the *d*-dimensional hypercube $H = [0, n^{1/d}]^d$, for *d* fixed:

Define and compute the volume of the *d*-dim lens and lunes,
define waypoints as the vertices in a *d*-simplex.

Thm. Let *G* be a RGG in *H*, given by A_G , let $r = n^{\alpha}$, for $0 < \alpha < 1/d$. There is an algorithm with running time $O(n^{2.37} \log n)$, that w.h.p. reconstructs *G*, modulo symmetries of the hypercube, with distortion

$$d^* \leq C_d \begin{cases} n^{\frac{1}{d} - \frac{2d}{d+1}\alpha} & \alpha < \frac{d+1}{2d^2}, \\ \sqrt{\log n} & \frac{d+1}{2d^2} \leq \alpha < \frac{1}{d}. \end{cases}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Related models (1)

On the Estimation of Latent Distances Using Graph Distances. E.Arias-Castro, A.Channarond, Pelletier, N.Verzelen (2018)

Given $V = \{x_1, \ldots, x_n\}$ latent points u.a.r. on \mathbb{S}^{d-1} (*d* fixed) define a random graph *G* on *V* by the adjacency matrix *A*, where the probability of having $a_{ij} = 1$ depends of a link function $\Phi(d_E(x_i, x_j))$, where $\Phi : [0, \infty) \to [0, 1]$.

We want to approximate distances, reconstructing latent points, etc..

For RGG, given an r, the link function is defined by

$$\Phi(d_E) = \mathbb{1}\{d_E \leq r\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The error of distances, and therefore recovering points is $\Theta(r)$.

Related models (2)

Latent Distance Estimation for Random Geometric Graphs. E.Araya, Y. De Castro (2019)

- Having |V| = n latent points on S^{d−1} they want to approximate d_E(x_i, x_j) for any two points.
- Also uses the link function ϕ is given by graphon function on \mathbb{S}^{d-1} .
- They sparsify the graph by giving every node a small probability to other points and a great probability to be connected to near nodes. The resulting graph is not a RGG.
- ► They use harmonic analysis on the S^{d-1} to have a nice characterization on the graphon spectrum.
- Their main result is an O(log n) approximation for pairwise Euclidean distance between points.

As a byproduct, their method can also estimate the dimension d of the latent space.

Thank you for your attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ