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Random Geometric Graphs

Given n ∈ N, a set V = {vi}ni=1, together with an embedding

Ψ : V → R2 into a convex subset of R2, for Sn =
[
0,
√
n
]2

(a realization), and given a threshold distance r > 0,
define a random geometric graph G = G (Ψ, r), where vi , vj ∈ V
are adjacent iff dE (Ψ(vi ),Ψ(vj)) ≤ r .
Two main models of distribution of the n vertices in Sn:

I The uniform distribution, where the number of vertices in a
subset of Sn of area A follows a Binomial distribution, and

I Poisson distribution with intensity λ = 1.

Asymptotically both models have the same properties.

If the realization Ψ is deterministic and r is rescaled to 1 then
G = G (Ψ, r) is said to be a Unit Disk Graph.



Alternative input for a RGG: adjacency matrix

The RGG G is given by its adjacency matrix AG .

I We don’t have neither the realization Ψ, or the value of r .

I But from AG we do know the sets V (G ), E (G ), and for
u ∈ V (G ) we know its degree δ(u).

AG =

v1 v2 v3 v4 v5 v6


v1 0 0 1 0 1 0
v2 0 0 0 1 0 0
v3 1 0 0 1 1 0
v4 0 1 1 0 1 1
v5 1 0 1 1 0 0
v6 0 0 0 1 0 0

E = {(v1, v3), (v1, v5), . . .}
|E | = 7

δv4 = 4;N (v2) = {v2, v3, v5, v6}

Using transitive closure we can evaluate any graph distance
between two vertices.

dE (vi , vj)?



Estimating r̂

Notice that i XV = δ(v), E [Xv ] = πr2

n (n − 1) and we exactly know
the value δ(v), so we can get a sharp estimator r̂ for r .

Formally D́ıaz, McDiarmid, Mitsche-2019.

Thm. Let r = r(n) > 0 be s.t. 1/
√
n < r <

√
n as n→∞. and

ρ =
√
n/r . Let ω(n) a function tending to infinity with n arbitrarily

slowly Then there is an O(n2) time algorithm to compute an
estimator r̂ s.t.

|r̂ − r | < ω · (n−1/2 + ρ−3/2) w.h.p.,

so that r̂/r → 1 in probability as n→∞.



Distances in RGG

Relate dE (u, v) and

dG (u, v).
u

v

r
dE (u, v)

dG (u, v)

I Muthukrishnan, Panduragan (2005)

I Ellis, Martin, Yan (2007)

I Friedrich, Sauerwald, Martin, Yan (2007)

I Brandonjic, Elsässer, Sauerwald, Stauffer (2010)

I Merhabian, Wormald (2013)

I D́ıaz, Mitsche, Pérez, Perarnau (2016)

I Arias-Castro, Channarond, Pelletier, Verzelen (2017)

I Araya-Valdivia, De Castro (2019)

I Dani, D́ıaz, Hayes, Moore (2021)



Bounding dG (u, v) with dE (u, v)
Thm. (D,M,P,P-16) Given G ∈ G(Ψ, r), ∃c < 6 · 106 s.t. if
r ≥ 224(log n)3/4, w.h.p. for any u, v ∈ V (G ):⌊

dE (u,v)
r

⌋
≤ dG (u, v) ≤

⌈
dE (u,v)

r + 1 + c ·max{ n
1/2

r7/3 ,
n1/6(log n)2/3

r5/3 }
⌉
.

If r > n3/14, ∃ε(n) = o(1): dG (u, v) ≤ dE (u,v)
r + 1 + ε(n),

If we want to bound dE (u, v):

If r > n3/14, dG (u, v)r − (1 + o(1))r︸ ︷︷ ︸
error Θ(r)

≤ dE (u, v) ≤ dG (u, v)r .

Random greedy construction of path u → v in strip dE (u, v)× 2α.

u = (0, 0) v = (0, t)

+α

−α
r

r
r



Breaking the Θ(r) error barrier: Deep vertices

Dani, D́ıaz, Hayes, Moore-21

The setting: Given an RGG G by AG for u, v in V (G ) we want to
get bounds for dE (u, v) conditioned on dG (u, v).

Given an RGG G in Sn, define
v ∈ V (G ) to be deep if there are
≥ 12r2 vertices
at dG ≤ 2.

DV Sn

r

r

For r > rc , w.h.p v ∈ V (G ) is a deep vertex iff v ∈ DV .



Breaking the Θ(r) error barrier: Short distances
Let G be given by AG and u, v ∈ V (G ), s.t. v is deep and
dG (u, v) ≤ 2, so dE (u, v) = x ≤ 2r .

Thm. Given AG , if dG (u, v) ≤ 2 and v is deep, then w.h.p.∣∣∣dE (u, v)− d̃(u, v)
∣∣∣ ≤ c

√
log n.

For 0 < x ≤ 2r , for the lune (lense) L = B(v , r)\B(u, r), define
F (x) = the area A(L) of L.
We want to approximate A(L) by the number of points in L, and
compute F−1(A(L)) to approximate x = dE (u, v).

u v
L

x

rr

B(v , r)B(u, r)



Breaking the Θ(r) error barrier: Long distances

Thm. Given an RGG G , with r > rc , for all u, v ∈ V (G ), w.h.p.

ddE (u, v)/re ≤ dG (u, v) ≤ d(dE (u, v) + κ)/re,

where κ/r = Θ(dE (u, v) · r−7/3 + log(n) · r−4/3).

If r = nα for (0 < α < 1/2) then κ = O(nβ) for β = 1
2 −

4
3α

α > 3/14 then κ = o(r).

Randomized greedy path u → v

u = x0 v

x1 x2
x3

x4

dE (u, v)

r

r ′



Breaking the Θ(r) error barrier: Hybrid distances

Cor. If r = Ω(n3/14) then κ = o(r), and w.h.p.

dG (u, v) · r − (r + κ) ≤ dE (u, v) ≤ dG (u, v) · r .

If we can find a w s.t. dE (u,w) is near a multiple of r , say tr , the
error could be diminished: for r > n3/14, rdG (u, v) is a good
estimator for dE (u, v):

Let u,w ∈ G , for r = nα, if ∃t ∈ N, and a δ > 0 s.t.
tr − (κ+ δ) < dE (u,w) < tr − κ, then

dG (u,w)r − (κ+ δ)︸ ︷︷ ︸
error

≤ dE (u,w) ≤ dG (u,w)r .



Breaking the Θ(r) error barrier: Hybrid distances

u v

w

2rdE (u, v)

d1(u,w)
d2(w , v)

L

Thm. Given AG , let r = nα for 0 < α < 1/2. For all pairs
u, v ∈ V (G ), with v deep define
d̂ = minw | dG (w ,v)≤2(d1(u,w) + d2(w , v)). Then w.h.p.

d̂(u, v)− ε̂(u, v)︸ ︷︷ ︸
error

≤ dE (u, v) ≤ d̂(u, v),

where

ε̂(u, v) ≤
{
n

1
2−

4
3α α < 3/8,

√
log n 3/8 ≤ α < 1/2.

Therefore, for r = nα, 3/14 < α < 1/2, the error is o(r).



The reconstruction problem on 2D: Sn

Given as input the adjacency matrix AG of RGG G on Sn, the goal
is finding the realization G (Ψ, r).
(i.e. Finding an embedding Φ : V → Sn, which recovers G .)

The reconstruction problem for deterministic UDG, is NP-hard
Breu, Kirkpatrick, 1998.

Therefore, we only can aim to find an embedding Φ : V → Sn that
yields a ”good approximation” for the hidden (latent) Ψ

Lots of work done on the reconstruction and related problems, for
different classes of graphs and using different techniques, on
constant smooth.



Finding an RGG from its adjacency matrix

AG =

v1 v2 v3 v4 v5 v6 v7 v8



v1 0 0 1 0 1 0 0 0
v2 0 0 0 1 0 0 0 0
v3 1 0 0 0 0 0 0 1
v4 0 1 0 0 0 1 0 1
v5 1 0 0 0 0 0 0 1
v6 0 0 0 1 0 0 1 0
v7 0 0 0 0 0 1 0 0
v8 0 0 1 1 1 0 0 0

Ψ Φ

v1

v2

v3
v5

v4
v6

v7

v8
1

5

4

2
7

3

6

8



Displacement of Φ w.r.t. Ψ

Given AG of a geometric graph G , our goal is to find an
embedding Φ which is close to the hidden Ψ.

Given Φ,Ψ : V → Sn, the sup distance is defined by

dmax(Φ,Ψ) = max
v∈V

dE (Φ(v),Ψ(v)).

As there are 8 symmetries σ of the square Sn, define the
symmetry-adjusted displacement d∗ by

d∗(Φ,Ψ) = min
σ

dmax(σ◦Φ,Ψ).

Displacement is the most general measure of ”closeness”, when
dealing with random graphs, but it is not the only one.



A solution to the reconstruction problem

D́ıaz, McDiarmid, Mitsche (2019)

Given G ∈ G(Ψ, r) by its adjacency matrix AG , we want to find an
embedding Φ to the hidden Ψ, s.t. w.h.p. Φ approximates Ψ with
minimal displacement, for the largest possible range of r .

Thm Given AG for a hidden G ∈ G(Ψ, r), such that the range of
the radius should be n3/14 < r <

√
n, fix ε > 0 be a small

constant, there is an algorithm which in O(n2)-time outputs a Φ
such that w.h.p. d∗(Ψ,Φ) ≤ (1 + ε)r .



Sketch of the proof

Using the vertex degrees, identify

4 vertices C = {u1, u2, u3, u4}
that w.h.p. are close to the 4

corners of Sn

ρ/7 ρ/7

ρ/7ρ/7

u4

u1

u3u2

c4c1

c3c2

Algorithm

1. Pick u1 as the vertex of min degree & place it in a corner. Mark it
and all its neighbors.

2. Iteratively on the set of unmarked min-degree vertices, find the set
C ′ with min-degree vertices.

3. Choose in C ′ the farthest vertex from u1 and call it u2, place it in
opposite corner.

4. Place the remaining 2 vertices in the 2 remaining corners.



Sketch of the proof

Let E1 be the event in which the 4 vertices in C are placed near the
corners in Sn.

Conditioning on E1, for any v ∈ V \C , we approximate dE (Ψ(v),Ψ(ui ))

by using the dG (v , ui ) and then we place our estimate Φ(v) for Ψ(v) at

the intersection of the annuli centered on the 2 further away corners

{ui , uj}.

Ψ(v)

c4c1

c3c2

Ψ(v)

Φ(v)

c4c1

c3c2



A better distortion for recovering G ∈ Sn
(Dani, D́ıaz, Hayes, Moore (2021)

Thm. Given AG for r = nα (0 < α < 1/2), there is an
O(n2.373 log(n)) algorithm that w.h.p. reconstructs G , modulo the
set of symmetries of Sn with d∗ = Θ(ε̂), i.e.

d∗ = C

{
n

1
2
− 4

3
α if α < 3/8,

√
log n if 3/8 ≤ α < 1/2.

Notice that once we reconstruct the position of all vertices, we can
get a good estimate on dE (u, v), ∀u, v ∈ V .

0
0

β = 1
2 −

4
3α

α

1/2

3/14 3/8 1/2

d∗ = o(r)

d∗ = Ω(r)
d∗ = Θ(r)

If r = nα values of distortion d∗

obtained by D,D,H,M-21 (red and

blue) over D,McD,M-19 (dashed

green) for the reconstruction

problem.



Sketch of the Algorithm

I Using Seidel’s APSP compute dG (u, v), ∀u, v ∈ V .

I In R2, choose deep x , y , z that form an acute triangle, with minimal
length ` = Ω(

√
n). Estimate d̂(x , y), d̂(y , z), d̂(x , z), with error ε̂.

I For all other u ∈ V \{x , y , z} , estimate their relative position with
recpect x , y , z , with error O(ε̂).

I Do an isometric embedding from this graph into Sn.

R2√
n

√
n

x
y

z

u

Sn

isometric mapping



Complexity of the previous algorithm

The complexity of the algorithm is dominated by the computations
of All Pairs Shortest Path using Seidel’s randomized algorithm,
which is O(nω log n), where ω ∼ 2.373.

It should be possible to lower the complexity to O(n2), by avoiding
using Seidel’s APSP algorithm.



Reconstruction of RGG on S2

Scatter u.a.r. n points on surface of S2 in R3, according to a
Poisson with λ = 1. Let R =

√
n/4π, so area S2 = n.

For a given r , two points u, v on S2 are connected if g(u, v) ≤ r ,
where g(, ) denotes the min geodesic distance.

For early definitions of RGG on S2 see for ex. Bubeck, Ding, Eldan,

Rácz,2016

Thm. Let r = nα for 0 < α < 1/2. There is an O(n3.37 log(n))
algorithm that w.h.p. reconstructs the vertex positions of a RGG,
modulo symmetries of S2, with

d∗ = C

{
n

1
2
− 4

3
α if α < 3/8,

√
log n if 3/8 ≤ α < 1/2.

Conjecture: Similar techniques can work on most d-dimensional
curved manifolds, for fixed d.



Reconstruction of RGG on S2

x

y

z

u

v

w



Reconstruction of RGG in the d-dimensional hypercube

Consider the d-dimensional hypercube H = [0, n1/d ]d , for d fixed:

I Define and compute the volume of the d-dim lens and lunes,

I define waypoints as the vertices in a d-simplex.

Thm. Let G be a RGG in H, given by AG , let r = nα, for
0 < α < 1/d . There is an algorithm with running time
O(n2.37 log n), that w.h.p. reconstructs G , modulo symmetries of
the hypercube, with distortion

d∗ ≤ Cd

{
n

1
d
− 2d

d+1
α α < d+1

2d2 ,√
log n d+1

2d2 ≤ α < 1
d .



Related models (1)

On the Estimation of Latent Distances Using Graph Distances.
E.Arias-Castro, A.Channarond, Pelletier, N.Verzelen (2018)

Given V = {x1, . . . , xn} latent points u.a.r. on Sd−1

(d fixed) define a random graph G on V by the adjacency matrix
A, where the probability of having aij = 1 depends of a link
function Φ(dE (xi , xj)), where Φ : [0,∞)→ [0, 1].

We want to approximate distances, reconstructing latent points,
etc..

For RGG, given an r , the link function is defined by

Φ(dE ) = 1{dE ≤ r}.

The error of distances, and therefore recovering points is Θ(r).



Related models (2)

Latent Distance Estimation for Random Geometric Graphs.
E.Araya, Y. De Castro (2019)

I Having |V | = n latent points on Sd−1 they want to
approximate dE (xi , xj) for any two points.

I Also uses the link function φ is given by graphon function on
Sd−1.

I They sparsify the graph by giving every node a small
probability to other points and a great probability to be
connected to near nodes. The resulting graph is not a RGG.

I They use harmonic analysis on the Sd−1 to have a nice
characterization on the graphon spectrum.

I Their main result is an O(log n) approximation for pairwise
Euclidean distance between points.

As a byproduct, their method can also estimate the dimension d of
the latent space.



Thank you for your attention


