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Ultrasmallness in scale-free networks

Consider a sequence (GN) of random graphs.

• The graph GN has N vertices which carry independent
uniform marks.

• Given the marks, vertices are connected by an edge
independently with probability

1
Ng(s, t) .

• The kernel g depends on the marks s and t of the endvertices
of the potential edge.
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Ultrasmallness in scale-free networks

gprod (s, t) = sγtγ gpa(s, t) = (s ∧ t)γ(s ∨ t)1−γ

• scale-free degree distribution with power-law exponent τ = 1 + 1
γ

• not ultrasmall for γ < 1/2

• ultrasmall for γ > 1/2 and d(x ,y)
log log N →

c
log γ

1−γ
with high

probability as N → ∞ for randomly chosen vertices x , y by
Dereich, Mönch, Mörters (’12)

c = 2 c = 4



The weight-dependent random connection model

• Vertex set: Poisson process of unit intensity on Rd × (0, 1).
• A vertex x = (x , t) has location x ∈ Rd and mark t ∈ (0, 1).

• Two vertices x = (x , t) and y = (y , s) are connected by an
edge independently of any other possible edge with probability

ρ( 1
β
g(t, s) |x − y |d )

• The profile function ρ non-increasing with ρ(x) ∼ cx−δ for
chosen δ > 1.

• The kernel g is symmetric and non-decreasing in both
arguments.
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The weight-dependent random connection model

• gprod (s, t) = sγtγ scale free percolation

• gpa(s, t) = (s ∧ t)γ(s ∨ t)1−γ age-dependent random
connection model

• g sum(s, t) = (s−γ/d + t−γ/d )−d soft Boolean model
• gmin(s, t) = (s ∧ t)γ

Have scale-free degree distribution with power-law exponent
τ = 1 + 1

γ .
For gprod analogous behaviour to the non-spatial case is identified.
See Deijfen, van der Hofstad, Hooghiemstra (’13), Deprez,
Wüthrich (’19) and Bringmann, Keusch, Lengler (’18).
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Main Result

Theorem (Gracar, G., Mörters (’21))
Let G be the weight-dependent random connection model with
kernel gpa, g sum or gmin.

• If γ < δ
δ+1 , then G is not ultrasmall.

• If γ > δ
δ+1 , then G is ultrasmall and, for x, y ∈ Rd × (0, 1),

under Px,y( · | x↔ y) we have

d(x, y)
log log |x − y | →

4
log γ

δ(1−γ)

with high probability as |x − y | → ∞.



Proof ideas for the lower bounds for chemical distance

• We want to establish an upper bound for Px,y {d(x, y) ≤ 2∆}
for ∆ ∈ N.

• Let (`k)k=N0 be a decreasing sequence. A path of length n is
good if the k-th (resp. n − k-th) vertex of the path has a
mark larger than `k for all k = 0, . . . , n.

Px,y {d(x, y) ≤ 2∆}

≤
2∆∑
n=1

Px,y {∃ good path of length n between x and y}

+ Px,y {∃ bad path starting in x, resp. y}
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Connection between powerful vertices

x

xn−5

xn

`n−5

→ Observe connections between two powerful vertices.
• If γ > δ

δ+1 , connection of two powerful vertices via some
connector, i.e. a vertex with large mark, is more ’probable’
than direct connection.

• If γ < δ
δ+1 , connection of two powerful vertices via a

connector is not beneficial in comparison to a direct
connection.



Are connections via multiple connectors better than via one?

1

`
x

y

Lemma

Let x and y be two given vertices and
{

x k↔ y
}
be the event that

x and y are connected via k − 1 connectors. Then, there exists
C(k, l) > 0, depending on k and the truncation, such that

Px,y
{

x k↔ y
}
≤ C(k, `)ρ( 1

β
(t ∧ s)γ(t ∨ s)γ/δ |x − y |d ).



The optimal path structure
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The optimal path structure

x

xn−2

xn

`n−2

Px {∃ path starting in x with optimal structure fails to be good after exactly n steps}

≤
∫

Rd×(`2,t0]

dz1 · · ·
∫

Rd×(`n−2,t0]

dzn/2−1

∫
Rd×(0,`n]

dzn/2

n/2∏
i=1

Cρ
(
κ−1/δuγi u

γ/δ
i−1 |zi − zi−1|d

)
,



The optimal path structure
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The optimal path structure

x

xn−2

xn

`n−2

`n ≈ b exp
(
−B

(
γ

δ(1− γ)

)n/2
)

⇒ Px,y {d(x, y) ≤ 2∆} ≤ ε+ o(1) for ∆ ≤ 2 log log |x − y |
log
(

γ
δ(1−γ)

) − c



General assumption for the results on lower bounds of the
chemical distance

Assumption
There exists κ > 0 such that, for every set of pairs of vertices
I ⊂ X 2, we have

PX
( ⋂

(xi ,yi )∈I
{xi ∼ yi}

)
≤

∏
(xi ,yi )∈I

κ (ti ∧ si )−δγ(ti ∨ si )δ(γ−1) |xi − yi |−δd

where xi = (xi , ti ), yi = (yi , si ).



Thank you!


