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Ultrasmallness in scale-free networks

Consider a sequence (Gy) of random graphs.

e The graph Gy has N vertices which carry independent
uniform marks.

e Given the marks, vertices are connected by an edge
independently with probability

1

Ng(s,t)

e The kernel g depends on the marks s and t of the endvertices
of the potential edge.



Ultrasmallness in scale-free networks

g7(s, t) = 1) g7%(s,t) = (s A £)7(s V 1)1

e scale-free degree distribution with power-law exponent 7 =1+ %

e not ultrasmall for vy < 1/2

e ultrasmall for v > 1/2 and |og(|og3v — |ogci with high
1—v

probability as N — oo for randomly chosen vertices x, y by
Dereich, Ménch, Mérters ('12)
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The weight-dependent random connection model

e Vertex set: Poisson process of unit intensity on R? x (0, 1).
e A vertex x = (x, t) has location x € RY and mark t € (0,1).

e Two vertices x = (x,t) and y = (y, s) are connected by an
edge independently of any other possible edge with probability

p(;g(t, 5) x — y|)

e The profile function p non-increasing with p(x) ~ cx~¢ for
chosen 6 > 1.

e The kernel g is symmetric and non-decreasing in both
arguments.
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The weight-dependent random connection model

o gP(s t) = s7tY scale free percolation
o gP(s,t) = (sAt)(sV ) age-dependent random

connection model
o gM(s, ) = (s 19 L g=/d)=d soft Boolean model
o g"(s,t) = (s A 1)

Have scale-free degree distribution with power-law exponent
=14 %

For gP? analogous behaviour to the non-spatial case is identified.
See Deijfen, van der Hofstad, Hooghiemstra ('13), Deprez,
Wiithrich ('19) and Bringmann, Keusch, Lengler ('18).



Main Result

Theorem (Gracar, G., Morters ('21))

Let ¢ be the weight-dependent random connection model with

kernel gP?, g™ or g™in.
o If v < , then ¢ is not ultrasmall.
o If y> , then ¢ is ultrasmall and, for x,y € R? x (0, 1),
under Py y( - | x ¢ y) we have
d(x,y) 4

_>
log log |x — y| Iogﬁ

with high probability as [x — y| — co.
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Proof ideas for the lower bounds for chemical distance

e We want to establish an upper bound for Py, {d(x,y) < 2A}
for A € N.

o Let (4x)k=n, be a decreasing sequence. A path of length n is
good if the k-th (resp. n — k-th) vertex of the path has a
mark larger than ¢, for all k =0,...,n.

]P)XJ {d(X, Y) S 2A}
24

< Z:IP’X’y {3 good path of length n between x and y}
n=1

+ Py y {3 bad path starting in x, resp. y}
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Connection between powerful vertices

x @

Xn

— Observe connections between two powerful vertices.

o If v > %, connection of two powerful vertices via some
connector, i.e. a vertex with large mark, is more 'probable’
than direct connection.

o If v < 5_‘?—1, connection of two powerful vertices via a
connector is not beneficial in comparison to a direct

connection.



Are connections via multiple connectors better than via one?

Lemma

Let x and'y be two given vertices and {x & y} be the event that
x and y are connected via k — 1 connectors. Then, there exists
C(k,!) > 0, depending on k and the truncation, such that

Py {x &y} < C(k,@p(;(t As)(tV s)7 |x — y|%).
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The optimal path structure

Py {3 path starting in X with optimal structure fails to be good after exactly n steps}
n/2

/dzl . /dzn/2 1 /dz,,/2 HCp —1/8y, 7 7/1 |zi — z_1|® )

RYx (£2,t0] RIX(Ln_2,t0] RIx(0,6,] 1



The optimal path structure

x @

=l ~ bexp (—B(




The optimal path structure

ln =~ bexp (—B (5(17_ 7))n/2)

2loglog|x — y| .

= Pyy{d(x,y) <2A} <e+o(1) for A < .
og (5777



General assumption for the results on lower bounds of the

chemical distance

Assumption
There exists k > 0 such that, for every set of pairs of vertices
| € X2, we have

PX( N {XINYI}>

(xi,yi)€l
< I stns)™ (v s) 0 |x -y~
(xi,yi)el

where x; = (x;, t;), yi = (vi, si)-



Thank youl!



