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First passage percolaƟon

FPP: (Hammersley and Welsh, 1965).

• At Ɵme t = 0 the source node is infected, all other
nodes are suscepƟble.

• if, on an edge {u, v}, u is infected and v is not,
then v becomes infected aŌer a random
transmission delay σ(u,v).

The epidemic curve⋆

The set of infected nodes before Ɵme t:

I(t) = { infected nodes before Ɵme t}

and
I(t) ∶= ∣I(t)∣

⋆: The first phase of the epidemic, before herd immunity/saturaƟon is reached.
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QuesƟon:
What shapes of the epidemic curves are possible?
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On the laƫce

FPP on laƫce-like
graphs:

I(t) = Θ(td)
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FPP on Zd

Shape theorem; Cox DurreƩ, 1981
When σ(u,v) is iid, P(σ = 0) < pc(Zd) and σ has
sufficiently high moments:

I(t)
t
→ B

for some compact set B.
B depends on the distribuƟon of τ .

InteresƟng results & quesƟons

• the limiƟng shape (convex, differenƟable
boundary, etc)

• geodesics, their deviaƟon from straight line

• 50 years of FPP (Auffinger, Damron, Hanson ‘16)
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Long-range FPP

Model by Sh. ChaƩerjee and Dey

• edge set is Zd ×Zd,

• transmission Ɵme: σ(u,v)
d= Exp(1) ⋅ ∥u − v∥αd, for some α > 0.

• small α: quick transmission to far away

Growth of I(t) (ChaƩerjee and Dey, ‘16)
α < 1 α = 1 α ∈ (1,2) α ∈ (2,2 + 1

d) α > 2 + 1
d

I(t) = Zd ∀t > 0 I(t) = eΘ(t) I(t) = eΘ(t
∆) I(t) = tζ+o(1) I(t) = Θ(td)

instantaneous exponenƟal* stretched exp. polynomial laƫce-like
Comments:
*: slowly varying correcƟon terms are added/needed in the transmission delay.
∆ = log 2/ log(2d/α) ∈ (0, 1), similar to long range percolaƟon (Biskup ‘04)
ζ = (α − 2)d
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Long-range FPP

Figure: Long-range FPP, in d = 2, α = 1.75 (leŌ), 2 (middle) and 2.5 (right) by
ChaƩerjee and Dey.
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InterpolaƟon between laƫce and complete graph

original FPP
nearest neighbor graph of Zd

Long-range FPP
Complete graph on the vertex set Zd

Geometric inhomogeneous random graph
Changing the vertex set to a Poisson PP on Rd

Trimming edges in ‘complete graph’ inhomogeneously
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 1:
Poisson point process

for the locaƟon
of verƟces

a

Figure: GIRG simulaƟon by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 2:
i.i.d. fitnesses for verƟces.

(e.g.) fat tailed,
P(W > x) ≍ 1/xτ−1

a

Figure: GIRG simulaƟon by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 3:
random edges

probability
increasing with fitness,
decaying with distance.

Figure: GIRG simulaƟon by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 3:
random edges

probability
increasing with fitness,
decaying with distance.

ConnecƟon probability:

p(u, v) = Θ(min{1, ( WuWv
∥u−v∥d )

α

}),

Threshold case:

p(u, v) = 1{∥u−v∥d ≤ Θ(WuWv)}.

Figure: GIRG simulaƟon by Joost Jorritsma

9 / 27



Some properƟes of Infinite GIRGs

Theorem (DHH’13)
If α ≤ 1 or τ < 2, each vertex has infinite degree.
(NOT locally finite)

Theorem (BKL‘17, BKL‘16)
Let α > 1, τ > 2: model locally finite and:

Fitness distribuƟon W power law with τ > 2⇒
degree distribuƟon power law with τ > 2.
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iid FPP on GIRGs
Transmission delays σ(u,v)

d= Exp(1) on exisƟng edges
PPPPPPPPα

Fitnesses
fat-tailed

τ ∈ (2,3)

light-tailed

τ > 3

weak decay

α ∈ [1,2)
explosive (stretched) exponenƟal

strong decay

α ∈ [2,∞]
explosive linear

K-Lodewijks ‘20 open* (ChaƩerjee-Dey)
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What is explosion here?

NOT instantaneous.

On infinite networks
A spreading process is explosive on an
infinite, locally finite network if I(t) =∞ for
some t <∞.

• 1970s: Grey, Harris, Sevastanov: explosion
in Branching processes

• 2010s: Amini, Devroye, Griffith, Olver:
explosion in Branching random walks

• 2017+: Me: explosion on networks
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1-dependent FPP

ObservaƟon
Disease spreading, real-world communicaƟon: Large-degree nodes have a
limited “Ɵme-budget” to meet and infect.
Miritello et. al. ‘13, Feldman Janssen ‘17, Giuraniuc et al. ‘16, Karsai et. al. ‘11

1-FPP:
• Transmission delay through an edge:

σ(u,v)
d= Exp(1) ⋅ f(Wu,Wv, ∥u − v∥)

• Rate: f(Wu,Wv, ∥u − v∥) depends on the spaƟal distance and fitnesses

• (Our result is more general, Exp(1) can be replaced).
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Result: Explosion with degree-penalƟes

Is explosion sƟll possible with these penalty factors?

Theorem ( K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet)
Take 1-FPP on infinite GIRG, with

σ(u,v) ∶= Exp(1) ⋅ poly(Wu,Wv, ∥u − v∥).

• Explosion not possible when τ > 3.
• τ ∈ (2,3):

define for monomials g =Wµ
u ⋅Wν

v ⋅ ∥u − v∥ζ ,

degd(g) = µ + ν + ζ ⋅ 2d .

Explosive if and only if degd(f) < (3 − τ)

/β
Generally, Exp(1)→ L arbitrary nonnegaƟve distribuƟon: 3 − τ is replaced
by (3 − τ)/β when P(L ≤ t) ≍ tβ close to 0.
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Current and future work

Growth of I(t) with degree penalƟes
````````````Penalty & α

Fitnesses
fat-tailed τ ∈ (2,3)

small

degd(f) < (3 − τ)

explosive

medium

degd(f) < 2(3 − τ)
or α ∈ (1,2)

stretched exponenƟal

high

degd(f) < 2
d + 2(3 − τ) ∨ 2

α−τ+1
d(α−2)

and α > 2

polynomial (faster than
grid-like)

very high

degd(f) > 2
d + 2(3 − τ) ∨ 2

α−τ+1
d(α−2)

and α > 2

linear
(grid-like)
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Proof ideas
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Proof of explosion when degd(f) < (3 − τ)
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ConstrucƟon of a greedy path with finite total length

leaders

sub-boxes

(cover at least 1/2 of volume)

(k + 1)-st annulus

some sub-boxes are bad
(leader has wrong weight),

but not many: F
(1)
k every good leader is con-

nected to many good leaders

on next level: F
(2)
k

cheapest edge to good leader
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ConstrucƟon of a greedy path with finite total length

• LetM,A,B > 1, Annulus(k)k≥1 be consecuƟve annuli of volume

Volk ∶=MABk

• Tile each annulus with disjoint subboxes of volume volk ∶=MBk

#{subboxes in Annulus(k)} ≥ cM(A−1)B
k

• ‘Leader’ of a subbox ∶=maximal weight vertex inside it

Wleader(k) = cMBk 1±δ
τ−1

• #{leader neighbors in Annulus(k + 1) of a leader(k)}

LeaderDeg(k) = cM(A−1)B
k+1(1−ε)

with summable error probability as long as 1−δ
τ−1(1 + B) ≥ AB.
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ConstrucƟon of a greedy path with finite total length

Greedy path

• Assume 0 ∈ C∞
• From 0, follow a path to leader(0) (its length is some finite random
variable)

• Take the edge with minimal Expe between leader(0) and its leader(1)
neighbors.

• conƟnue with this rule

20 / 27



Cost of the greedy path

Cost of πgreedy ≤ Cost to go to leader of Annulus(0)

+
∞
∑
k=0

Wµ
leader(k)W

ν
leader(k+1)M

ABk+1ζ/d ⋅ min
j≤LeaderDeg(k)

Expkj

EsƟmate the minimum, and plug everything in, we need that the sum is
finite:

∞
∑
k=0

MBk((µ+νB) 1+δ
τ−1+ζB/d−(A−1)B(1−ε)) <∞
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Cost of the greedy path

∞
∑
k=0

MBk((µ+νB) 1+δ
τ−1+ζB/d−(A−1)B(1−ε)) <∞

Path is present:
1−δ
τ−1(1 + B) ≥ AB

Finite-cost:
(µ + νB) 1+δ

τ−1 + Bζ/d − (A − 1)B(1 − ε) < 0

This system of inequaliƟes have a soluƟon for A,B > 1 and ε, δ > 0 if
τ ∈ (1,3) and

µ + ν + 2ζ/d < 3 − τ .

Greedy path has finite cost.
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Proof of non-explosion when degd(f) > 3 − τ
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Understanding explosion to show non-explosion

Explosion Ɵme: Y(v) = inft{I(t) =∞}.

Lemma (1: Excluding sideways explosion)
Sideways explosion cannot happen when for all T > 0,

N(v,≤ T) =#{u ∶ (u, v) ∈ E(G), σ(u,v) ≤ T} <∞ a.s.

Lemma (2: Explosion can happen arbitrarily fast)
For some t > 0, I(t) =∞⇒ for all t > 0, P(Y(v) < t) > ct > 0.
Statement is known for Branching Processes, but nontrivial for spaƟal
random graphs

Corollary (Corollary to Lemmas 1 & 2)
Explosion happens⇒ ∀t > 0;P(∃ infinite path π ∶ ∥π∥σ < t) > 0
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Restricted path counƟng to show non-explosion

Explosion⇒ ∀t > 0;P(∃ infinite path π ∶ ∥π∥σ < t) > 0.
For conservaƟveness, the opposite statement:

∃t0 > 0;P(∃ infinite path π ∶ ∥π∥σ < t0) = 0.

⇐ P(∃ infinite path π,∀e ∈ π ∶ σe < t0) = 0.

Idea to show this:

Lemma (Restricted Path counƟng)
E[#{ self-avoiding paths on k edges, with all σe < t0}],
is exponenƟally decaying in k.

Ak ∶= {∃ a length-k self-avoiding path with all σe < t0}.
Markov’s inequality + Borel-Cantelli lemma:
a.s. only finitely many Aks occur.
i.e., no such infinite path, hence no explosion.

σe1 < t0

σe2 < t0

σe3 < t0

σe4 < t0

σe5 < t0

(0, 0)

(6, 6)
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E[#{ self-avoiding paths on k edges, with all σe < t0}],
is exponenƟally decaying in k.

Ak ∶= {∃ a length-k self-avoiding path with all σe < t0}.
Markov’s inequality + Borel-Cantelli lemma:
a.s. only finitely many Aks occur.
i.e., no such infinite path, hence no explosion.

σe1 < t0

σe2 < t0

σe3 < t0

σe4 < t0

σe5 < t0

(0, 0)

(6, 6)
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Non-explosive regimes

Stretched exponenƟal and polynomial growth
See jamboard.

• Upper bounds: ConstrucƟng bridges (ala Kleinberg or ala Biskup)

• Lower bounds: Robust renormalisaƟon techniques (ala Berger)
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Stretched exponenƟal and polynomial regime
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Thank you for the aƩenƟon!

Figure: Six instances of an infecƟon spreading on a two-dimensional SSNM with different
parameters τ and α.
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