1-dependent first passage percolation

Julia Komjathy

joint w: John Lapinskas, Johannes Lengler, Ulysse Shaller, Zsolt Bartha, Rick Reubsaet.

Workshop on geometric random graph models and percolation

October 18, 2021

1/27



First passage percolation

FPP: (Hammersley and Welsh, 1965).

e Attime t = 0 the source node is infected, all other
nodes are susceptible.

* if, on an edge {u, v}, uis infected and v is not,
then v becomes infected after a random
transmission delay o, ,y-

The epidemic curve*
The set of infected nodes before time t:
Z(t) = { infected nodes before time t}

and
I(t) = |Z(1)|

*: The first phase of the epidemic, before herd i ity/s ion is reached.




Question:
What shapes of the epidemic curves are possible?
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On the lattice

FPP on lattice-like
graphs:
I(t) = ©(t")
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FPP on Z¢

Shape theorem; Cox Durrett, 1981
When o(, ) is iid, P(c = 0) < p.(Z“) and o has
sufficiently high moments:

/
I 5 r ‘
t
for some compact set B.

B depends on the distribution of 7.

Interesting results & questions

¢ the limiting shape (convex, differentiable
boundary, etc)

e geodesics, their deviation from straight line
¢ 50 years of FPP (Auffinger, Damron, Hanson ‘16)
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Long-range FPP

Model by Sh. Chatterjee and Dey
* edge setis Z9 x Z¢,
* transmission time: o, ,) g Exp(1) - |u - v|9, for some a > 0.

e small a: quick transmission to far away
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Model by Sh. Chatterjee and Dey

* edge setis Z9 x Z¢,
* transmission time: o, ,) g Exp(1) - |u - v|*9, for some o > 0.

e small a: quick transmission to far away

Growth of Z(t) (Chatterjee and Dey, ‘16)

a<l1 a=1 ae(1,2) ae(2,2+2) [a>2+2
() =Z° V¥t > 0| I(t) =D [1(t) =e®)  [i(t) = 7@ [1(t) = ©(t)

instantaneous exponential* |stretched exp. |polynomial lattice-like
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Long-range FPP

Model by Sh. Chatterjee and Dey
* edge setis Z9 x Z¢,
* transmission time: o, ,) g Exp(1) - |u - v|9, for some a > 0.

e small a: quick transmission to far away

Growth of Z(t) (Chatterjee and Dey, ‘16)

a<l1 a=1 ae(1,2) ae(2,2+ ) [a>2+1
I(t) =29 vt >0 i(t) =P [1(t) =P [i(t) = 57D (1) = ©(t4)
instantaneous exponential* |stretched exp. |polynomial lattice-like
Comments:

*: slowly varying correction terms are added/needed in the transmission delay.
A =log2/log(2d/a) € (0,1), similar to long range percolation (Biskup ‘04)
C-(a-2)d
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Long-range FPP

Figure: Long-range FPP, in d = 2, = 1.75 (left), 2 (middle) and 2.5 (right) by
Chatterjee and Dey.
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Interpolation between lattice and complete graph

original FPP
nearest neighbor graph of Z¢

Long-range FPP
Complete graph on the vertex set Z¢
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Interpolation between lattice and complete graph

original FPP
nearest neighbor graph of Z¢

Long-range FPP
Complete graph on the vertex set Z¢

Geometric inhomogeneous random graph

Changing the vertex set to a Poisson PP on R?
Trimming edges in ‘complete graph’ inhomogeneously
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Infinite Geometric Inhomogeneous Random Graphs
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Figure: GIRG simulation by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 2:
i.i.d. fitnesses for vertices.

(e.g.) fat tailed,
P(W>x)x1/x!

Figure: GIRG simulation by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 3:
random edges

probability
increasing with fitness,
decaying with distance.

Figure: GIRG simulation by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 3:
random edges

probability
increasing with fitness,
decaying with distance.
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Connection probability:

p(u,v) = @( min {17 ( \mm’)a})’

Figure: GIRG simulation by Joost Jorritsma
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Infinite Geometric Inhomogeneous Random Graphs

Ingredient 3:
random edges

probability
increasing with fitness,
decaying with distance.

Connection probability:

p(u,v) = O min {1, ()" }),

Threshold case:

p(u,v) = 1{u-v]* < O(W,W,))}.

Figure: GIRG simulation by Joost Jorritsma
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Some properties of Infinite GIRGs

Theorem (DHH’13)

If a < 1orT <2, each vertex has infinite degree.
(NOT locally finite)

Theorem (BKL'17, BKL'16)
Let > 1, 7 > 2: model locally finite and:

Fitness distribution W power law with T > 2 =
degree distribution power law with T > 2.
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iid FPP on GIRGs

Transmission delays o, 4 Exp(1) on existing edges

Fitnesses
«

fat-tailed

light-tailed

weak decay

strong decay

K-Lodewijks ‘20

open* (Chatterjee-Dey)

N
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iid FPP on GIRGs

Transmission delays o, 4 Exp(1) on existing edges

Fitnesses
a fat-tailed 7 € (2,3) |light-tailed 7 >3
weak decay (stretched) exponential
a€f1,2)

strong decay
€ [2, oo]

linear

K-Lodewijks ‘20

open* (Chatterjee-Dey)

M
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iid FPP on GIRGs

Transmission delays o, 4 Exp(1) on existing edges

a€[2,00]

Fitnesses
o fat-tailed 7 € (2,3) |light-tailed 7 > 3
weak decay explosive (stretched) exponential
a€f1,2)
strong decay explosive linear

K-Lodewijks ‘20

open* (Chatterjee-Dey)

7
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What is explosion here?

NOT instantaneous.

On infinite networks

A spreading process is explosive on an
infinite, locally finite network if /() = oo for
some t < oo.
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What is explosion here?

NOT instantaneous.

On infinite networks

A spreading process is explosive on an
infinite, locally finite network if /() = oo for
some t < oo.

e 1970s: Grey, Harris, Sevastanov: explosion
in Branching processes

e 2010s: Amini, Devroye, Griffith, Olver:
explosion in Branching random walks

e 2017+: Me: explosion on networks
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1-dependent FPP

Observation
Disease spreading, real-world communication: Large-degree nodes have a

limited “time-budget” to meet and infect.
Miritello et. al. ‘13, Feldman Janssen ‘17, Giuraniuc et al. ‘16, Karsai et. al. ‘11
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1-dependent FPP

Observation
Disease spreading, real-world communication: Large-degree nodes have a

limited “time-budget” to meet and infect.
Miritello et. al. ‘13, Feldman Janssen ‘17, Giuraniuc et al. ‘16, Karsai et. al. ‘11

1-FPP:

¢ Transmission delay through an edge:

d
O uy LEXP(L) -F(Wo Wi Ju— v])

* Rate: f(W,, W,, |u - v|) depends on the spatial distance and fitnesses
* (Our result is more general, Exp(1) can be replaced).
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Result: Explosion with degree-penalties

Is explosion still possible with these penalty factors?

Theorem ( K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet)
Take 1-FPP on infinite GIRG, with

O(uy) = Exp(1) - poly(W,, W, [u —v]).

Explosive if and only if deg,(f) < (3 —17)
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O(uy) = Exp(1) - poly(W,, W, [u —v]).
e Explosion not possible when T > 3.
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define for monomials g = Wi - W/ - |u —v|¢,
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Result: Explosion with degree-penalties

Is explosion still possible with these penalty factors?

Theorem ( K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet)
Take 1-FPP on infinite GIRG, with

O(uy) = Exp(1) - poly(W,, W, [u —v]).
e Explosion not possible when T > 3.
e 7€(2,3):
define for monomials g = Wi - W/ - |u —v|¢,
degy(g) =p+v+(- 3.

Explosive if and only if deg,(f) < (3—171)/5
Generally, Exp(1) — L arbitrary nonnegative distribution: 3 — 7 is replaced
by (3-7)/8 when P(L < t) = t” close to 0.
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Current and future work

Growth of /(t) with degree penalties

Fitnesses
Penalty & « fat-tailed 7 € (2,3)
small explosive
medium
high
very high
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Current and future work

Growth of /(t) with degree penalties

Fitnesses
Penalty & « fat-tailed 7 € (2,3)
small explosive
degy(f) <(3-7)
medium stretched exponential
degy(f) <2(3-7)
orace(1,2)
high polynomial (faster than

degy(f) < 2+2(3 - T)\/ZaT
and a > 2

2)

grid-like)

very hlgh
degy(f) > 2 +2(3-7) v 25 a Tt
and a > 2

)

linear
(grid-like)
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Proof ideas
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Proof of explosion when deg,(f) < (3-17)
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Construction of a greedy path with finite total length

i [T~cheapest edge to good leader
some sub-boxes are bad
(leader has wrong weight),
but not many: F,E”

e : : every good leader is con-
8 Bocoods g i | nected to many good leaders
(covér at least 172 of volume) | on next level: Ff)

(k + 1)-st annulus
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Construction of a greedy path with finite total length

* Let M,A,B > 1, Annulus(k),, be consecutive annuli of volume

Vol := MAE*
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Construction of a greedy path with finite total length

* Let M,A,B > 1, Annulus(k),, be consecutive annuli of volume
k
Vol := M8
k
* Tile each annulus with disjoint subboxes of volume voly := M?

#{subboxes in Annulus(k)} > cMA-DB
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Construction of a greedy path with finite total length

* Let M,A, B> 1, Annulus(k),., be consecutive annuli of volume
Vol := M8
¢ Tile each annulus with disjoint subboxes of volume voly := ME"
#{subboxes in Annulus(k)} > cMA-DE
* ‘Leader’ of a subbox := maximal weight vertex inside it

k 1+8
-1

Wleader(k) =cMP
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Construction of a greedy path with finite total length

* Let M,A, B> 1, Annulus(k),., be consecutive annuli of volume
Vol := MAE"

¢ Tile each annulus with disjoint subboxes of volume voly := ME"
#{subboxes in Annulus(k)} > cMA-DE

* ‘Leader’ of a subbox := maximal weight vertex inside it

Wieader(k) = com®
» #{leader neighbors in Annulus(k + 1) of a leader(k)}
LeaderDeg(k) = M4BT (1-2)

with summable error probability as long as i%‘i (1+B) > AB.
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Construction of a greedy path with finite total length

Greedy path

e Assume 0 € Co

* From O, follow a path to leader(0) (its length is some finite random
variable)

¢ Take the edge with minimal Exp, between leader(0) and its leader(1)
neighbors.

e continue with this rule
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Cost of the greedy path

Cost of Tgreedy < Cost to go to leader of Annulus(0)

oo
ABC/d .
+) w wy. M - min  Expy
,; leader(k) " leader (k+1) j<leaderDeg(k) ki

Estimate the minimum, and plug everything in, we need that the sum is
finite:
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Cost of the greedy path

Cost of Tgreedy < Cost to go to leader of Annulus(0)

oo
ABC/d .
+) w wy. M - min  Expy
,;, leader(k) " leader (k+1) j<leaderDeg(k) ki

Estimate the minimum, and plug everything in, we need that the sum is
finite:

< 00

i MBk((M+uB)%‘i+<5/d—(A—1)B(1—e))
k=0
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Cost of the greedy path

iMBk((M-H/B) 18 4¢B/d—(A-1)B(1- s))
k=0

< o0
Path is present:
2(1+B)>A8

Finite-cost:
(n+vB) X2 + B(/d- (A-1)B(1-¢£) <0

This system of inequalities have a solution for A,B>1and ¢, > 0 if
7€(1,3)and
w+v+2C/d<3-r.

Greedy path has finite cost. [
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Proof of non-explosion when deg,(f) >3 -7
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Understanding explosion to show non-explosion

Explosion time: Y(v) = inf,{I(t) = oo }.

Lemma (1: Excluding sideways explosion)
Sideways explosion cannot happen when for all T > 0,

N(v,<T)=#{u:(u,v) € E(G),0() < T} < o0 a.s.

Lemma (2: Explosion can happen arbitrarily fast)

Forsome t >0, I(t) = co = forallt >0, P(Y(v) <t) > ¢ > 0.
Statement is known for Branching Processes, but nontrivial for spatial
random graphs

Corollary (Corollary to Lemmas 1 & 2)
Explosion happens = Yt > 0, P(3 infinite path 7 : ||, < t) >0
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Restricted path counting to show non-explosion

Explosion = Vt > 0; P(J infinite path 7 : ||, < t) > 0.
For conservativeness, the opposite statement:

Jtp > 0; P(F infinite path 7 : |||, < tp) = 0.

< P(Jinfinite path 7, Ve e m: 0. < ty) = 0.

Idea to show this:

o < to

©0.0)
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Restricted path counting to show non-explosion

Explosion = Vt > 0; P(J infinite path 7 : ||, < t) > 0.
For conservativeness, the opposite statement:

Jtp > 0; P(F infinite path 7 : |||, < tp) = 0.

< P(Jinfinite path 7, Ve e m: 0. < ty) = 0.
Idea to show this:

Lemma (Restricted Path counting)

E[#{ self-avoiding paths on k edges, with all o, < to}],
is exponentially decaying in k.

A := {3 a length-k self-avoiding path with all o, < to}.
Markov’s inequality + Borel-Cantelli lemma:

a.s. only finitely many Ags occur.

i.e., no such infinite path, hence no explosion.

s|< to

A < to|

S

<to
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Non-explosive regimes

Stretched exponential and polynomial growth

See jamboard.
e Upper bounds: Constructing bridges (ala Kleinberg or ala Biskup)
¢ Lower bounds: Robust renormalisation techniques (ala Berger)
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Stretched exponential and polynomial regime

2N
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Stretched exponential and polynomial regime
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Stretched exponential and polynomial regime
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Stretched exponential and polynomial regime
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Stretched exponential and polynomial regime

g
KN w2

AT | % X, W

3 i)
\ Ge
EEE,/%EiSwnﬂﬂ (//
o1 o+
Rol—’_ NK)V KB (

26/27



Stretched exponential and polynomial regime
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Stretched exponential and polynomial regime
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Thank you for the attention!

Figure: Six instances of an infection spreading on a two-dimensional SSNM with different
parameters 7 and a.
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