1-dependent first passage percolation

Júlia Komjáthy

joint w: John Lapinskas, Johannes Lengler, Ulysse Shaller, Zsolt Bartha, Rick Reubsaet.

Workshop on geometric random graph models and percolation

October 18, 2021

First passage percolation

FPP: (Hammersley and Welsh, 1965).

- At time *t* = 0 the source node is infected, all other nodes are susceptible.
- if, on an edge {u, v}, u is infected and v is not, then v becomes infected after a random transmission delay σ_(u,v).

The epidemic curve*

The set of infected nodes before time *t*:

 $\mathcal{I}(t) = \{ \text{ infected nodes before time } t \}$

and

$$I(t) \coloneqq |\mathcal{I}(t)|$$

*: The first phase of the epidemic, before herd immunity/saturation is reached.

Question: What shapes of the epidemic curves are possible?

On the lattice

FPP on lattice-like
graphs:
$$I(t) = \Theta(t^d)$$

FPP on \mathbb{Z}^d

Shape theorem; Cox Durrett, 1981

When $\sigma_{(u,v)}$ is iid, $\mathbb{P}(\sigma = 0) < p_c(\mathbb{Z}^d)$ and σ has sufficiently high moments:

$$\frac{l(t)}{t} \to \mathcal{E}$$

for some compact set \mathcal{B} . \mathcal{B} depends on the distribution of τ .

Interesting results & questions

- the limiting shape (convex, differentiable boundary, etc)
- geodesics, their deviation from straight line
- 50 years of FPP (Auffinger, Damron, Hanson '16)

Model by Sh. Chatterjee and Dey

- edge set is $\mathbb{Z}^d \times \mathbb{Z}^d$,
- transmission time: $\sigma_{(u,v)} \stackrel{d}{=} Exp(1) \cdot ||u v||^{\alpha d}$, for some $\alpha > 0$.
- small α : quick transmission to far away

Model by Sh. Chatterjee and Dey

- edge set is $\mathbb{Z}^d \times \mathbb{Z}^d$,
- transmission time: $\sigma_{(u,v)} \stackrel{d}{=} Exp(1) \cdot ||u v||^{\alpha d}$, for some $\alpha > 0$.
- small α : quick transmission to far away

Growth of $\mathcal{I}(t)$ (Chatterjee and Dey, '16)

<i>α</i> < 1	α = 1	$\alpha \in (1, 2)$	$\alpha \in \left(2, 2 + \frac{1}{d}\right)$	$\alpha > 2 + \frac{1}{d}$
$\mathcal{I}(t) = \mathbb{Z}^d \ \forall t > 0$	$I(t) = e^{\Theta(t)}$	$I(t) = e^{\Theta(t^{\Delta})}$	$I(t) = t^{\zeta + o(1)}$	$I(t) = \Theta(t^d)$
instantaneous	exponential*	stretched exp.	polynomial	lattice-like

Model by Sh. Chatterjee and Dey

- edge set is $\mathbb{Z}^d \times \mathbb{Z}^d$,
- transmission time: $\sigma_{(u,v)} \stackrel{d}{=} Exp(1) \cdot ||u v||^{\alpha d}$, for some $\alpha > 0$.
- small α : quick transmission to far away

Growth of $\mathcal{I}(t)$ (Chatterjee and Dey, '16)

α < 1	α = 1	$\alpha \in (1, 2)$	$\alpha \in \left(2, 2 + \frac{1}{d}\right)$	$\alpha > 2 + \frac{1}{d}$
$\mathcal{I}(t) = \mathbb{Z}^d \ \forall t > 0$	$I(t) = e^{\Theta(t)}$	$I(t) = e^{\Theta(t^{\Delta})}$	$I(t) = t^{\zeta + o(1)}$	$I(t) = \Theta(t^d)$
instantaneous	exponential*	stretched exp.	polynomial	lattice-like

Comments:

*: slowly varying correction terms are added/needed in the transmission delay. $\Delta = \log 2/\log(2d/\alpha) \in (0, 1)$, similar to long range percolation (Biskup '04) $\zeta = (\alpha - 2)d$

Figure: Long-range FPP, in d = 2, $\alpha = 1.75$ (left), 2 (middle) and 2.5 (right) by Chatterjee and Dey.

Interpolation between lattice and complete graph

original FPP nearest neighbor graph of \mathbb{Z}^d

Long-range FPP

Complete graph on the vertex set \mathbb{Z}^d

Interpolation between lattice and complete graph

original FPP nearest neighbor graph of \mathbb{Z}^d

Long-range FPP

Complete graph on the vertex set \mathbb{Z}^d

Geometric inhomogeneous random graph

Changing the vertex set to a Poisson PP on \mathbb{R}^d Trimming edges in 'complete graph' inhomogeneously

Ingredient 1: Poisson point process for the location of vertices

Figure: GIRG simulation by Joost Jorritsma

i.i.d. fitnesses for vertices.

(e.g.) fat tailed, $\mathbb{P}(W > x) \asymp 1/x^{\tau-1}$

Ingredient 3: random edges

probability increasing with fitness, decaying with distance.

Ingredient 3: random edges

probability increasing with fitness, decaying with distance.

Connection probability:

$$p(u,v) = \Theta\left(\min\left\{1, \left(\frac{W_u W_v}{\|u-v\|^d}\right)^{\alpha}\right\}\right),$$

Ingredient 3: random edges

probability increasing with fitness, decaying with distance.

Connection probability:

$$p(u, v) = \Theta\left(\min\left\{1, \left(\frac{W_u W_v}{\|u-v\|^d}\right)^\alpha\right\}\right),$$

Threshold case:

$$p(u,v) = \mathbb{1}\{\|u-v\|^d \leq \Theta(W_u W_v)\}.$$

Some properties of Infinite GIRGs

Theorem (DHH'13)

If $\alpha \leq 1$ or $\tau < 2$, each vertex has infinite degree. (NOT locally finite)

Theorem (BKL'17, BKL'16)

Let $\alpha > 1$, $\tau > 2$: model locally finite and:

Fitness distribution W power law with $\tau > 2 \Rightarrow$ degree distribution power law with $\tau > 2$.

Transmission delays $\sigma_{(u,v)} \stackrel{d}{=} Exp(1)$ on existing edges

Fitnesses		
α	fat-tailed	light-tailed
weak decay		
strong decay		
	K-Lodewijks '20	open* (Chatterjee-Dey)

Transmission delays $\sigma_{(u,v)} \stackrel{d}{=} Exp(1)$ on existing edges

Fitnesses		
α	fat-tailed $ au \in (2,3)$	light-tailed $\tau > 3$
weak decay $\alpha \in [1, 2)$		
strong decay $\alpha \in [2, \infty]$	()	
	K-Lodewijks '20	open* (Chatterjee-Dey)

Transmission delays $\sigma_{(u,v)} \stackrel{d}{=} Exp(1)$ on existing edges

Fitnesses		
α	fat-tailed $ au \in (2,3)$	light-tailed $\tau > 3$
weak decay $\alpha \in [1, 2)$		(stretched) exponential
strong decay $\alpha \in [2, \infty]$		linear
	K-Lodewijks '20	open* (Chatterjee-Dey)

Transmission delays $\sigma_{(u,v)} \stackrel{d}{=} \operatorname{Exp}(1)$ on existing edges

Fitnesses		
α	fat-tailed $ au \in (2,3)$	light-tailed $\tau > 3$
weak decay $\alpha \in [1, 2)$	explosive	(stretched) exponential
strong decay $\alpha \in [2, \infty]$	explosive	linear
	K-Lodewijks '20	open* (Chatterjee-Dey)

NOT instantaneous.

On infinite networks

A spreading process is explosive on an infinite, locally finite network if $I(t) = \infty$ for some $t < \infty$.

NOT instantaneous.

On infinite networks

A spreading process is explosive on an infinite, locally finite network if $I(t) = \infty$ for some $t < \infty$.

NOT instantaneous.

On infinite networks

A spreading process is explosive on an infinite, locally finite network if $I(t) = \infty$ for some $t < \infty$.

• 1970s: Grey, Harris, Sevastanov: explosion in Branching processes

NOT instantaneous.

On infinite networks

A spreading process is explosive on an infinite, locally finite network if $I(t) = \infty$ for some $t < \infty$.

- **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes
- 2010s: Amini, Devroye, Griffith, Olver: explosion in Branching random walks

NOT instantaneous.

On infinite networks

A spreading process is explosive on an infinite, locally finite network if $I(t) = \infty$ for some $t < \infty$.

- **1970s:** Grey, Harris, Sevastanov: explosion in Branching processes
- 2010s: Amini, Devroye, Griffith, Olver: explosion in Branching random walks
- 2017+: Me: explosion on networks

1-dependent FPP

Observation

Disease spreading, real-world communication: Large-degree nodes have a limited "time-budget" to meet and infect.

Miritello et. al. '13, Feldman Janssen '17, Giuraniuc et al. '16, Karsai et. al. '11

1-dependent FPP

Observation

Disease spreading, real-world communication: Large-degree nodes have a limited "time-budget" to meet and infect.

Miritello et. al. '13, Feldman Janssen '17, Giuraniuc et al. '16, Karsai et. al. '11

1-FPP:

Transmission delay through an edge:

$$\sigma_{(u,v)} \stackrel{d}{=} \exp(\mathbf{1}) \cdot f(W_u, W_v, \|u - v\|)$$

- Rate: $f(W_u, W_v, ||u v||)$ depends on the spatial distance and fitnesses
- (Our result is more general, Exp(1) can be replaced).

Is explosion still possible with these penalty factors?

Theorem (K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet) Take 1-FPP on infinite GIRG, with

$$\sigma_{(u,v)} \coloneqq Exp(1) \cdot \operatorname{poly}(W_u, W_v, \|u - v\|).$$

Explosive if and only if $\deg_d(f) < (3 - \tau)$

Is explosion still possible with these penalty factors?

Theorem (K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet) Take 1-FPP on infinite GIRG, with

$$\sigma_{(u,v)} \coloneqq Exp(1) \cdot \operatorname{poly}(W_u, W_v, ||u - v||).$$

• Explosion not possible when $\tau > 3$.

Explosive if and only if $\deg_d(f) < (3 - \tau)$

Is explosion still possible with these penalty factors?

Theorem (K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet) Take 1-FPP on infinite GIRG, with

$$\sigma_{(u,v)} \coloneqq Exp(1) \cdot \operatorname{poly}(W_u, W_v, ||u - v||).$$

- Explosion not possible when $\tau > 3$.
- τ ∈ (2,3):

define for monomials $g = W_u^{\mu} \cdot W_v^{\nu} \cdot \|u - v\|^{\zeta}$,

$$\deg_d(g) = \mu + \nu + \zeta \cdot \frac{2}{d}.$$

Explosive if and only if $\deg_d(f) < (3 - \tau)$

Is explosion still possible with these penalty factors?

Theorem (K-Lapinskas-Lengler (2021), Bartha-K-Reubsaet) Take 1-FPP on infinite GIRG, with

$$\sigma_{(u,v)} \coloneqq Exp(1) \cdot \operatorname{poly}(W_u, W_v, ||u - v||).$$

- Explosion not possible when $\tau > 3$.
- τ ∈ (2,3):

define for monomials $g = W_u^{\mu} \cdot W_v^{\nu} \cdot \|u - v\|^{\zeta}$,

$$\deg_d(g) = \mu + \nu + \zeta \cdot \frac{2}{d}.$$

Explosive if and only if $\deg_d(f) < (3 - \tau)/\beta$

Generally, $Exp(1) \rightarrow L$ arbitrary nonnegative distribution: $3 - \tau$ is replaced by $(3 - \tau)/\beta$ when $\mathbb{P}(L \leq t) \approx t^{\beta}$ close to 0.

Fitnesses	
Penalty & α	fat-tailed $ au \in (2,3)$
small	explosive
medium	
high	
very high	

Fitnesses	
Penalty & α	fat-tailed $ au \in (2,3)$
small	explosive
medium	stretched exponential
high	
very high	

Fitnesses	
Penalty & α	fat-tailed $ au \in (2,3)$
small	explosive
medium	stretched exponential
high	polynomial (faster than grid-like)
very high	

Fitnesses	
Penalty & α	fat-tailed $ au \in (2,3)$
small	explosive
medium	stretched exponential
high	polynomial (faster than grid-like)
very high	linear (grid-like)

Fitnesses	
Penalty & α	fat-tailed $ au \in (2,3)$
small $\deg_d(f) < (3 - \tau)$	explosive
$\begin{array}{l} \textbf{medium} \\ \deg_d(f) < 2(3 - \tau) \\ \text{or } \alpha \in (1, 2) \end{array}$	stretched exponential
high $\deg_d(f) < \frac{2}{d} + 2(3 - \tau) \vee 2\frac{\alpha - \tau + 1}{d(\alpha - 2)}$ and $\alpha > 2$	polynomial (faster than grid-like)
very high $deg_d(f) > \frac{2}{d} + 2(3 - \tau) \vee 2\frac{\alpha - \tau + 1}{d(\alpha - 2)}$ and $\alpha > 2$	linear (grid-like)

Proof ideas

Proof of explosion when $\deg_d(f) < (3 - \tau)$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

 $\operatorname{Vol}_k := M^{AB^k}$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

$$\operatorname{Vol}_k \coloneqq M^{AB^k}$$

• Tile each annulus with disjoint subboxes of volume $vol_k := M^{B^k}$

#{subboxes in Annulus(k)} $\geq cM^{(A-1)B^{k}}$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

$$\operatorname{Vol}_k \coloneqq M^{AB^k}$$

• Tile each annulus with disjoint subboxes of volume $vol_k := M^{B^k}$

#{subboxes in Annulus(k)} $\geq cM^{(A-1)B^{k}}$

• 'Leader' of a subbox := maximal weight vertex inside it

$$W_{\text{leader}(k)} = CM^{B^k \frac{1 \pm \delta}{\tau - 1}}$$

• Let M, A, B > 1, Annulus $(k)_{k>1}$ be consecutive annuli of volume

$$\operatorname{Vol}_k \coloneqq M^{AB^k}$$

• Tile each annulus with disjoint subboxes of volume $vol_k := M^{B^k}$

#{subboxes in Annulus(k)} $\geq cM^{(A-1)B^{k}}$

• 'Leader' of a subbox := maximal weight vertex inside it

$$W_{\text{leader}(k)} = cM^{B^k \frac{1\pm\delta}{\tau-1}}$$

#{leader neighbors in Annulus(k + 1) of a leader(k)}

LeaderDeg(k) =
$$cM^{(A-1)B^{k+1}(1-\varepsilon)}$$

with summable error probability as long as $\frac{1-\delta}{\tau-1}(1+B) \ge AB$.

Greedy path

- Assume $0 \in \mathcal{C}_{\infty}$
- From 0, follow a path to leader(0) (its length is some finite random variable)
- Take the edge with minimal Exp_e between leader(0) and its leader(1) neighbors.
- continue with this rule

Cost of the greedy path

Cost of $\pi_{\text{greedy}} \leq \text{Cost to go to leader of Annulus(0)}$

$$+\sum_{k=0}^{\infty} W_{\text{leader}(k)}^{\mu} W_{\text{leader}(k+1)}^{\nu} M^{AB^{k+1}\zeta/d} \cdot \min_{j \leq \text{LeaderDeg}(k)} \exp_{kj}$$

Estimate the minimum, and plug everything in, we need that the sum is finite:

Cost of the greedy path

Cost of $\pi_{\text{greedy}} \leq \text{Cost}$ to go to leader of Annulus(0)

$$+\sum_{k=0}^{\infty} W_{\text{leader}(k)}^{\mu} W_{\text{leader}(k+1)}^{\nu} M^{AB^{k+1}\zeta/d} \cdot \min_{j \leq \text{LeaderDeg}(k)} \frac{\text{Exp}_{kj}}{k}$$

Estimate the minimum, and plug everything in, we need that the sum is finite:

$$\sum_{k=0}^{\infty} M^{B^k \left((\mu+\nu B) \frac{1+\delta}{\tau-1} + \zeta B/d - (A-1)B(1-\varepsilon) \right)} < \infty$$

Cost of the greedy path

$$\sum_{k=0}^{\infty} M^{B^k\left((\mu+\nu B)\frac{1+\delta}{\tau-1}+\zeta B/d-(A-1)B(1-\varepsilon)\right)} < \infty$$

Path is present:

$$\frac{1-\delta}{\tau-1}(1+B) \ge AB$$

Finite-cost:

$$(\mu + \nu B)\frac{1+\delta}{\tau-1} + B\zeta/d - (A-1)B(1-\varepsilon) < 0$$

This system of inequalities have a solution for A, B > 1 and ε , δ > 0 if $\tau \in (1,3)$ and

 $\mu + \nu + 2\zeta/d < 3 - \tau.$

Greedy path has finite cost.

Proof of non-explosion when $\deg_d(f) > 3 - \tau$

Understanding explosion to show non-explosion

Explosion time: $Y(v) = \inf_t \{I(t) = \infty\}.$

Lemma (1: Excluding sideways explosion) Sideways explosion cannot happen when for all T > 0,

$$\mathsf{N}(\mathsf{v},\leq \mathsf{T})=\#\{u:(u,\mathsf{v})\in \mathsf{E}(\mathsf{G}),\sigma_{(u,\mathsf{v})}\leq \mathsf{T}\}<\infty \ a.s.$$

Lemma (2: Explosion can happen arbitrarily fast) For some t > 0, $I(t) = \infty \Rightarrow$ for all t > 0, $\mathbb{P}(Y(v) < t) > c_t > 0$.

Statement is known for Branching Processes, but nontrivial for spatial random graphs

Corollary (Corollary to Lemmas 1 & 2) Explosion happens $\Rightarrow \forall t > 0$; $\mathbb{P}(\exists infinite path \pi : ||\pi||_{\sigma} < t) > 0$

Restricted path counting to show non-explosion

Explosion $\Rightarrow \forall t > 0$; $\mathbb{P}(\exists \text{ infinite path } \pi : ||\pi||_{\sigma} < t) > 0$. For conservativeness, the opposite statement:

 $\exists t_0 > 0$; $\mathbb{P}(\exists \text{ infinite path } \pi : \|\pi\|_{\sigma} < t_0) = 0$.

 $\leftarrow \mathbb{P}(\exists \text{ infinite path } \pi, \forall e \in \pi : \sigma_e < t_0) = 0.$

Idea to show this:

Restricted path counting to show non-explosion

Explosion $\Rightarrow \forall t > 0$; $\mathbb{P}(\exists \text{ infinite path } \pi : ||\pi||_{\sigma} < t) > 0$. For conservativeness, the opposite statement:

 $\exists t_0 > 0$; $\mathbb{P}(\exists \text{ infinite path } \pi : ||\pi||_{\sigma} < t_0) = 0.$

 $\leftarrow \mathbb{P}(\exists \text{ infinite path } \pi, \forall e \in \pi : \sigma_e < t_0) = 0.$

Idea to show this:

Lemma (Restricted Path counting)

 $\mathbb{E}[\#\{ \text{ self-avoiding paths on } k \text{ edges, with all } \sigma_e < t_0 \}],$ is exponentially decaying in k.

Restricted path counting to show non-explosion

Explosion $\Rightarrow \forall t > 0$; $\mathbb{P}(\exists \text{ infinite path } \pi : ||\pi||_{\sigma} < t) > 0$. For conservativeness, the opposite statement:

 $\exists t_0 > 0$; $\mathbb{P}(\exists \text{ infinite path } \pi : ||\pi||_{\sigma} < t_0) = 0.$

 $\leftarrow \mathbb{P}(\exists \text{ infinite path } \pi, \forall e \in \pi : \sigma_e < t_0) = 0.$

Idea to show this:

Lemma (Restricted Path counting)

 $\mathbb{E}[\#\{ \text{ self-avoiding paths on } k \text{ edges, with all } \sigma_e < t_0 \}],$ is exponentially decaying in k.

 $A_k := \{\exists a \text{ length}-k \text{ self-avoiding path with all } \sigma_e < t_0\}.$ Markov's inequality + Borel-Cantelli lemma:

a.s. only finitely many A_k s occur.

i.e., no such infinite path, hence no explosion.

Non-explosive regimes

Stretched exponential and polynomial growth

See jamboard.

- Upper bounds: Constructing bridges (ala Kleinberg or ala Biskup)
- Lower bounds: Robust renormalisation techniques (ala Berger)

 $R_1 = N^{\delta}$ WeNyz

Tw=Ng=

 $R_1 = N^{\delta}$ Wanyz

TW=N82

Tw=Noz

Thank you for the attention!

Figure: Six instances of an infection spreading on a two-dimensional SSNM with different parameters τ and $\alpha.$