The giant component after percolation of product graphs

Lyuben Lichev, Univ. Jean Monnet, Saint Etienne

Lyuben Lichev

The giant component after percolation of product graphs

19/10/2021 1 / 18

The giant component after percolation of product graphs

- 3 The subcritical regime
- 4 The supercritical regime

Probabilistic preliminaries

p-percolation of a graph: $G \longrightarrow G_p$.

• • • • • • • • • • • •

p-percolation of a graph: $G \longrightarrow G_p$.

Often observed: for $(G_n)_{n\geq 1}$ there is a critical function p_c such that:

- if p ≥ (1 + ε)p_c, (G_n)_p contains a unique component of size Θ(|G_n|) whp.
- if p ≤ (1 − ε)p_c, the largest component of (G_n)_p is of size o(|G_n|) whp.

A (10) F (10)

Cartesian product of G_1 and G_2 : graph with vertex set $(u, v)_{u \in V_1, v \in V_2}$ and edge set (u, v)(u', v') where $u = u', vv' \in E_2$ or $uu' \in E_1, v = v'$.

Cartesian product of G_1 and G_2 : graph with vertex set $(u, v)_{u \in V_1, v \in V_2}$ and edge set (u, v)(u', v') where $u = u', vv' \in E_2$ or $uu' \in E_1, v = v'$.

Cartesian product of G_1 and G_2 : graph with vertex set $(u, v)_{u \in V_1, v \in V_2}$ and edge set (u, v)(u', v') where $u = u', vv' \in E_2$ or $uu' \in E_1, v = v'$.

Figure: Another cool example from Wikipedia

Lyuben Lichev

The giant component after percolation of product graphs

19/10/2021 4 / 18

The isoperimetric constant of G is given by

$$\iota(G) = \min_{S \subseteq V, |S| \le |V|/2} \frac{|E_G(S, V \setminus S)|}{|S|}.$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The *isoperimetric constant* of G is given by

$$\iota(G) = \min_{S \subseteq V, |S| \le |V|/2} \frac{|E_G(S, V \setminus S)|}{|S|}.$$

What is the meaning of ι ?

The *isoperimetric constant* of G is given by

$$\iota(G) = \min_{S \subseteq V, |S| \le |V|/2} \frac{|E_G(S, V \setminus S)|}{|S|}.$$

What is the meaning of ι ?

The *isoperimetric constant* of G is given by

$$\iota(G) = \min_{S \subseteq V, |S| \le |V|/2} \frac{|E_G(S, V \setminus S)|}{|S|}.$$

What is the meaning of ι ?

The giant component after percolation of product graphs

The giant component after percolation of product graphs

- 3 The subcritical regime
- 4 The supercritical regime

The main theorem

Theorem (L., '21)

Let G_1, G_2, \ldots, G_n be connected graphs with

- at least two vertices each,
- maximum degree at most $C \in \mathbb{N}$,
- isoperimetric constants at least n^{-γ}.

Then $G = G_1 \Box \ldots \Box G_n$ with average degree $\overline{d} = \overline{d}(n)$ whp satisfies:

- if $p \leq (1 \varepsilon)/\overline{d}$, then the largest component in G_p is of size o(|G|).
- 2 if $p \ge (1 + \varepsilon)/\overline{d}$ then G_p contains a component of size $\Theta(|G|)$.

• • • • • • • • • • • •

The giant component after percolation of product graphs

1 Introduction

4 The supercritical regime

Lyuben Lichev

The giant component after percolation of product graphs

19/10/2021 8 / 18

Standard concentration inequalities give the following degree profile of *G*:

Standard concentration inequalities give the following degree profile of *G*:

Conclusion: the union of all connected components of G_p , containing a vertex of degree at least $(1 + \varepsilon/2)\overline{d}$, contains o(|G|) vertices.

Conclusion: the union of all connected components of G_p , containing a vertex of degree at least $(1 + \varepsilon/2)\overline{d}$, contains o(|G|) vertices.

Remainder: vertices of degree at most $(1 + \varepsilon/2)\overline{d}$.

Comparison with a subcritical Bienaymé-Galton-Watson process \Rightarrow whp all other components have size $O(\log |G|)$.

- **→ → →**

The giant component after percolation of product graphs

1 Introduction

3 The subcritical regime

4 The supercritical regime

Two-round exposure (or sprinkling):

(a)

Two-round exposure (or sprinkling):

Write $G_p = G_{p_1} \cup G_{p_2}$.

イロト イヨト イヨト イヨト

Two-round exposure (or sprinkling):

Write $G_p = G_{p_1} \cup G_{p_2}$.

- An edge is missing in G_p with probability 1 p.
- An edge is missing in $G_{p_1} \cup G_{p_2}$ with probability $(1 p_1)(1 p_2)$.

Two-round exposure (or sprinkling):

Write $G_p = G_{p_1} \cup G_{p_2}$.

- An edge is missing in G_p with probability 1 p.
- An edge is missing in $G_{p_1} \cup G_{p_2}$ with probability $(1 p_1)(1 p_2)$.

So $1 - p = (1 - p_1)(1 - p_2)$.

A cell of a graph G is a connected subgraph of G.

cell \neq connected component!

- 3 →

A *cell* of a graph *G* is a connected subgraph of *G*.

cell \neq connected component!

Fix
$$p_1 = (1 + \varepsilon/4)/\overline{d}$$
, $p_2 = (1 + \varepsilon/8)/\overline{d}$.

- 3 →

A *cell* of a graph *G* is a connected subgraph of *G*.

cell \neq connected component!

Fix
$$p_1 = (1 + \varepsilon/4)/\overline{d}$$
, $p_2 = (1 + \varepsilon/8)/\overline{d}$.

Almost all vertices of G are adjacent to Ω(n) disjoint cells of G_{p2} of size Ω(n) (property P_{p2}) whp.

Lyuben Lichev

The giant component after percolation of product graphs

19/10/2021 15 / 18

イロト イポト イヨト イヨ

A *cell* of a graph *G* is a connected subgraph of *G*.

cell \neq connected component!

Fix $p_1 = (1 + \varepsilon/4)/\overline{d}$, $p_2 = (1 + \varepsilon/8)/\overline{d}$.

- Almost all vertices of G are adjacent to Ω(n) disjoint cells of G_{p2} of size Ω(n) (property P_{p2}) whp.
- Almost all vertices of *G* are adjacent to Ω(*n*) disjoint cells of *G*_{p2}, containing at least Ω(*n*) vertices with the property *P*_{p2} whp.

Lyuben Lichev

The giant component after percolation of product graphs

19/10/2021 15 / 18

イロト イポト イヨト イヨ

A *cell* of a graph *G* is a connected subgraph of *G*.

cell \neq connected component!

Fix $p_1 = (1 + \varepsilon/4)/\overline{d}$, $p_2 = (1 + \varepsilon/8)/\overline{d}$.

- Almost all vertices of G are adjacent to Ω(n) disjoint cells of G_{p2} of size Ω(n) (property P_{p2}) whp.
- Almost all vertices of G are adjacent to Ω(n) disjoint cells of G_{p2}, containing at least Ω(n) vertices with the property P_{p2} whp.
- Almost all vertices of *G* are adjacent to Ω(*n*) vertices in connected components of *G*_{p1} (not necessarily distinct) of size Ω(*n*²) whp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The supercritical regime: second step

An iteration procedure increases the sizes of the cells, adjacent in *G* to a typical vertex, to n^k for any $k \in \mathbb{N}$.

An iteration procedure increases the sizes of the cells, adjacent in *G* to a typical vertex, to n^k for any $k \in \mathbb{N}$.

Result: a bunch of connected components of size $\Omega(n^k)$ in G_{p_0} ($p_0 = (1 + \varepsilon/2)/\overline{d}$).

One final picture ($p = (1 + \varepsilon)/\overline{d}$)

Lyuben Lichev

イロト イヨト イヨト イヨト

Thank you for your attention!

The giant component after percolation of product graphs