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Percolation

Let & (/) be a random graph, defined on a Poisson process on R¢ such that:

* each vertex has finite degree

« [ > 0 controls the edge density, i.e. the larger [/ the more edges on average
Percolation is the event that & (/#) contains an infinite connected component

Question: Is there a critical edge density . € (0,00) such that almost surely
» if f < [, the graph does not percolate but

e if f > [, the graph percolates
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Each vertex x has assigned a radius OR.
o and connect two vertices if their
corresponding balls intersect

Heavy-tailed R, lead to heavy-tailed degree
distribution
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Percolation

There Is a percolation phase transition for
* Gilbert’s Disc Model (Gilbert 1961)

* Boolean model (Hall 1985, Meester and Roy 1996, Gouéré 2008)

* Long range percolation model (Newmann and Schulman 1986, Penrose 1991)

Summary: Neither long-range edges nor heavy tailed degree distributions alone can remove
the subcritical phase (i.e. . = 0). Is this possible at all?

* Scale-free percolation model (Deijfen et al 2018, Deprez and Wuthrich 2019)

Each vertex x is assigned a heavy-tailed weight W_and two vertices are connected with probability
l — eXp(—ﬁWny lx—y \_dé) for 6 > 1. Heavy-tailed degree distribution with power-law exponent 7.

Theorem: If 7 > 3,then /. > 0, butif 7 < 3,then 5. =0
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Weight-dependent random connection model

. The vertex set is a Poisson point process on R? x (0,1)

« Connect two vertices (x, f) and (y, f) (independently) with probability

—1 d
/ p(P~g(s, ) [x—yl|”)
Non-increasing profile function p : R, — [0,1] \/ Non-decreasing, symmetric kernel function g : (0,1) X (0,1) — R}

« AsSssume

p(|x|9)dx = 1 since then the degree distribution only depends on the kernel g and f
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Weight-dependent random connection model

« Connect two vertices (x, f) and (y, f) (independently) with probability p(B'g(s,D)|x—y ‘d)

» Focus on profile functions p(x) ~ cx™?for o > 1

» Describe the influence of the kernel g on the connection probability via a parameter
y € [0,1). All kernels lead to power-law degree distributions with exponent t =1 + 1/y.

» Soft Boolean model: sum kernel ¢SUM(s, 1) = (s74 + =74y~ or min kernel ¢™N(s, 1) = (s A 1)

 Age-dependent random connection model: preferential attachment kernel
gPs. ) = (s A (sv D)7

» Scale-free percolation: product kernel gP™9s, 1) = 51"
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Proof of 2.: m

Cloud of ,normal“ vertices

Heavy vertex

Much heavier vertex
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Main result

Theorem (Gracar, L, Morters, 2020): If the kernel g satisfies ¢,(s A 1)’ > g(s, 1) > ¢,(s At)(s V 1)!™7 then
1. if y < 6/(6+ 1) orequivalently z > 2+ 1/5, then 5. > O

2. ify>d6/(0+1)orequivalently z <2+ 1/6,then g. =0

Theorem (Deijfen et al, Deprez and Wiithrich): If the kernel is g(s, ) = 5’1/, then
1. if y < 1/2 or equivalently 7 > 3, then . > 0

2. ify > 1/2 or equivalently 7 < 3, then . =0
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Proof of 1.:

What one hopes to get:

Po10 starts a self-avoiding, shortcut free path of length n} < E#{such paths} < (SC)"

Problem: This expectation only depends on the degree-distribution and the strategy only works if the degree-
distribution has finite variance.

Solution:

= Understand the structure of the paths (identify key vertices and how they are connected within the path)

= Only bound the expectation of paths with such idealized structure
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Understand how two skeleton vertices are connected:

o




Proof of 1.:

Understand how two skeleton vertices are connected:

o

Key Lemma: If y < 6/(6 + 1), then

1
P, y{Jaconectorz:y,~z~y} < Py Yo ~ 2}P,  {z ~y }dz < (FOPy  {yo~ ¥}
R, \
(’ )

Hier is where the spatial embedding is dealt with
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