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Poisson-Voronoi percolation (in R2 for now)

- Poisson point process (PPP) of constant intensity λ on R2.

That is, a random set Z ⊆ R2 with:

- |A ∩ Z| is Poisson distributed with mean λ · area(A);
(for all measurable A ⊆ R2)

- If A,B ⊆ R2 are disjoint then |A ∩ Z|, |B ∩ Z| are
independent.

- Voronoi cell of z ∈ Z:

C (z) := {x ∈ R2 :‖x − z ‖≤‖x − z ′ ‖ for all z ′ ∈ Z}.

- (Independently) colour cells black with probability p, white
with probability 1− p.



Poisson-Voronoi percolation (in R2 for now)

- Poisson point process (PPP) of constant intensity λ on R2.

That is, a random set Z ⊆ R2 with:

- |A ∩ Z| is Poisson distributed with mean λ · area(A);
(for all measurable A ⊆ R2)

- If A,B ⊆ R2 are disjoint then |A ∩ Z|, |B ∩ Z| are
independent.

- Voronoi cell of z ∈ Z:

C (z) := {x ∈ R2 :‖x − z ‖≤‖x − z ′ ‖ for all z ′ ∈ Z}.

- (Independently) colour cells black with probability p, white
with probability 1− p.



Poisson-Voronoi percolation (in R2 for now)

- Poisson point process (PPP) of constant intensity λ on R2.

That is, a random set Z ⊆ R2 with:

- |A ∩ Z| is Poisson distributed with mean λ · area(A);
(for all measurable A ⊆ R2)

- If A,B ⊆ R2 are disjoint then |A ∩ Z|, |B ∩ Z| are
independent.

- Voronoi cell of z ∈ Z:

C (z) := {x ∈ R2 :‖x − z ‖≤‖x − z ′ ‖ for all z ′ ∈ Z}.

- (Independently) colour cells black with probability p, white
with probability 1− p.



Poisson-Voronoi percolation (in R2 for now)

- Poisson point process (PPP) of constant intensity λ on R2.

That is, a random set Z ⊆ R2 with:

- |A ∩ Z| is Poisson distributed with mean λ · area(A);
(for all measurable A ⊆ R2)

- If A,B ⊆ R2 are disjoint then |A ∩ Z|, |B ∩ Z| are
independent.

- Voronoi cell of z ∈ Z:

C (z) := {x ∈ R2 :‖x − z ‖≤‖x − z ′ ‖ for all z ′ ∈ Z}.

- (Independently) colour cells black with probability p, white
with probability 1− p.



A computer simulation



Critical probability

Percolation (dictionary: “passage of a liquid through a porous
medium”):

{percolation} := {∃ infinite connected cluster of black cells}.

Critical probability:

pc := inf{p : Pp(percolation) > 0}.

Does not depend on λ (follows from standard properties of PPPs).
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The value of pc .

Theorem.[Zvavitch’96, Bollobás+Riordan’06] pc = 1
2 .

Moreover, for p > pc there is a.s. precisely one infinite black
cluster.
(a.s. =“almost surely”=with probability one)

Work towards more detailed picture “at criticality” by Tassion’16,
Ahlberg et al. ’16, Ahlberg-Baldasso’18, Vanneuville’19, . . .
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Poincaré disk model

In this talk, all depictions of the hyperbolic plane, and all math,
will take place in the Poincaré disk representation of H2.



Poisson-Voronoi percolation on H2

- Poisson point process (PPP) of constant intensity λ on H2.

That is, a random set Z ⊆ H2 with:

- |A∩Z| is Poisson distributed with mean λ · areaH2(A);
(for all measurable A)

- If A,B ⊆ H2 are disjoint then |A ∩ Z|, |B ∩ Z| are
independent.

- Voronoi cell of z ∈ Z:

C (z) := {x ∈ H2 : distH2(x , z) ≤ distH2(x , z ′) for all z ′ ∈ Z}.

- (Independently) colour cells black with probability p, white
with probability 1− p.
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Critical probability

Again

{percolation} := {∃ infinite connected cluster of black cells}.

Critical probability:

pc(λ) := inf{p : Pp,λ(percolation) > 0}.

(A priori we have no reason to assume pc does not depend on λ.)
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Some results by Benjamini and Schramm

Theorem. [Benjamini+Schramm ’00] 0 < pc(λ) < 1/2 for all
λ > 0.

Theorem. [Benjamini+Schramm ’00] lim
λ↘0

pc(λ) = 0.

Fundamentally different behaviour from the Euclidean case:

Theorem. [Benjamini+Schramm ’00]

(i) If p ≤ pc(λ) then all black clusters are bounded (a.s.);

(ii) If p ≥ 1− pc(λ) then there is a unique unbounded black
cluster (a.s.);

(iii) If pc(λ) < p < 1− pc(λ) then there are infinitely many
unbounded black clusters (a.s.).
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A diagram from Benjamini+Schramm’00

The BS paper contains the following diagram, several aspects of
which are conjectures/open questions.



Our results (1/2)

In particular Benjamini and Schramm conjectured:

Conjecture. [Benjamini+Schramm ’00] lim
λ→∞

pc(λ) =
1

2
.

Theorem. [Hansen+M ’21+] The conjecture holds.
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Our results (2/2)

Question. [Benjamini+Schramm ’00] What are the asymptotics
of pc(λ) as λ↘ 0?

Theorem. [Hansen+M ’21+] pc(λ) = π
3λ+ o(λ) as λ↘ 0.
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Some words on the λ→∞ result.

We leverage the results on Euclidean Poisson-Voronoi percolation.
Intuition:

- If we “zoom in” the geometry of H2 looks more
and more Euclidean.

- As λ→∞ the points get packed closer and
closer together.

Of course more ideas are needed. For details:

- Ben’s talk in the online “Percolation Today”
seminar (28 April 2020).

- Arxiv : 2004.01464



Some words on the λ→∞ result.

We leverage the results on Euclidean Poisson-Voronoi percolation.
Intuition:

- If we “zoom in” the geometry of H2 looks more
and more Euclidean.

- As λ→∞ the points get packed closer and
closer together.

Of course more ideas are needed. For details:

- Ben’s talk in the online “Percolation Today”
seminar (28 April 2020).

- Arxiv : 2004.01464



Strategy for the λ→ 0 result.

We add the origin o to Z and consider percolation on the Voronoi
tesselation for Z ∪ {o}.

- For p = (1 + ε)π3λ and λ small: show the cluster of C (o)
stochastically dominates a super-critical Galton-Watson
branching process.

- For p = (1− ε)π3λ and λ small: show there is no infinite path
starting from C (o) (a.s.).



Where did π
3λ come from?

The typical cell: let D denote the number of sides of C (o) in the
Voronoi tessellation for Z ∪ {o}.

Theorem. [Isokawa ’01] ED = 6 + 3
πλ .

So, for small λ, the critical probability pc is such that the average
number of black neighbours is roughly one.



Almost all adjacent points have distance
2 log(1/λ)± const.

Using a variation on Isokawa’s computations, we can show that for
almost all z such that C (o) and C (z) are adjacent,

distH2(o, z) = 2 log(1/λ)± const.



Constructing a Galton-Watson tree inside the cluster of
C (o)

Exploration of a tree inside the cluster of o:

I We follow a Breadth-First-Search procedure, starting from o.

I When processing a point z , we find a collection of black
“children” z1, . . . , zk in the annulus

B(z , 2 log(1/λ) + K ) \ B(z , 2 log(1/λ)− K ),

such that all angles ∠zizzj are at least ϑ, as well as the angles
with the parent of z .

(K large, ϑ small.)

In each step, the previously explored region does not bother us too
much. (Next slide.)
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Why the past exploration does not bother us too much.

Left: perspective of parent, Right: perspective of child.

Computations for “typical point” show in each step of the
exploration the expected # children is > 1.
(When p = (1 + ε)π3λ and λ suff. small.)



Why the past exploration does not bother us too much.

Left: perspective of parent, Right: perspective of child.

Computations for “typical point” show in each step of the
exploration the expected # children is > 1.
(When p = (1 + ε)π3λ and λ suff. small.)



Some words on the lower bound

We want to show that when p = (1− ε)π3λ there are no infinite
black paths starting at o.

Naive approach : try to estimate expected # paths of length k and
show it goes to zero with k .

Problem: unlike in the upper bound, we can not restrict ourselves
to “convenient” adjacencies (of the right lenghts, etc.)
Long paths may (have to) make use of unusual cells/adjacencies.

Solution : we count something slightly different. (Essentially we
break an infinite path up into nice pieces that “interact” but in a
controlled way.)

�



Some words on the lower bound

We want to show that when p = (1− ε)π3λ there are no infinite
black paths starting at o.

Naive approach : try to estimate expected # paths of length k and
show it goes to zero with k .

Problem: unlike in the upper bound, we can not restrict ourselves
to “convenient” adjacencies (of the right lenghts, etc.)
Long paths may (have to) make use of unusual cells/adjacencies.

Solution : we count something slightly different. (Essentially we
break an infinite path up into nice pieces that “interact” but in a
controlled way.)

�



Some words on the lower bound

We want to show that when p = (1− ε)π3λ there are no infinite
black paths starting at o.

Naive approach : try to estimate expected # paths of length k and
show it goes to zero with k .

Problem: unlike in the upper bound, we can not restrict ourselves
to “convenient” adjacencies (of the right lenghts, etc.)
Long paths may (have to) make use of unusual cells/adjacencies.

Solution : we count something slightly different. (Essentially we
break an infinite path up into nice pieces that “interact” but in a
controlled way.)

�



Some words on the lower bound

We want to show that when p = (1− ε)π3λ there are no infinite
black paths starting at o.

Naive approach : try to estimate expected # paths of length k and
show it goes to zero with k .

Problem: unlike in the upper bound, we can not restrict ourselves
to “convenient” adjacencies (of the right lenghts, etc.)
Long paths may (have to) make use of unusual cells/adjacencies.

Solution : we count something slightly different. (Essentially we
break an infinite path up into nice pieces that “interact” but in a
controlled way.)

�



Some words on the lower bound

We want to show that when p = (1− ε)π3λ there are no infinite
black paths starting at o.

Naive approach : try to estimate expected # paths of length k and
show it goes to zero with k .

Problem: unlike in the upper bound, we can not restrict ourselves
to “convenient” adjacencies (of the right lenghts, etc.)
Long paths may (have to) make use of unusual cells/adjacencies.

Solution : we count something slightly different. (Essentially we
break an infinite path up into nice pieces that “interact” but in a
controlled way.)

�



Possibilities for further work

I Can we get at the critical (p = pc = 1/2) behaviour of the
Euclidean case using the hyperbolic with λ→∞?
Conformal invariance of crossing probabilities?

I Is pc(λ) strictly increasing?

I Differentiable?

I Opening for doing a PhD with me.
(not necessarily on these or related questions)
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Thank you for your attention!


