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Random Hyperbolic Graph G

We use an essentially equivalent representation [Fountoulakis and
Müller] : Consider

H := R× [0,∞),

endowed with the measure

dµ(x ,h) =
α

π
e−αh dx dh.

Here α is parameter governing the tail exponent of vertex degree.
Vertex set :

V := PPP on H with intensity measure µ.

We also add a root vertex ρ := (0,H) where H ∼ Exp(α).

Edge set :

(x ,h) ∼ (x ′,h′) ⇐⇒ |x − x ′| ≤ e(h+h′)/2.
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Contact process

Process (ξt)t≥0 on {0,1}V (write also (ξA
t )t≥0 when ξA

0 ≡ A).

Each infected vertex (state 1) heals at rate 1, and infects each
neighbor at rate λ.

Survival probability when starting from only the root vertex ρ infected :

γ(λ) := Pλ(ξρt 6= ∅ ∀t ≥ 0).

We also define the critical parameter as :

λc := inf{λ : γ(λ) > 0} ∈ [0,∞],

Note : on any infinite graph λc <∞.
But is λc positive or not? In general, can be a difficult question.
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Main results

Theorem
One has a.s. λc = 0, and as λ→ 0,

γ(λ) �

λ
1

2−2α , α ∈ (1
2 ,

3
4 ];

λ4α−1

log(1/λ)2α−1 , α ∈ (3
4 ,1).

Similar results for

• Configuration Model : Chatterjee–Durrett, Mountford–Valesin–Yao,
Can–Schapira ;

• Polya-point graph (local limit of Preferential attachment tree) : Can ;

• Dynamical random graphs : Jacob–Linker–Mörters.
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Metastability

Gn = restriction of the infinite graph to [−π
2 n, π2 n]× [0,2 log n).

Normalization is such that E[|Gn|] = n.

The contact process on Gn dies out almost surely. Relevant quantity is
the extinction time (when starting from all vertices of Gn infected) :

τn := inf{t ≥ 0 : ξGn
t ≡ 0}.

Theorem
For any λ > 0, there exists c, β > 0, such that

Pλ(τn > ecn) > 1− e−cnβ
.

Furthermore, for any (tn)n≥1, with tn →∞, and tn < ecn, for any ε > 0,

Pλ

(∣∣∣ |ξGn
tn |
n
− γ(λ)

∣∣∣ > ε

)
−→
n→∞

0.
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Proof ideas

Proof of γ(λ) > 0 for all λ > 0 (⇐⇒ λc = 0).

Idea is to find a tree structure in the graph. Points of the tree represent
a box

Bj,k := [2j−1k ,2j−1(k + 1)]× [jL, (j + 1)L], j , k ≥ 0,

with L = α+1
2α log 2. Chosen such that

• any two points in a given box are neighbors in the graph G.

• any vertex in Bj,k is neighbor of any vertex in Bj+1,[k/2].

Bj+1,[k/2] is called the parent of Bj,k ,→ this defines a canopy tree.
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Proof ideas 2

Note :

• Number of points in each box are independent Poisson r.v.

• On each row (i.e. for each fixed j),

(|Bj,k ∩ V|)k≥0, are i.i.d. ∼ Poi(µj),

with µj = const · eκ·j , with κ = log 2− αL > 0 ! ! !

Say now that a box is good if it contains more than λ−3 vertices.

Simple computation shows that

P(Bj,k good) ≥ 1− c
j2

=⇒ P(Bj,0 is good for all j ≥ 0) > 0.

The proof follows using standard facts about CP.

Similar ideas show exponential survival time on Gn.
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Proof ideas 3

Proof of asymptotic for γ(λ). More subtle...

Lower bound (easiest part). Consists in finding a good scenario :
The root has to infect a vertex with higher height (thus with higher
mean degree), which itself will infect a vertex with higher height, and
so on forever...

Upper bound (hardest part). One needs to control all possible
infection paths...
Requires a precise understanding of geometric properties of the
graph, and good control on probabilities of infection paths.
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Thank you for your attention !
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