CONTACT ON HYP. RANDOM GRAPH
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Geometric Random Graphs and percolation

joint work with Amitai Linker, Dieter Mitsche and Daniel Valesin.
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Random Hyperbolic Graph G

We use an essentially equivalent representation [Fountoulakis and
Muller] : Consider
H:=R x [0, 00),

endowed with the measure
du(x. h) = e~ dx dh.

™

Here « is parameter governing the tail exponent of vertex degree.
Vertex set :

V := PPP on H with intensity measure u.
We also add a root vertex p := (0, H) where H ~ Exp(«).
Edge set :
(X, h)~ (X, H) — |x—x|<elM/2
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Contact process

Process (&t)rs0 on {0, 1}V (write also (£7')r>0 When &' = A).

Each infected vertex (state 1) heals at rate 1, and infects each
neighbor at rate \.

Survival probability when starting from only the root vertex p infected :
Y(A) :=Pr(&f # 0 VE>0).
We also define the critical parameter as :
Ae == inf{\:v(X) > 0} € [0, ],
Note : on any infinite graph A\ < oo.

But is \¢ positive or not ? In general, can be a difficult question.
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One has a.s. \o = 0, and as A\ — 0,

o 13
)\272a, o € (E’Z]’
’Y()\) - )\4:1—1 § 1
4

|0g(1 /)\)20471 I

Similar results for

e Configuration Model : Chatterjee—Durrett, Mountford—Valesin—Yao,
Can—Schapira;;

e Polya-point graph (local limit of Preferential attachment tree) : Can;
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One has a.s. \o = 0, and as A\ — 0,

1
N, € (3,3
’Y()\) = )\4:1—1 3
fog(i/ET> «€ (3. 1)

Similar results for

e Configuration Model : Chatterjee—Durrett, Mountford—Valesin—Yao,
Can—Schapira;;

e Polya-point graph (local limit of Preferential attachment tree) : Can;

e Dynamical random graphs : Jacob—Linker—Mérters.
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Gnp = restriction of the infinite graph to [-5n, 5n] x [0,2log n).
Normalization is such that E[|G,|] = n.

The contact process on G, dies out almost surely. Relevant quantity is
the extinction time (when starting from all vertices of G, infected) :

mn = inf{t > 0: & = 0}.

For any )\ > 0, there exists ¢, 5 > 0, such that

Py(mn > €7) > 1 — e,

Furthermore, for any (t,)n>1, with t, — oo, and t, < e°", for any € > 0,

P, (\% —7()\)‘ > s> — 0.
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Proof of v(\) > 0 forall A\ > 0 (<= A\¢ = 0).

Idea is to find a tree structure in the graph. Points of the tree represent
a box

Bk =27k, 2 (k+ )] x [iL, + 1)L], j, k>0,
with L = % log 2. Chosen such that
e any two points in a given box are neighbors in the graph G.
e any vertex in B; x is neighbor of any vertex in B 1 (x/z)-

Bj 1 [k/2 is called the parent of B; x, — this defines a canopy tree.
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Note :

e Number of points in each box are independent Poisson r.v.
e On each row (i.e. for each fixed j),
(|Bj,k N V|)k20, areiid. ~ POf(uj),

with yij = const - €/, with = log2 — aL > 0!!!
Say now that a box is good if it contains more than A3 vertices.

Simple computation shows that
c , .
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Proof ideas 2

Note :
e Number of points in each box are independent Poisson r.v.
e On each row (i.e. for each fixed j),
(IBjxk " V|)k>0, arei.i.d. ~ Poi(y;),

with yij = const - €/, with = log2 — aL > 0!!!
Say now that a box is good if it contains more than A3 vertices.
Simple computation shows that

P(B; x good) > 1 — j‘; —  P(Bjo is good for all j > 0) > 0.
The proof follows using standard facts about CP.

Similar ideas show exponential survival time on Gp,.
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Proof ideas 3

Proof of asymptotic for (). More subtle...

Lower bound (easiest part). Consists in finding a good scenario :
The root has to infect a vertex with higher height (thus with higher
mean degree), which itself will infect a vertex with higher height, and
so on forever...

Upper bound (hardest part). One needs to control all possible
infection paths...

Requires a precise understanding of geometric properties of the
graph, and good control on probabilities of infection paths.
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Thank you for your attention!
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