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Abstract

We consider the random hyperbolic graph model introduced by [KPK+10] and then formalized
by [GPP12]. We show that, in the subcritical case α > 1, the size of the largest component is
asymptotically almost surely n1/(2α)+o(1), thus strengthening a result of [BFM15] which gave only
an upper bound of n1/α+o(1).
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1 Introduction and statement of result

In the last decade, the model of random hyperbolic graphs introduced by Krioukov et al. in
[KPK+10] was studied quite a bit due to its key properties also observed in large real-world networks.
In [BnPK10] the authors showed empirically that the network of autonomous systems of the Internet
can be very well embedded in the model of random hyperbolic graphs for a suitable choice of
parameters. Moreover, Krioukov et al. [KPK+10] gave empiric results that the model exhibits
the algorithmic small-world phenomenon established by the groundbreaking letter forwarding
experiment of Milgram from the ’60s [TM67]. From a theoretical point of view, the model of
random hyperbolic graphs has an elegant specification and is thus amenable to rigorous analysis by
mathematicians. Informally, the vertices are identified with points in the hyperbolic plane, and two
vertices are connected by an edge if they are close in hyperbolic distance.

A common way of visualizing the hyperbolic plane is via its native representation described in
[BKL+17b] where the choice for ground space is R2. Here, a point of R2 with polar coordinates (r, θ)

has hyperbolic distance to the origin O equal to its Euclidean distance r and more generally, the
hyperbolic distance d(u, u′) between two points u = (ru, θu) and u′ = (ru′ , θu′) is obtained by solving

cosh d(u, u′) := cosh ru cosh ru′ − sinh ru sinh ru′ cos(θu−θu′). (1.1)

In the native representation, an instance of the graph can be drawn by mapping a vertex v to the
point in R2 with polar coordinate (rv, θv) and drawing edges as straight lines (see Figure 1).

The random hyperbolic model is defined as follows: for each n ∈ N, we consider a Poisson point
process on the disk B(O,R) of the hyperbolic plane. The radius is equal to R := 2 log(n/ν) for some
positive constant ν ∈ R+ (log denotes here and throughout the paper the natural logarithm). The
intensity function at polar coordinates (r, θ) for 0 ≤ r < R and 0 ≤ θ < 2π is

g(r, θ) := νe
R
2 f(r, θ),
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Figure 1: A realization of the subcritical hyperbolic graph Poiα,ν(n) with parameters α = 1.1, ν = 1,
n = 1000. The outer circle of the figure corresponds to B(O,R), the inner dashed circle is B(O,R/2).
The size of the largest connected component, in purple, is |L1| = 51.

where f(r, θ) is the density function corresponding to the uniform probability on the disk B(O,R) of
the hyperbolic space of curvature −α2. That is, θ is chosen uniformly at random in the interval [0, 2π)

and independently of r, which is chosen according to the density function

f(r) :=


α sinh(αr)

cosh(αR)− 1
, if 0 ≤ r < R,

0, otherwise.

Construct then the following graph G = (V,E): the set of vertices V is the point set of the Poisson
process and for u, u′ ∈ V , u 6= u′, there is an edge with endpoints u and u′ provided the hyperbolic
distance d(u, u′) between u and u′ is such that d(u, u′) ≤ R, where d(u, u′) is obtained by solving (1.1).

For a given n ∈ N, we denote this model by Poiα,ν(n). Note in particular that∫
g(r, θ)dθdr = νe

R
2 = n,

and thus E|V | = n. In the original model of Krioukov et al. [KPK+10], n points, corresponding to
vertices, are chosen uniformly and independently in the disk Bh(O,R) of the hyperbolic space of
curvature −α2, but since from a probabilistic point of view it is arguably more natural to consider the
Poissonized version of this model, we consider the latter one (see also [GPP12] for the construction
of the uniform model). Note also that conditional upon having exactly n points in the Poisson process
we recover exactly the uniform model.

The restriction α > 1
2 and the role of R guarantee that the resulting graph has bounded average

degree (depending on α and ν only). If α < 1
2 , then the degree sequence is so heavy tailed that

this is impossible (the graph is with high probability connected in this case, as shown in [BFM16]).
Moreover, if α > 1, then as the number of vertices grows, the largest component of a random
hyperbolic graph has sublinear order (see [BFM15, Theorem 1.4]).

Notations: We say that an event holds asymptotically almost surely (a.a.s.), if it holds with probability
tending to 1 as n→∞. Given a sequence (an)n≥1 taking values in R and a sequence (bn)n≥1 taking
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values in (0,∞), we write an = o(bn) to mean that an/bn → 0 as n→∞. Also we write an = Θ(bn) if
an/bn is bounded away from 0 and∞ as n→∞, and an = Ω(bn) if an/bn is bounded away from 0 as
n→∞.

Result: In this paper we study the size of the largest component of the graph in the case α > 1.
In [BFM15, Theorem 1.4] it was shown that its size is a.a.s. at most n1/α+o(1). The main result of this
paper is the following improvement, finding the exact exponent:

Theorem 1.1. Fix α > 1 and ν > 0 and let G = (V,E) be chosen according to Poiα,ν(n), and L1 ⊆ G
be the largest connected component of G. There is a constant C > 0, such that, a.a.s., the following
holds:

n
1

2α (log n)−C ≤ |L1| ≤ n
1

2α (log n)C .

Remark 1.2. We cannot hope for Theorem 1.1 to hold for any α > 1 with probability at least 1− n−c
for some c > 0. Indeed, the expected number of vertices v with rv ≤ (1− ε)(1− 1

2α )R (or equivalently

tv ≥ R
(

1−ε
2α + ε

)
) is, by Lemma 2.3, Θ(nε(

1
2α−2α)) = o(1), and hence the probability to have such

a vertex is also of the same order. If such a vertex exists, by Lemma 2.5, its degree is (for some
constant c1 > 0) a.a.s. at least c1n(1−ε)/(2α)+ε = n1/(2α)+ε′ for some ε′ > 0. As before, the degree is
a lower bound on the size of the component, and therefore we get with probability n−c(ε) (where
c(ε)→ 0 as ε→ 0) a component of order at least n1/(2α)+ε′ for some ε′ > 0, and we cannot hope for
stronger concentration.

Related work: The size of the largest component in random hyperbolic graphs was first studied
in [BFM15]: it was shown that for α > 1 it is at most n1/α+o(1), whereas for α < 1 the largest
component is linear. In the same paper the authors also showed that for α = 1 and ν sufficiently
small there is a.a.s. no linear size component, whereas for α = 1 and ν sufficiently large a.a.s. there
is a linear size component. In [FM18] the picture was made more precise: for α = 1 there is a
critical intensity such that a.a.s. a linear size component exists iff ν is above a certain threshold.
Also, for α < 1, for fixed α, the size of the largest component is increasing in ν and, for fixed ν, it
is decreasing in α. Furthermore, in [BFM16] it was shown that for α < 1/2 the graph is connected
a.a.s., whereas for α = 1/2 the probability of being connected tends to 1 if ν ≥ π, and the probability
of being connected is otherwise a monotone increasing function in ν that tends to 0 as ν tends
to 0. For the case 1/2 < α < 1, it was shown in [KM19] that a.a.s. the second component is of
size Θ((log n)1/(1−α)), whereas, for α = 1/2 and ν sufficiently small, it is Θ(log n) with constant
probability, and for α = 1 it is a.a.s. Ω(nb) for some b > 0. More generally, starting with the
seminal work of [KPK+10], further aspects of random hyperbolic graphs have been discussed since
then: the power law degree distribution, mean degree and clustering coefficient were analyzed
in [GPP12, FvdHMS21]; the diameter was computed in [FK18, KM15, MS19], the spectral gap was
analyzed in [KM18], typical distances were calculated in [ABF17], and bootstrap percolation in
such graphs was considered in [CF16]. The authors of [BFK16] calculated the size of balanced
separators, i.e., small subsets of vertices whose removal yields subgraphs of roughly the same size,
and they also compute the treewidth of random hyperbolic graphs. Finally, cliques in hyperbolic
graphs were studied in [BFK18] and the vertex cover problem was studied in [BFFK20]. Recently,
a more general model of geometric inhomogeneous random graphs has been introduced, see for
example [BKL17a, BKL19, KL20] and the references therein.

Organization of the paper: In Section 2 we recall some well known properties of the random
hyperbolic graph. Section 3 then describes the construction of the main tool of our proof: the
separation zones. The existence of these zones shows that there is no long path of vertices with
all vertices having roughly the same radial coordinates. Finally, in Section 4 we use the separation
zones to control the size of the connected components of the graph which leads to the result of
Theorem 1.1.
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2 Preliminaries

From now on, we suppose α > 1. In this section we collect some properties concerning random
hyperbolic graphs. For notational convenience, for any point v = (rv, θv) of the ball B(O,R) we
define tv = R − rv, the radial distance to the boundary circle of radius R (instead of the distance
to the origin O), and we identify a vertex v of the graph G with the coordinate pair v = (tv, θv)

(this choice was made already in previous articles, see for example [CF16]). Moreover, the angles
are defined modulo 2π, and the distance between two angles |θ − θ′| is a short hand notation for
min(|θ − θ′|, 2π − |θ − θ′|). For simplicity, we suppose throughout the paper that R is an integer.

Define by θd(d1,d2) the angle at the origin between two points at radial distance d1 and d2

respectively from the origin, that are at hyperbolic distance d from each other (see Figure 2).

O

d1

d2

d
θd(d1, d2)

Figure 2: The angle θd(d1,d2)

By the hyperbolic law of cosines of (1.1),

θd(d1,d2) = arccos
(cosh d1 cosh d2 − cosh d

sinh d1 sinh d2

)
.

Clearly, θd(d1,d2) = θd(d2,d1). In fact, we need only a handy approximation for θR(d2,d1):

Lemma 2.1 ([GPP12, Lemma 3.1]). If 0 ≤ min{d1,d2} ≤ R ≤ d1 + d2, then

θR(d1,d2) = 2e
1
2 (R−d1−d2)

(
1 + Θ(eR−d1−d2)

)
.

A direct consequence of this lemma is the following corollary:

Corollary 2.2. For any R > 0, there is a function

θR :
[0, R/2]2 → R+

(t1, t2) 7→ θR (t1, t2)

such that

• θR (t1, t2) = 2e−
1
2 (R−t1−t2)

(
1 + Θ(e−(R−t1−t2))

)
• two vertices u, v ∈ V such that tu + tv ≤ R are connected by an edge iff |θu − θv| ≤ θR (tu, tv) .

Throughout, we will need estimates for measures of regions of the hyperbolic plane, and more
specifically, for regions obtained by performing some set algebra involving a few balls. For a
point p of the hyperbolic plane H2, the ball of radius ρ centered at p will be denoted by Bp(ρ),
i.e., Bp(ρ) := {q ∈ H2 : d(p, q) ≤ ρ}. Also, we denote by µ(S) the measure of a set S ⊆ H2, i.e.,

µ(S) :=

∫
S

f(r, θ)drdθ.

Next, we collect a few standard results for such measures.

Lemma 2.3 ([GPP12, Lemma 3.2]). Let r ∈ (0, R] and denote t = R− r. Then

µ(BO(r)) = νe−α(R−r)(1 + o(1)) = e−αt(1 + o(1)).

We also use classical Chernoff concentration bounds for Poisson random variables. See for
instance ([BLM13] page 23).
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Lemma 2.4 (Chernoff bounds). If X ∼ P(λ), then for any x > 0,

P (X ≥ λ+ x ) ≤ e−
x2

2(λ+x) and P (X ≤ λ− x ) ≤ e−
x2

2(λ+x) .

In particular, for x ≥ λ,

P (X ≥ 2x ) ≤ e− x4 .

Lemma 2.4 together with Lemma 3.2 of [GPP12] yield the following result:

Lemma 2.5. Let V be the vertex set of a graph chosen according to Poiα,ν(n), and let v be a vertex
with tv > C logR for C sufficiently large. Then, there exist constants 0 < c1 < c2, so that a.a.s.
c1e

1
2 tv ≤ |V ∩Bv(R)| ≤ c2e

1
2 tv .

3 Construction of the separation zones

In this section we explain how to construct the separation zones. The high-level idea is as
follows: in sectors of about the same angle we find separating regions without vertices at the
angular boundary of the sector, whereas the zones in the middle of the center typically contain
vertices. These separating regions on the angular borders of the sector therefore work as a natural
boundary for the geometric region where the vertices of a connected component can be. In order
for a connected component to span a very large angle, it would have to contain a vertex close to
the origin, but since this region is typically also empty of vertices, no big connected component can
exist. A similar separator concept was introduced in [BFK16]: the authors showed therein that for
the given range of α > 1, there exist subsets of vertices of constant size such that in the remaining
subgraph all components are roughly of the same size (the size of such separators given by the
authors in [BFK16] is more interesting in the regime where there exists a large component, but
their idea is similar to ours here). We explain the concepts now in more detail: we first define the
following sectors

S(θ1, θ2) = { (t, θ) | 0 ≤ t < R and θ1 ≤ θ < θ2 }

and the annuli
L(t−, t+) =

{
(t, θ) | t− ≤ t < t+ and 0 ≤ θ < 2π

}
.

We first observe that the number of vertices contained in a not too narrow annulus of a ball centered
at the origin is roughly of the same order as the total number of vertices in the whole ball. This is
formalized in the following (which is a simple consequence of Lemma 2.3):

Observation 3.1. For any 0 ≤ t− < t+ < R/2

E
[
|V ∩ L(t−, t+)|

]
= νe

R
2 −αt

−
(1− e−α(t+−t−) + o(1)).

Proof. By applying Lemma 2.3 and the fact that the total intensity is νeR/2 we get

E
[
|V ∩ L(t−, t+)|

]
= E

[
|V ∩BO(t−)| \ |V ∩BO(t+)|

]
= νe

R
2 −αt

−
(1 + o(1))− νeR2 −αt

+

(1 + o(1))

= νe
R
2 −αt

−
(1− e−α(t+−t−) + o(1)).

We then construct for each coordinate pair (t0, θ0) ∈ (0, R/2) × [0, 2π), a zone that separates
points to the left from points to the right in { (t, θ), t ≤ t0 }. More precisely, define for t0 < R/2 and
θ0 ∈ [0, 2π), the following separation zone (see also Figure 3):

A(t0, θ0) =
{

(t, θ) | t ≤ t0 and |θ − θ0| ≤ θR (t, t)
}
.

We thus have the following observation (angles in the following observation are chosen to be the
smaller angle with respect to the given reference angle θ0):
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Observation 3.2. Suppose V ∩ A(t0, θ0) = ∅. Let v, w ∈ V ∩ L(0, t0) with θv < θ0 < θw and
max(|θv − θ0|, |θw − θ0|) ≤ |θv − θw|. Then |θv − θw| > θR(tv, tw), i.e., v and w are not connected by an
edge.

Proof. The function θR(tv, tw) is increasing in both of its arguments, hence we may assume that
tv = tw = t0. For this choice, v and w are connected by Corollary 2.2 iff |θv − θw| ≤ θR(t0, t0).
However, since A(t0, θ0) = ∅ and θv < θ0 < θw, we have |θv − θw| > 2θR(t0, t0), i.e., v and w are not
connected by an edge.

•
(t0, θ0)

t0

0

A(t0, θ0)

×v
×w

Figure 3: A separation zone. The two points v and w are not close enough to be connected by an
edge.

To use the previous observation, we need separation zones which do not contain any vertices. We
prove below that this happens with high probability.

Lemma 3.3. There is a constant c > 0 which depends only on α and ν such that for any t < R/2,

P
(
∃j ∈ {0, . . . , cR} , V ∩ A(t, 2jθR (t, t)) = ∅

)
≥ 1− e−R .

Proof. Consider the event

E =
{
∃j ∈ {0, . . . , N}, V ∩ A(t, 2jθR (t, t)) = ∅

}
for some N that we will choose below. We recall that the set A(t, 2jθR (t, t)) is included in the sector

S((2j − 1)θR (t, t) , (2j + 1)θR (t, t)).

For different values of j, these sectors are disjoint, and thus the random variables |V ∩A(t, 2jθR (t, t))|
are independent, they follow a Poisson distribution with intensity E [ |V ∩ A(t, 0)| ], and hence

P
(
E
)

= (P ( |V ∩ A(t, 0)| > 0))
N+1

=
(

1− e−E[ |V ∩A(t,0)| ]
)N+1

.

Since t < R/2, Corollary 2.2 and Observation 3.1 give

E [ |V ∩ A(t, 0)| ] ≤
∑

1≤i≤dte

2θR (i, i)

2π
E [ |V ∩ L(i− 1, i)| ]

≤
∑

1≤i≤dte

4e−
R
2 +iνeR/2e−α(i−1)(1− e−α)(1 + o(1))

= 4ν(eα − 1)
∑

1≤i≤dte

e−(α−1)i(1 + o(1))

≤ 4ν
(eα − 1)e−(α−1)

1− e−(α−1)
+ o(1).

By choosing N = cR for a constant c > 0 sufficiently large, the lemma follows (observe that the angle
θR (i, i) is small enough to have 2NθR (i, i) < 2π for large R and then such N clearly exists).
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We next introduce a helpful structure of layers that had in a similar way been introduced
in [BKL17a] for an efficient sampling of geometric inhomogeneous random graphs. In more detail,
we consider the following layers starting from the boundary of BO(R): set

∀i ≥ 0, ti =

(
4α

α− 1
+ 3i

)
logR.

Let tmax = 1
2αR be the distance to the circle of radius R roughly corresponding to the largest t

for which we can find an element of V and set imax = min { i ≥ 0, ti ≥ tmax }. Note that

tmax < R/2, imax ≤ R and tmax ≤ timax
≤ tmax + 3 logR.

We also set t−1 = 0 and we define, for i, j ∈ {0, . . . , imax }, the angle

θi,j = θR (ti, tj)

and the consecutive layers
Li = L(ti−1, ti).

The following observation is standard; it follows again from Corollary 2.2 and Observation 3.1. Its
proof is analogous to the proof of Observation 3.1; and it is therefore left out.

Observation 3.4. For any i, j ∈ {0, . . . , imax },

E [ |V ∩ Li| ] = νe
R
2 −αti−1(1 + o(1)) and θi,j = 2e−

1
2 (R−ti−tj)

(
1 + Θ(e−(R−ti−tj))

)
.

We now finish the construction of the separation zones. Intuitively, one may think of separation
zones as regions equally distributed over BO(R), but it seems easier to define these regions de-
pending on positions of vertices. On a high level, the idea is as follows: we first divide the disk into
layers (concentric rings). Each layer is then divided into sectors by packing separation zones as
close to each other as possible (the number of zones depends on the layer). More formally, for every
i ∈ {0, . . . , imax }, set kimax = d2π/(3cRθi,i)e where c is the constant given in Lemma 3.3. For every
0 ≤ k < kimax, we find the (k + 1)-th separation zone to be the closest (to the right) empty region to
the angle 3cRkθi,i. More formally, define for 0 ≤ k < kimax,

ji,k = min {j ∈ N | V ∩ A(ti, (3cRk + 2j)θi,i) = ∅} ,

where min ∅ =∞. We assign Ai,k then to be the closest region to 3cRkθi,i:

Ai,k = A(ti, (3cRk + 2ji,k)θi,i),

where we set Ai,k = ∅ in case it turned out ji,k = ∞. The set Ai,k represents the (k + 1)-th
separation zone of layer i. For notational convenience, we also set Ai,kimax = Ai,0. We could have
Ai,k = Ai,k+1, and the two sets might not even be well defined. We will thus use Lemma 3.3 to show
that asymptotically almost surely none of the two things happens.

In order to state the next lemma properly, we define the following (pseudo)distance between
separation zones:

∀A,B ⊂ BO(R), d(A,B) = inf { |θ − θ′| | (t, θ) ∈ A, (t′, θ′) ∈ B } .

As indicated before, the separation zones described indeed are well defined, i.e., they are more or
less equally distributed around the whole disk, as the following lemma shows:

Lemma 3.5. Let c be the constant given in Lemma 3.3 (depending only on α and ν). Then the event
ER defined by

ER =
{
∀0 ≤ i ≤ imax, ∀0 ≤ k < kimax, Ai,k 6= ∅ and cRθi,i ≤ d(Ai,k,Ai,k+1) ≤ 5cRθi,i

}
occurs a.a.s.
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Proof. Let c be the constant given in Lemma 3.3 and consider the event

FR =
{
∀0 ≤ i ≤ imax, ∀0 ≤ k < kimax, ∃j ∈ {0, . . . , cR} , V ∩ A(ti, (3cRk + 2j)θi,i) = ∅

}
.

Clearly, FR ⊆ ER and it is sufficient to bound P
(
FR
)
. Then, for R large enough, using the definition

of kimax,

P
(
FR
)
≤

∑
0≤i≤imax

0≤k<kimax

P (∀j ∈ {0, . . . , cR} , V ∩ A(ti, (3cRk + 2j)θi,i) 6= ∅ )

=
∑

0≤i≤imax

kimaxP (∀j ∈ {0, . . . , cR} , V ∩ A(ti, 2jθi,i) 6= ∅ )

= C1

∑
0≤i≤imax

1

R
e
R
2 −tie−R

≤ C1

∑
0≤i≤imax

e
R
2 −tie−R ≤ C2e

− 1
2R.

Since the last quantity goes to zero as R tends to infinity, the lemma is proven.

ti

3cRθi,i 3cRθi,i

Ai,0 Ai,1 Ai,2 Ai,k
i
max−1

Bi,0 Bi,1 Bi,2 . . . Bi,0

Figure 4: The separation zones

Hence, a.a.s. the distance between two consecutive separation zones Ai,k and Ai,k+1 is always of
the order Rθi,i. The idea is that every path of connected points from a vertex in V ∩ Bi,k to another
vertex in V ∩ Bi,` with k 6= ` has to go through an intermediate vertex that is closer to the origin, i.e.,
points cannot be connected "below". In order to make this more precise, define now, conditional
upon ER, the area Bi,k between two separation zones (see also Figure 4): for 1 ≤ k < kimax, let

Bi,k =
{

(t, θ) ∈ BO(R) | t ≤ ti and
(
∀(t′, θ−) ∈ Ai,k−1, θ > θ− and ∀(t′, θ+) ∈ Ai,k, θ < θ+

)}
and

Bi,0 =
{

(t, θ) ∈ BO(R) | t ≤ ti and
(
∀(t′, θ−) ∈ Ai,k

i
max−1, θ > θ− or ∀(t′, θ+) ∈ Ai,0, θ < θ+

)}
.

Rewriting Observation 3.2 we obtain the following observation, assuming that we indeed found
the separation zones, that is, we have Ai,k 6= ∅.
Observation 3.6. Suppose Ai,k 6= ∅. Let u ∈ V ∩ Bi,k and v ∈ V ∩ Bi,` with k 6= `. Then u and v can
only be connected by a path that has at least one intermediate vertex w ∈ V such that tw > ti.

Proof. Note that tu, tv ≤ ti. Then by Observation 3.2, u and v are not connected by an edge. Since
this holds for any k 6= ` and any u, v, there can be no path between u and v containing vertices w ∈ V
such that tw ≤ ti (see also Figure 5).
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ti

ti−1

ti−2

ti−3

u×

w×

v×

ũ
×

×ṽ

Figure 5: The green points are connected while the red ones are not.

4 Covering component

On a high level, the advantage of separation zones is that it is impossible to stay in the same
connected component going from right to left (or the other direction) remaining always at the same
radius or going towards the boundary. We will thus construct, starting from a certain vertex, a
covering component, that is, a component which covers a.a.s. the whole connected component of the
vertex, if this vertex is the one closest to the center of its connected component. Roughly speaking,
it is constructed in an iterative way and contains vertices that are ’close’ in angular distance to a
vertex already in the covering component, where ’close’ depends on the radial coordinate of the
vertex.

We describe now in detail the iterative construction process of the covering component. Suppose
that the event ER holds. This happens a.a.s. according to Lemma 3.5. Consider a vertex v ∈ V and
let Li be the layer of v. If i = 0, we define Cv = {v }, else, for 0 ≤ j < i ≤ imax, we set

Θi,j(v) = V ∩ Lj ∩ S(θv − 2θi,j , θv + 2θi,j)

and (see also Figure 6)

Cv = {v } ∪
i−1⋃
j=0

⋃
u∈Θi,j(v)

Cu.

Θ2,1(v)

•v
t2

t1

t0

t−1

•
u

Θ1,0(u)

Θ2,0(v)

•
w2

•
w1

Figure 6: Construction of Cv = {v, u, w1, w2}, for v ∈ L2 top-down: first u is added since this vertex
lies in Θ2,1(v), in red, then w1 since it is in Θ2,0(v), in red too, and finally w2 is added since it lies in
Θ1,0(u), in blue.

Finally, denote by k the unique integer such that v ∈ Li ∩ Bi,k. The covering component of v is
defined as

CCv =
⋃

u∈V ∩Li∩Bi,k

Cu.
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We also denote by Conn(v) the connected component of v. The following lemma shows that the
covering component of v indeed covers the connected component of v if v is the closest vertex of the
center in this component.

Lemma 4.1. A.a.s. for any v ∈ BO(R), if tv = max { tu | u ∈ Conn(v)}, the connected component of
v is included in CCv.

Proof. Suppose that the event ER holds. This happens a.a.s. according to Lemma 3.5.
By contradiction, consider a vertex u in the connected component of v that is not contained in

CCv, and a shortest path v = v0, . . . , vm = u. Hence, there exists a smallest k ≥ 1 such that the
vertex vk is not in CCv.

For any ` ∈ {0, . . . ,m}, denote by i` the index of the layer containing v` and suppose there exists
k′ < k such that ik′ > ik. Among them choose the largest k′, so that

∀` ∈ {k′ + 1, . . . , k } , i` ≤ ik (see Figure 7).

Lik′

Lik

×
vk′+1

×
vk′

×
vk

×
v`

Bik,s

Figure 7: The whole path after vk′ is contained in a unique zone Bik,s.

By Observation 3.6, it is not possible to construct a path between vertices of different zones of
level ik if this path does not contain a vertex w such that tw > tik . Hence, the v` are necessarily in
the same zone as vk, named Bik,s in Figure 7. Therefore, the angle between vk′ and vk cannot be
larger than the angle between vk′ and vk′+1 plus the angular width of Bik,s, that is,

|θvk′ − θvk | ≤ θik′ ik + 5cRθikik ≤ 2θik′ ik ,

and thus vk ∈ Cvk′ ⊂ CCv which is impossible. Thus necessarily v = v0 is in the same layer
as vk or in a layer closer to the boundary. Since v is by hypothesis the vertex such that tv =

max { tu | u ∈ Conn(v)}, we must have v ∈ Lik . Therefore, by Observation 3.6, v and vk must be in
the same zone Bik,s for some s and thus vk ∈ CCv.

Lemma 4.2. Define K = 128ν. A.a.s.,

∀0 ≤ j < i ≤ imax, ∀v ∈ Li, |Θi,j(v)| ≤ max(8R,Ke
ti+tj

2 −αtj−1)

Proof. For each 0 ≤ j < i ≤ imax, let di,j = max(4R, 64νe
ti+tj

2 −αtj−1) and divide layer Lj into

dπ/(2θi,j)e sectors S(i,j)
k of angle (at most) 4θi,j . Recall that for any k ∈ {1, . . . , dπ/(2θi,j)e}, the

cardinality |S(i,j)
k ∩ V ∩ Lj | is Poisson distributed with expectation

E
[
|S(i,j)
k ∩ V ∩ Lj |

]
≤ 4θi,jE [ |V ∩ Lj | ]

and according to Observation 3.4, if R is large enough,

4θi,jE [ |V ∩ Lj | ] ≤ 4νe
R
2 −αtj−1 · 2e− 1

2 (R−ti−tj) = 8νe
ti+tj

2 −αtj−1 ≤ di,j/2.

So, for any such sector S(i,j)
k , for any 0 ≤ j < i ≤ imax, from Lemma 2.4 we have

P
(
|S(i,j)
k ∩ V ∩ Lj | > di,j

)
≤ e−di,j/4 ≤ e−R.

10



By a union bound over all dπ/(2θi,j)e sectors S(i,j)
k and then over all i, j, we have

P
(
∃0 ≤ j < i ≤ imax,∃1 ≤ k ≤ dπ/(2θi,j)e, |S(i,j)

k ∩ V ∩ Lj | > di,j

)
≤

∑
0≤j<i≤imax

dπ/(2θi,j)ee−R.

Recall that for R large enough, 1/θi,j ≤ e
1
2 (R−ti−tj) ≤ eR/2 and imax ≤ R. Thus, for some universal

constant C > 0,

P
(
∃0 ≤ j < i ≤ imax,∃1 ≤ k ≤ dπ/(2θi,j)e, |S(i,j)

k ∩ V ∩ Lj | > di,j

)
≤ CR2e−R/2 = o(1).

Hence, since for each vertex v ∈ V ∩Li, the set Θi,j(v) can intersect at most two adjacent sectors

S
(i,j)
k , we have

P (∃0 ≤ j < i ≤ imax, ∃v ∈ V ∩ Li, |Θi,j(v)| > 2di,j ) = o(1).

Lemma 4.3. There is a constant K2 > 0, such that, a.a.s.

∀0 ≤ i ≤ imax, ∀v ∈ Li, |CCv| ≤ K2e
2t0+ 1

2 ti .

Proof.
Upper bound for |Cv|: recall first that Lemma 4.2 says that, for K = 128ν, the event

A =
{
∀0 ≤ j < i ≤ imax, ∀v ∈ V ∩ Li, |Θi,j(v)| ≤ max(8R,Ke

ti+tj
2 −αtj−1)

}
happens a.a.s. We proceed by induction on i and prove that, on the event A, for any 0 ≤ i ≤ imax,

∀j ≤ i, ∀v ∈ V ∩ Lj , |Cv| ≤ 2Ke
t0+ti

2 . (4.1)

Since for any v ∈ V ∩ L0, Cv = {v }, the result is obvious for i = 0. Suppose now it is true for some
0 ≤ i < imax. We fix some v ∈ V ∩ Li+1, and we will obtain a bound on Cv by summing over all
vertices in layers with indices below i+ 1 and take their Cu’s:

|Cv| ≤ | {v } |+
∑

0≤j≤i

∑
u∈Θi+1,j(v)

|Cu|

≤ 1 +
∑

u∈Θi+1,0(v)

1 +
∑

1≤j≤i

∑
u∈Θi+1,j(v)

2Ke
t0+ti

2

= 1 + |Θi+1,0(v)|+
∑

1≤j≤i

|Θi+1,j(v)|2Ke
t0+ti

2

≤ 1 + max(8R,Ke
ti+1+t0

2 −αt−1) +
∑

1≤j≤i

max(8R,Ke
ti+1+tj

2 −αtj−1)2Ke
t0+tj

2 .

Recall that t−1 = 0 and for i ≥ 0, ti = ( 4α
α−1 + 3i) logR. Thus, for large R,

max(8R,Ke
ti+1+t0

2 −αt−1) = Ke
ti+1+t0

2

and

max(8R,Ke
ti+1+tj

2 −αtj−1)2Ke
t0+tj

2 ≤ 2Ke
t0+ti+1

2 (8Re
tj−ti+1

2 +Ketj−αtj−1)

= 2Ke
t0+ti+1

2

(
8R

3
2 (j−i)− 1

2 +KR−α−3(α−1)j
)
.
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This leads to the following bound for |Cv|:

|Cv| ≤ 1 + e
t0+ti+1

2

(
K +

16K√
R(1−R−3/2)

+ 2K2 R−4α+3

1−R−3(α−1)

)

For R large enough, we then have |Cv| ≤ 2Ke
t0+ti+1

2 for any v ∈ Li+1. This proves the bound of (4.1)
for any v by induction.

Upper bound for |CCv|: For i ∈ {0, . . . , imax }, denote by Γi the set

Γi =
{
v ∈ V ∩ Li

∣∣∣ |θv| ≤ 5cRθi,i

}
.

According to Observation 3.4, there is a constant K depending only on ν and c such that for R large
enough and i ∈ {0, . . . , imax },

E [ |Γi| ] = 10cRθi,iE [ |V ∩ Li| ] ≤ KRe−
1
2 (R−2ti)e

R
2 −αti−1 = KReti−αti−1 ≤ KRet0 ≤ 1

2
e

3
2 t0 .

Now, since |Γi| is a Poisson variable, Lemma 2.4 says that

P
(
|Γi| ≥ e

3
2 t0
)
≤ e−e

3
2
t0/8.

Therefore,

P
(
ER ∩

{
∃i ∈ {0, . . . , imax } , ∃k ∈

{
1, . . . , kimax

}
, |V ∩ Li ∩ Bi,k| ≥ e

3
2 t0
})

≤
imax∑
i=0

⌈
1

2cRθi,i

⌉
P
(
|Γi| ≥ e

3
2 t0
)

≤
imax∑
i=0

1

cR
e
R
2 −tie−e

3
2
t0/8 ≤ eR/2−e

3
2
t0/8,

which tends to 0 as R goes to infinity.
Finally, a.a.s., for any i ≥ 0 and any v ∈ V ∩ Li, the cardinality of CCv satisfies

|CCv| ≤ max
u∈V ∩Li

|Cu| max
k≤kimax

|V ∩ Li ∩ Bi,k| ≤ 2Ke
t0+ti

2 e
3
2 t0 = 2Ke2t0+ 1

2 ti ,

and the lemma follows by choosing K2 = 2K.

Proof of Theorem 1.1. According to Lemma 4.3, there is a constant K2 > 0 such that, a.a.s.

max
v∈V
|Conn(v)| ≤ max

v∈V
|CCv| ≤ K2e

2t0+ 1
2 timax ≤ e2t0+ tmax+3 logR

2 = e
R
4α+( 8α

α−1 + 3
2 ) logR. (4.2)

By Lemma 4.1 we obtain the upper bound for |L1| in the theorem.
For the lower bound, by Lemma 2.3, for any function ω tending to infinity with n arbitrarily slowly,

µ(BO(rmax + ω)) � 1/n, and hence a.a.s. we find a vertex v with tv ≥ tmax − ω. In such case, the
degree of v is, by Lemma 2.5, s a.a.s. between c1e

1
2 (tmax−ω)) and c2e

1
2 (tmax−ω)) (for some constants

c1 < c2), and thus, a.a.s. of the order n
1

2α+o(ω/n). The degree of a vertex is a lower bound on the size
of its component, and hence Theorem 1.1 follows.
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