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Abstract. Given a network together with a set of connection requests,
call admission control is the problem of deciding which calls to accept
and which ones to reject in order to maximize the total profit of the
accepted requests. We consider call admission control problems with ad-
vance reservations in star networks. For the most general variant we
present a constant-factor approximation algorithm resolving an open
problem due to Erlebach. Our method is randomized and achieves an
approximation ratio of 1/18. It can be generalized to accommodate call
alternatives, in which case the approximation ratio is 1/24. We show
how our method can be derandomized. In addition we prove that call
admission control in star networks is APX -hard even for very restricted
variants of the problem.

1 Introduction

Call admission control (CAC) is a fundamental problem in the operation of
communication networks. In its general form each connection request (call) has a
certain bandwidth requirement and some time specification given by its starting
time and its duration. If the network establishes a call, it first decides on a path
from the sender to the receiver through which the call is being routed. Then it
allocates the requested amount of bandwidth on all links along that path during
the time period in which the call is active. In addition, each call is associated
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�� Supported by the joint Berlin/Zürich graduate program Combinatorics, Geometry,
and Computation (CGC), financed by the German Science Foundation (DFG) and
ETH Zürich.
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with some profit, which is gained by the network provider only if the desired
connection is established. CAC is the problem of deciding which calls to accept
and which to reject with the goal of maximizing the total profit accrued by the
accepted requests.

In this paper we consider CAC problems in star networks with advance reser-
vations. In star networks there is always a unique path for each sender–receiver
pair, and the routing issue mentioned above is trivial. Advance reservation means
that resources are requested in advance of when they are really needed. In this
setting the decision of acceptance or rejection of calls does not have to be made
on-line, i.e., immediately when a new call arrives, but can be made off-line. The
network can collect incoming requests over some period of time and then decide
for the set of collected calls which of them to accept and which to reject. Ad-
vance reservations are therefore helpful for the network in optimizing its CAC
decisions.

We also deal with call alternatives. In this scenario the user can specify several
alternative requests for a connection to be established. The network can either
accept exactly one of the call alternatives, or reject a call completely by rejecting
all its alternatives. By specifying several alternatives the user can increase the
chances that the network accepts the call.

Problem Definition. A star network consists of a set of outer nodes, each of
which is connected exclusively to a unique center node. It is modeled by a simple,
undirected graph G = (V, E), whose vertex set V = {0, 1, . . . , n} represents the
nodes of the network with vertex 0 being the center node. The edge set E consists
of the edges ei = {i, 0} for i = 1, . . . , n corresponding to the links in the star
network that connect an outer vertex i to the center node 0. The capacities of
the links are given as a capacity function c : E �→ R+ that maps each edge e ∈ E
to a positive capacity c(e).

A connection request or call i is specified by a tuple (ui, vi, ti, di, bi, pi) con-
sisting of a source node ui ∈ V , a destination node vi ∈ V , a starting time
ti ∈ N, a duration di ∈ N, a positive bandwidth requirement bi ∈ R+, and a
profit pi ∈ R. For a set R of connection requests, a solution is a subset Q ⊆ R
of accepted calls. It is feasible if the sum of bandwidth requirements of simul-
taneously active calls using the same edge does not exceed the capacity of that
edge:

∀e ∈ E : ∀t ∈ N :
∑

i∈Q(e,t)

bi ≤ c(e),

where Q(e, t) is the set of accepted calls that use the edge e at time t. Our goal
is to compute a feasible solution that maximizes the sum

∑
i∈Q pi of profits of

the accepted calls. We refer to this problem as the general call admission control
problem in star networks, or GCA in stars for short.

GCA in stars is an NP-hard problem. If we drop the time specifications of
the calls and restrict the network to consist of a single edge only, it is equivalent
to the Knapsack problem, which is known to be NP-hard [12]. Therefore,
we are interested in finding good approximate solutions. A feasible solution for
GCA is called a ρ-approximation, ρ ≤ 1, if its total profit is at least a ρ-fraction
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of the profit of an optimal solution. An algorithm is called a ρ-approximation
algorithm if it runs in polynomial time and always outputs a ρ-approximation.
The parameter ρ is called the approximation ratio of such an algorithm.

Motivation. A lot of work on CAC considered the scenario that a connection
request is presented to the network only at the time when the connection should
be established. This model ignores the possibility that resources might be re-
quested ahead of time when they are needed. A natural concept to incorporate
this possibility is advance reservation [13, 18], which is attractive for both the
network provider and the users. The network provider has the advantage of a
higher flexibility and can use better algorithms to maximize the profit gained
from the accepted calls. The user benefits from a guaranteed quality of service
(QoS) once his/her call is accepted.

If we omit the time specification of the calls, GCA contains the maximum
edge-disjoint paths (MEDP) problem as a special case (see [16] for more on this
problem). Since already the MEDP problem is hard to approximate in general
directed graphs [14], it is natural to restrict the network topology to simpler
classes. In this paper we restrict ourselves to star networks. Although star net-
works are a very restricted class of networks, we note that with the results we
present in this paper, star networks are now the most general class of networks
for which a constant-factor approximation algorithm for GCA is known; even
for line networks, i.e., networks consisting of a single path, the existence of a
constant-factor approximation algorithm is an open problem (GCA in lines in-
cludes the maximum independent set problem in rectangle intersection graphs
as a special case; see [5] for the best known approximation results for the latter
problem).

Interestingly, CAC algorithms for star networks apply to general networks if
the provider has rented the capacity of his/her network from another provider
according to the hose model of bandwidth reservations. In the hose model [9],
one requests a logical network connecting a set of terminal nodes and specifies for
each terminal node the maximum rates at which traffic will ever be transmitted
or received by that node. The provider has to reserve sufficient capacity for the
logical network to ensure that any traffic matrix consistent with the specifications
can be accommodated. Therefore, with respect to the available bandwidth, the
logical network behaves like a star network with the terminal nodes as outer
nodes. Thus, if a provider of a video-on-demand system, say, has rented capacity
for the distribution network according to the hose model, the handling of advance
reservations for video transmissions leads naturally to the problem of GCA in
star networks.

It is an important task to investigate CAC problems with arbitrary capacities
on the links of the network. For line networks, for example, there is a constant-
factor approximation algorithm in the case of uniform capacities on the edges
and no time specifications for the calls [3]. However, if we allow arbitrary edge ca-
pacities and assume no restrictions on the bandwidth requirements, no constant-
factor approximation algorithm is known so far. Constant-factor approximations
for this problem are known only under the “no-bottleneck” assumption, which
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requires that the maximum bandwidth requirement is not larger than the mini-
mum edge capacity [7, 8].

Similarly, for star networks there is a constant-factor approximation algo-
rithm for GCA with unit edge capacities, and only a logarithmic approximation
for the case of arbitrary edge capacities. These algorithms were presented in a
paper of Erlebach [11], who raised the open question whether there is a constant-
factor approximation algorithm for GCA in stars.

Our Results. We resolve this open question by presenting the first constant-
factor approximation algorithm for GCA in star networks. Our method is ran-
domized and achieves an approximation ratio of 1/18. It is fast, because it does
not involve linear programming. Instead, our algorithm is based on the local
ratio technique of [3] and can easily be derandomized. We can also modify our
algorithm to handle call alternatives and obtain a 1/24-approximation algorithm
for this case. On the other hand, we prove that GCA in stars is APX -hard even
for very restricted versions of the problem.

Related Work. Many authors have investigated CAC problems for various
network topologies in the on-line and off-line setting. In the on-line scenario
each request must be accepted or rejected immediately without knowing the
future events. We refer to [17, 6] for surveys about on-line CAC algorithms.

GCA for various network topologies is studied in a paper by Erlebach [11].
For trees and trees of rings with unit edge capacities he presents constant-factor
approximation algorithms for CAC without time specifications for the calls. For
star networks he obtains a 1/10-approximation algorithm both for GCA with-
out time specifications and for GCA with unit edge capacities. For GCA in
stars with arbitrary edge capacities he achieves a 1/O(log R)-approximation al-
gorithm, where R is the ratio of the maximum edge capacity to the minimum
edge capacity. All these algorithms are obtained by first solving a linear pro-
gramming relaxation and then decomposing the optimal fractional solution into
a convex combination of integral solutions. The output of the algorithm is the
best of the integral solutions obtained this way.

Bar-Noy et al. [3] extend the so-called local ratio technique [4] to resource
allocation and scheduling problems. They obtain a 1

5 -approximation algorithm
for GCA on a single link. Their approach is also used by Lewin-Eytan et al. [18]
to obtain results for lines, rings, and trees. For trees with unit edge capaci-
ties, they present a 1

5 -approximation for GCA without time specifications and
a 1/O(log m)-approximation algorithm for GCA, where m is the number of re-
quests.

2 Preliminaries: The Local Ratio Technique

Our approximation algorithm is based on the local ratio technique, which was
developed by Bar-Yehuda and Even [4] and first used in our context by Bar-
Noy et al. [3]. The general framework can be described as follows. Assume that
we are given a profit vector p ∈ Rn and a set F of feasibility constraints on
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vectors x ∈ Rn. A vector x ∈ Rn is a feasible solution for the problem (F ,p)
if it satisfies all the constraints in F . The value of a feasible solution x is the
inner product p · x. For a maximization problem, a feasible solution x is an r-
approximation if p ·x ≥ r ·p ·x∗, where x∗ is an optimal solution, i.e., a solution
whose value is maximal among all feasible solutions. The power of the technique
is based on the following theorem.

Theorem 1. (Local Ratio [4, 3]) Let F be a set of constraints and let p, p′ and
p′′ be profit vectors such that p = p′ +p′′. Then, if x is an r-approximation with
respect to (F ,p′) and with respect to (F ,p′′), then x is an r-approximation with
respect to (F ,p).

For computing approximate solutions we will use the so-called unified algorithm
proposed in [3]. We generalize our problem by allowing negative profits as well.

The Unified Algorithm:

1. Delete all calls with non-positive profit.
2. If no calls remain, return Q = ∅.
3. Otherwise, select a call i and decompose p = p′ + p′′. The choice of i and

the decomposition depends on the problem at hand. For the GCA problem,
we will always select i as a call with minimum end-time ti +di, breaking ties
arbitrarily.

4. Solve the problem recursively using p′′ as the profit vector. Let Q′′ be the
set returned.

5. If Q′′ ∪ {i} is a feasible solution, return Q = Q′′ ∪ {i}. Otherwise, return
Q = Q′′.

The decomposition of p into p′ and p′′ in step 3 will be specified separately for
each problem to which we apply the algorithm.

We call a feasible solution i-maximal if it either contains the call i, or it does
not contain the call i, but adding i to the solution will render it infeasible. The
following lemma analyzes the quality of the solution produced by the algorithm.

Lemma 1. ([3]) Let r be a constant. Suppose that in the algorithm above the
choice of i and the decomposition p = p′ + p′′ is always such that: (1) p′′

i = 0,
and (2) every i-maximal solution is an r-approximation with respect to p′. Then,
the algorithm terminates and the solution Q produced is an r-approximation with
respect to p.

Proof. First note that since p′′
i = 0, the call i will be deleted in the recursive call,

and the algorithm will eventually terminate. Because the deletion of calls with
non-positive profit in step 1 does not change the optimum value, it is sufficient
to show that Q is an r-approximation with respect to the remaining calls. Since
Q is i-maximal, the condition (2) implies that Q is an r-approximation with
respect to p′. It remains to show that Q is also an r-approximation with respect
to p′′ (and then apply the local ratio theorem). We proceed by induction on
the number of recursive calls of the algorithm. At the basis of the recursion,
the algorithm returns the empty set, since no calls remain. This is clearly an
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optimal solution and, hence, also an r-approximation. For the induction step,
assume that Q′′ is an r-approximation with respect to p′′. Since p′′

i = 0 and Q is
either Q′′ or Q′′ ∪{i}, it follows that Q is an r-approximation with respect to p′′

as well. By the local ratio theorem (Theorem 1), Q is also an r-approximation
with respect to p. 
�

By Lemma 1 we only need to find a constant r > 0 such that every i-maximal
solution is an r-approximation with respect to p′. To do so, we will derive an
upper bound popt on the optimum p′-profit and a lower bound pmax on the
p′-profit of every i-maximal solution. The ratio r = pmax/popt is then a lower
bound on the approximation ratio of the algorithm.

3 Constant-Factor Approximation for GCA in Stars

In this section we present a 1/18-approximation algorithm for GCA in star net-
works. Without loss of generality, we can assume that every call in the set R
uses exactly two edges. We partition the calls in R into three classes according
to their bandwidth requirements. Consider a call i ∈ R and denote by e and f
the edges that it uses. We classify the call i to be

– a small call, if it uses at most half of the capacity on both of its edges, i.e.,
bi ≤ c(e)/2 and bi ≤ c(f)/2,

– a big call, if it uses more than half of the capacity on both of its edges, i.e.,
bi > c(e)/2 and bi > c(f)/2,

– a mixed call, otherwise.

We denote the set of small, big, and mixed calls by Rsmall, Rbig, and Rmixed,
respectively. We give a constant-factor approximation for each of the three
classes. The algorithm for the original problem is then as follows. Partition the
calls in R into the three classes and solve the problem for each of the classes
separately. Output the solution with the largest profit among the three solutions
for the classes.

Small Calls. We approximate this set using the unified algorithm from above.
Let i be the call with minimum end-time ti + di selected by the algorithm in
step 3 and denote by e and f the edges that call i uses, such that c(e) ≤ c(f).
We decompose the profit function p = p′ + p′′ by defining p′ according to

p′
j = pi ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if j = i,

α · (c(f) − bi) · bj if i and j intersect on edge e at time ti + di,

α · (c(e) − bi) · bj if i and j intersect only on edge f at time ti + di,

0 otherwise,

where α is a parameter that will be determined later. Note that p′′
i = 0. The

values of the profit function p′′ = p − p′ may be non-positive.

Lemma 2. The set of small calls admits an approximation ratio of 1/4.
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Proof. Due to Lemma 1 it suffices to show that every i-maximal solution is a
1/4-approximation with respect to p′. Let Q∗ be a p′-optimal solution. In case
i is not in Q∗, the contribution of other calls in Q∗ using edge e is at most
pi · α · (c(f) − bi) · c(e), since the total bandwidth of all these calls intersecting
at time ti + di is at most c(e). Likewise the contribution on edge f is at most
pi · α · (c(e) − bi) · c(f). In case i belongs to Q∗, the call i adds pi to the p′-profit
of Q∗, and uses bi of the capacity of the edges e and f . The contribution of other
calls in Q∗ to the p′-profit is then at most pi · α · (c(f) − bi) · (c(e) − bi) on edge
e, and pi · α · (c(e) − bi) · (c(f) − bi) on edge f .

If we set X = (c(f) − bi) · (c(e) − bi), then the p′-profit of Q∗ is at most

pi · max{α · (c(f) − bi) · c(e) + α · (c(e) − bi) · c(f), 1 + 2 · α · X}.

To derive a lower bound on the p′-value of an i-maximal solution Q, we
distinguish two cases. If the call i is in Q, it contributes pi itself. Thus the p′-
profit of Q is at least pi. Otherwise, the call i is blocked by other calls in Q.
This means that the total bandwidth of the calls preventing call i from being
accepted must be greater than c(e) − bi on edge e or greater than c(f) − bi on
edge f , respectively. Hence, the p′-profit of the blocking calls is at least pi ·α ·X
(no matter on which of the edges e or f the call i is blocked). The minimum
pi · min{1, α · X} of both expressions is a lower bound on the p′-value of every
i-maximal solution. Altogether, the approximation ratio r is given by

r =
min{1, α · X}

max{α · (c(f) − bi) · c(e) + α · (c(e) − bi) · c(f), 1 + 2 · α · X} ,

which for α = 1
X = 1

(c(f)−bi)·(c(e)−bi)
gives r = 1/ max

{
c(e)

c(e)−bi
+ c(f)

c(f)−bi
, 3

}
.

Finally, the fact that i is a small call, i.e., bi ≤ c(e)/2 and bi ≤ c(f)/2, implies
that r is at least 1/4. 
�
Big Calls. In the case of big calls, no two calls using the same edge simultane-
ously can be in a feasible solution. Therefore we may assume that bj = 1 for all
big calls j and that c(e) = 1 for all edges e ∈ E. To define the decomposition
p = p′ + p′′, we set p′ to be

p′
j = pi ·

{
1 if j = i or i and j intersect at time ti + di,

0 otherwise.

The proof of the following lemma is similar to (but easier than) the proof of
Lemma 2.

Lemma 3. The set of big calls admits an approximation ratio of 1/2.

Mixed Calls. Mixed calls use at most half of the capacity of one of their two
edges, and need more than half of the capacity of the other edge. They cause
the logarithmic factor in the approximation ratio shown by Erlebach in [11]. We
briefly sketch the reason for this. Erlebach defines mixed calls as calls using at
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most 1/3 of the capacity of one of their edges and more than 1/2 of the capacity
of the other. For an edge e, some mixed calls using e may use at most 1/3 of the
capacity of e, while others may use more than 1/2. For a call using at most 1/3
of the capacity of edge e, Erlebach [11] has to argue about the second edge f
used by this call; on that edge f , the call uses more than half of the capacity. If
there is another call using at most 1/3 of the capacity of that edge f , he has to
argue about the second edge of that call, and so on. The capacity of the edges
considered in this chain of arguments decreases by a factor of 2/3 in each step;
thus the number of steps is O(log R), where R is the ratio of the maximum to
the minimum edge capacity, and this factor enters into the approximation ratio.

Here, we present a randomized procedure to approximate the mixed calls
within a constant factor of the optimum. Our method can easily be derandom-
ized, as we will discuss later on. We perform the following random experiment
on the star network. Every outer node v ∈ {1, . . . , n} is put independently with
probability 1/2 in a set A and with probability 1/2 in a set B. Then we consider
only those mixed calls that have one endpoint in the set A and the other end-
point in the set B. We denote this set of calls by RA,B . The probability that a
mixed call belongs to RA,B is exactly 1/2. This implies that the expected profit
of an optimal solution for the set RA,B is at least half the profit of an optimal
solution for all mixed calls. Hence, we lose only a factor of 2 in expectation.

After this random experiment, all calls in RA,B connect a vertex in A with
a vertex in B. For a call i ∈ RA,B , let e(i) denote the edge of the path of i
connecting its endpoint in A with the center node 0, and let f(i) denote the edge
of the path between the center node and its endpoint in B. We further partition
the calls in RA,B according to their bandwidths. If a mixed call i ∈ RA,B uses
more than half of the capacity of the edge e(i) (and at most half of the capacity
of the edge f(i)), we put the call i in the set RA. Otherwise, we put the call
i in the set RB . By considering RA and RB separately, we avoid the problem
encountered in the analysis in [11], i.e., we do no longer have to deal with mixed
calls occupying a large fraction and those occupying a small fraction of the
capacity of the same edge at the same time.

Lemma 4. Each of the sets RA and RB admits an approximation ratio of 1/3.

Proof. To approximate the sets RA and RB we again use the unified algorithm.
For the set RA we decompose p = p′ + p′′ by specifying p′ to be

p′
j = pi ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if j = i,

α/2 if i and j intersect on edge e(i) at time ti + di,

α · bj

c(f(i)) if i and j intersect only on edge f(i) at time ti + di,

0 otherwise.

A p′-optimal solution accepts on edge e(i) either the call i with p′-profit pi or
one other call that intersects call i on the edge e(i) and gives profit pi · α/2.
On the edge f(i) the total bandwidth of accepted calls is bounded by c(f(i)),
yielding a bound of pi · α on the optimal p′-profit on that edge. An i-maximal
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solution contains either the call i with p′-profit pi or is blocked by calls with
profit at least pi · α/2. Hence, the approximation ratio r is given by

r =
min{1, α/2}

max{1, α/2} + α
,

which, for α = 2, gives r = 1/3.
By symmetry, the set RB can be approximated with the same ratio. 
�
After approximating both sets RA and RB by the unified algorithm, we

output the solution that has a larger profit.

Corollary 1. The set of mixed calls admits an approximation ratio of 1/12.

Proof. The larger solution for the sets RA and RB has profit at least 1/6 times
the profit of an optimal solution for the set RA,B , which, in expectation, is a
factor 1/2 away from the optimal solution for all mixed calls. 
�

We have approximation ratio 1/4, 1/2, and 1/12 for the small calls, big calls,
and mixed calls, respectively. As our algorithm outputs the solution with largest
profit among the three individual solutions, we obtain the following theorem.

Theorem 2. The above algorithm is a 1/18-approximation algorithm for GCA
in stars.

3.1 Derandomization

The random process for filtering the mixed calls can be derandomized by reduc-
ing the size of the sample space. We refer to [1–Chapter 15] for an overview. In
the analysis of our randomized algorithm, we used two properties of our random
assignment. Firstly, the probability that a node v is assigned to the set A is 1/2,
and secondly the pairwise independence of the events, which guarantees that
each call “survives” the experiment (i.e., its two endpoints are put into different
sets) with probability 1/2.

We employ a linear-size sample space that preserves these two properties. If
we choose assignments uniformly at random from this sample space, our previous
analysis remains valid. Thus, if we exhaustively search the sample space, we are
guaranteed to find an assignment of nodes to the sets A and B such that the
profit of an optimal solution for calls in RA,B is at least half the profit of an
optimal solution for all mixed calls. The construction of the linear-size sample
space is omitted due to space limitations.

3.2 Call Alternatives

Our approximation algorithm can be generalized to accommodate alternatives
for the calls with only a slight decrease of the approximation ratio. Call alterna-
tives allow the specification of several alternatives for establishing a connection
request. For example, a connection can be established either from 8:00 a.m. to
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11:00 a.m. gaining profit p1 or from 2:00 p.m. to 4:00 p.m. with profit p2. We
allow all parameters (including source node, destination node, and bandwidth
requirement) of different alternatives of a call to be different. A solution obeying
the capacity constraints is feasible if it contains at most one of the alternatives
per call. The goal is to find the feasible solution with the largest profit. For this
generalized problem, we use exactly the same algorithm as above and change
only the decomposition of the profit function in the unified algorithm for each
class of calls. In this case, the approximation ratios for the set of small calls, big
calls, and mixed calls become 1/5, 1/3, and 1/16, respectively. This leads to the
following theorem.

Theorem 3. GCA in stars with call alternatives admits an approximation ratio
of 1/24.

4 APX -Hardness

In this section we prove that already a very restricted variant of the general
call admission control problem in stars is APX -hard. The problem variant we
consider is the following. We are given a star network with unit capacity on
every edge, and a set R of calls. Each call i is associated with a starting time
ti ∈ {0, 1, 2}, has unit profit, and needs one unit of bandwidth on its edges. Every
call i has duration di = 2. The goal is to compute a feasible subset Q ⊆ R of
maximum cardinality. In the following we refer to this problem variant as Star-
GCA-simple, because many parameters of the general version are simplified
by fixing them to be small constants. A set Q ⊆ R is a feasible solution for
Star-GCA-simple if at most one path per edge is active at any time.

We remark that the cases with one or two different starting times can be
solved optimally in polynomial time (still assuming that all calls have the same
duration). To see this, note that a maximum cardinality subset among a given
set of calls that overlap in time can be obtained using a maximum matching
computation [10, 19] in the graph with an edge {u, v} for every request with
endpoints u and v. This settles the case of one starting time. If there are two
different starting times, either all calls overlap in time or the problem decomposes
into two instances on disjoint time intervals.

If we allow three or more different starting times, the restricted variant of gen-
eral call admission in star networks becomes difficult to solve, which is expressed
in the next theorem.

Theorem 4. The problem Star-GCA-simple is APX -hard.

Corollary 2. GCA in stars is APX -hard.

In particular, Theorem 4 implies that there is no polynomial-time approxi-
mation scheme for the restricted and its more general variants unless P = NP.
Thus, the constant-factor approximations we have presented are best possible
(except possibly for the constants) in this sense.
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We will prove the theorem by an approximation preserving reduction, which
is defined as follows [2].

Definition 1 (AP -reduction). Let P1 and P2 be two optimization problems in
NPO. For a solution y to an instance x of Pi, let ratioPi(x, y) denote the ratio
between the value of an optimal solution to x and the value of y (or the reciprocal
of this ratio, whichever is larger than 1). The problem P1 is called AP -reducible
to P2 if two functions f and g and a positive constant α > 1 with the following
properties exist:

(i) For any instance x of P1 and for any rational r > 1, f(x, r) is an instance
of P2.

(ii) For any instance x of P1 and for any rational r > 1, if there is a solution to
x, then there is also a solution to f(x, r).

(iii) For any instance x of P1, for any rational r > 1, and for any solution y to
f(x, r), g(x, y, r) is a solution to x.

(iv) f and g are computable in polynomial time for any fixed rational r.
(v) For any instance x of P1, for any rational r > 1, and for any solution y to

f(x, r), ratioP2(f(x, r), y) ≤ r implies ratioP1(x, g(x, y, r)) ≤ 1 + α(r − 1).

The properties (i)-(iv) ensure that there are polynomial time transformations
f and g that map instances of P1 to instances of P2 and solutions for instances
of P2 back to solutions for the original instance of P1, respectively. The heart
of the AP -reduction is given by property (v), which intuitively says that an
r-approximation algorithm for P2 implies the existence of a (1 + α(r − 1))-
approximation algorithm for P1.

In the sequel we present an AP -reduction from the maximum 3-dimensional
matching problem, which is defined as follows: Given a set D ⊆ X × Y × Z,
where X, Y and Z are disjoint sets, the goal is to find a matching M ⊆ D for D
of maximum cardinality, i.e., a largest set M ⊆ D such that no two elements in
M agree in any coordinate. The maximum 3-dimensional matching problem is
known to be APX -complete even if each of the elements in X, Y and Z occurs
in at most three triples in D [15]. We refer to this problem as the bounded
maximum 3-dimensional matching problem.

In this bounded version of the problem, each triple can intersect at most six
other triples, which implies that the maximum matching contains at least |D|/7
triples. Moreover, the following lemma is easy to prove.

Lemma 5. There is a greedy procedure that computes a 1/3-approximation for
the bounded maximum 3-dimensional matching problem.

Let D ⊆ X × Y × Z be an instance of the maximum 3-dimensional matching
problem. The function f of the AP -reduction is given by the following construc-
tion of an instance of Star-GCA-simple. It does not depend on the parame-
ter r.

Let vertex 0 be the center vertex of the star. For every element xi ∈ X, we add
the vertex xi to the star and connect it to vertex 0 by an edge {xi, 0}. We do the
same for every yi ∈ Y and for every zi ∈ Z. For each triple dj = (xj , yj , zj) ∈ D,
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dj,1
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dj,3
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zj

r1
r2

r3

r4
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Fig. 1. The building block for a triple dj = (xj , yj , zj)

we add three more vertices dj,1, dj,2, and dj,3 to the star and connect them to
the center by the three edges {dj,1, 0}, {dj,2, 0}, and {dj,3, 0}. In addition, we
add the following 5 requests to R (see Figure 1):
– r1 = (dj,1, dj,2) with interval [0, 2) – r2 = (dj,2, dj,3) with interval [2, 4)
– r3 = (dj,1, xj) with interval [1, 3) – r4 = (dj,2, yj) with interval [1, 3)
– r5 = (dj,3, zj) with interval [1, 3)

Note that the dotted request r1 and the dashed request r2 have disjoint time
intervals, whereas the solid requests r3, r4, and r5 do not share any edge. The
idea behind this is the following. For every triple di ∈ D, a solution either accepts
the two request r1 and r2 without affecting any edge connecting a vertex from
the sets X, Y, Z to the center, but blocking the requests r3, r4 and r5, or it
accepts the three requests r3, r4 and r5 at the price of blocking all three edges
connecting the center to the elements of the triple di. More than three requests
per triple are not feasible.

Lemma 6. Let D ⊆ X × Y × Z be an instance of the maximum 3-dimensional
matching problem, and let (G, R) be the corresponding instance of Star-GCA-
simple defined above. There is a feasible solution for (G, R) that accepts 2|D|+k
requests if and only if D has a matching of size k.

Proof. Suppose there is a feasible solution Q for the instance (G, R) of size
2|D|+k. Since no more than three requests in Q belong to the same triple, there
are at least k triples for which three requests are in Q. The only possibility for
one triple di = (xi, yi, zi) to have three of its requests accepted is the choice
that accepts the three requests containing the vertices xi, yi and zi. But then
these vertices are blocked for the requests of all other triples. The feasibility of
Q implies that all k triples are disjoint. Hence, they form a matching of size k.

Conversely, if there is a matching M ⊆ D of size k, we can construct a feasible
solution Q for the instance (G, R) as follows. For every triple di ∈ M , put the
three requests r3, r4 and r5 into Q. Since the triples in M are disjoint, Q is
feasible so far. For each of the remaining triples in D \M , we can safely add the
two requests r1 and r2 to Q without creating any conflict. Thus, Q is feasible by
construction, and consists of 2|D| + k requests. 
�
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The function g of the AP -reduction takes as arguments the instance D of
the bounded maximum 3-dimensional matching problem, a solution Q of the
instance (G, R) and the parameter r, which will not be used. It first computes a
solution M1 for the instance D using the greedy procedure of Lemma 5. Secondly,
it composes a matching M2 out of the accepted requests in the solution Q.
Whenever all three requests r3, r4 and r5 corresponding to some triple di ∈ D
are in Q, it adds the triple di to the matching M2. The value of g(D, Q, r)
is given by the larger of the two matchings M1 and M2. Thus, |g(D, Q, r)| =
max{|M1|, |M2|}. In addition, we have |M1| ≥ |M∗|/3 by Lemma 5, where M∗

is a maximum matching for D, and |M2| ≥ |Q| − 2|D| by Lemma 6.
So far the properties (i) – (iv) of the AP -reduction have been shown to be

satisfied, and we will now show that property (v) holds with α = 43. Therefore,
let M∗ be a maximum matching for the instance D. Then by Lemma 6 an
optimal solution Q for (G, R) consists of |M∗| + 2|D| requests. Assume that we
have an r-approximation for (G, R), that is a solution Q that contains at least
(|M∗| + 2|D|)/r requests.

If r ≥ 45/43, the inequality |g(D, Q, r)| ≥ |M1| ≥ |M∗|/3 shows that g
computes a 1/3-approximation. Since 3 = 1+43(45

43 −1) ≤ 1+43(r−1), property
(v) with α = 43 holds in this case.

Otherwise r < 45/43. From |Q| ≥ (|M∗| + 2|D|)/r, we get

|Q| ≥ 2r|D| + |M∗| − 2(r − 1)|D|
r

= 2|D| +
|M∗| − 2(r − 1)|D|

r

≥ 2|D| +
|M∗|(1 − 14(r − 1))

r
,

where we used |D| ≤ 7|M∗| (which holds in the bounded version) in the last
inequality. As |g(D, Q, r)| ≥ |M2| ≥ |Q| − 2|D| ≥ (1 − 14(r − 1))|M∗|/r, we get
that ratioP1(D, g(D, Q, r)) is at most

|M∗|
(1 − 14(r − 1))|M∗|/r

= 1 +
15

15 − 14r
(r − 1) ≤ 1 + 43(r − 1),

where the last inequality holds for 1 < r < 45/43. Again, property (v) is fulfilled
with α = 43, which completes the proof of the theorem.
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