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ABSTRACT. We show that a randomly chosen 3-CNF formula over n variables with clauses-to-
variables ratio at least 4.4898 is asymptotically almost surely unsatisfiable. The previous best such
bound, due to Dubois in 1999, was 4.506. The first such bound, independently discovered by many
groups of researchers since 1983, was 5.19. Several decreasing values between 5.19 and 4.506 were
published in the years between. The probabilistic techniques we use for the proof are, we believe, of
independent interest.

1 Introduction

Satisfiability of Boolean formulas is a problem universally believed to be hard. Determin-
ing the source of this hardness will lead, as is often stressed, to applications in domains
even outside the realm of mathematics or computer science; moreover, and perhaps more
importantly, it will enhance our understanding of the foundations of computing.

In the beginning of the 90’s several groups of experimentalists chose to examine the
source of this hardness from the following viewpoint: consider a random 3-CNF formula
with a given clauses-to-variables ratio, which is known as the density of the formula. What
is the probability of it being satisfied and how does this probability depend on the density?
Their simulation results led to the conclusion that if the density is fixed and below a number
approximately equal to 4.27, then for large n, a randomly chosen formula is almost always
satisfiable, whereas if the density is fixed and above 4.27, a randomly chosen formula is,
for large n, almost always unsatisfiable. More importantly, around 4.27 the complexity of
several well known complete algorithms for checking satisfiability reaches a steep peak (see
e.g. [10, 15]). So, in a certain sense, 4.27 is the point where from an empirical, statistical
viewpoint the “hard” instances of SAT are to be found. Similar results were obtained for
other combinatorial problems, and also for k-SAT for values of k > 3.
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These experimental results were followed by an intense activity to provide “rigorous
results” (the expression often used in this context to refer to theorems). Perhaps the most
important advance is due to Friedgut: in [7] he proved that there is a sequence of reals (cn)n
such that for any ε > 0 the probability of a randomly chosen 3-CNF-formula with density
cn − ε being satisfiable approaches 1 (as n → ∞), whereas for density cn + ε, it approaches
0. Intuitively, this means that the transition from satisfiability to unsatisfiability is sharp,
however it is still not known if (cn)n converges.

Despite the fact that the convergence of (cn)n is still an open problem, increasingly
improved upper and lower bounds on its terms have been computed in a rigorous way by
many groups of researchers. The currently best lower bound is 3.52 [9, 2].

With respect to upper bounds, which is the subject of this work, the progress was
slower but better, in the sense that the experimentally established threshold is more closely
bounded from above, rather than from below. A naı̈ve application of the first moment
method yields an upper bound of 5.191 (see e.g., [6]). An important advance was made
in [8], where the upper bound was improved to 4.76. In the sequel, the work of several
groups of researchers, based on more refined variants of the first moment method, culmi-
nated in the value of 4.571 [4, 11] (see the nice surveys [12, 3] for a complete sequence of
the events). The core idea in these works was to use the first moment method by comput-
ing the expected number of not all satisfying truth assignments, but only of those among
them that are local maxima in the sense of a lexicographic ordering, within a degree of local-
ity determined by the Hamming distance between truth assignments (considered as binary
sequences). For degree of locality 1, this amounts to computing the expected number of sat-
isfying assignments that become unsatisfying assignments by flipping any of their “false”
values (value 0) to “true” (value 1). Such assignments are sometimes referred to as single-flip
satisfying assignments.

The next big step was taken by Dubois et al. [5], who showed that 4.506 is an upper
bound. Instead of considering further variations of satisfiability, they limited the domain
of computations to formulas that have a typical syntactic characteristic. Namely, they con-
sidered formulas where the cardinality of variables with given numbers of occurrences as
positive and negative literals, respectively, approaches a two dimensional Poisson distri-
bution. Asymptotically almost all formulas have this typical property (we say that such
formulas have a Poisson 2D degree sequence). It turns out that the expectation of the number
of single-flip satisfying assignments is exponentially reduced when computed for such for-
mulas. To get the afore mentioned upper bound, Dubois et al. further limited the domain of
computations to formulas that are positively unbalanced, i.e. formulas where every variable
has at least as many occurrences as a positive literal as it has as a negated one.

A completely different direction was recently taken in [13]. Their work was motivated
by results on the geometry of satisfying assignments, and especially the way they form clus-
ters (components where one can move from one satisfying assignment to another by hops
of small Hamming distance). Most of these results were originally based on analytical, but
non-rigorous, techniques of Statistical Physics; lately however important rigorous advances
were made [1, 14]. The value of the upper bound obtained by Maneva and Sinclair (see [13])
was 4.453, far below any other upper bound presently known (including the one in this pa-
per). However it was proved assuming a conjecture on the geometry of the satisfying truth
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assignments which is presently proved only for k-SAT for k ≥ 8 in [1].
In this paper, we show that 4.4898 is an upper bound. Our approach builds upon pre-

vious work. It makes use (i) of single-flip satisfying truth assignments, (ii) of formulas with
a Poisson 2D degree sequence and (iii) of positively unbalanced formulas.

We add to these previously known techniques two novel elements that when combined
further reduce the expectation computed. Our approach is rigorous: although we make use
of computer programs, the outputs we use are formally justified. What is interesting is not
that much the numerical value we get, although it constitutes a further improvement to a
long series of results. The main interest lies, we believe, on one hand in the new techniques
themselves and on the other in the fact that putting together so many disparate techniques
necessitates a delicately balanced proof structure.

First, we start by recursively eliminating one-by-one the occurrences of pure literals
from the random formula, until we get its impure core, i.e. the largest sub-formula with no
pure literals (a pure literal is one that has at least one occurrence in the formula but whose
negation has none). Obviously this elimination has no effect on the satisfiability of the for-
mula. Since we consider random formulas with a given 2D degree sequence, we first have
to determine what is the 2D degree sequence of the impure core. For this, we use the dif-
ferential equation method. The setting of the differential equations is more conveniently
carried out in the so called configuration model, where the random formula is constructed
by starting with as many labelled copies of each literal as its occurrences and then by consid-
ering random 3D matchings of these copies. The matchings define the clauses. The change
of models from the standard one to the configuration model with a Poisson 2D degree se-
quence is formalized in Lemma 2. We also take care of the fact that the configuration model
allows formulas with (i) multiple clauses and (ii) multiple occurrences of the same variable
in a clause, whereas we are interested in simple formulas, i.e. formulas where neither (i) nor
(ii) holds. For our purposes, it is enough to bound from below the probability of getting a
simple formula in the configuration model by e−Θ(n1/3 log n), see Lemma 3. The differential
equations are then analytically solved, and we thus obtain the 2D degree sequence of the
core, see Proposition 4.

Second, we require that not only the 2D degree sequence is Poisson, but also that the
numbers of clauses with none, one, two and three positive literals, respectively, are close to
the expected numbers. Notice that these expected numbers have to reflect the fact that we
consider positively unbalanced formulas. This is formalized in Lemma 5.

The expectation of the number of satisfying assignments, in the framework determined
by all the restrictions above, is computed in Lemma 6. This expectation turns out to be
given by a sum of polynomially many terms of functions that are exponential in n. We
estimate this sum by its maximum term, using a standard technique. However in this case,
finding the maximum term entails maximizing a function of many variables whose number
depends on n. To avoid a maximization that depends on n we prove a truncation result
which allows us to consider formulas that have a Poisson 2D degree sequence only for light
variables, i.e. variables whose number of occurrences, either as positive or negated literals,
is at most a constant independent of n.

Then we carry out the maximization. The technique we use is the standard one by
Lagrange multipliers. We get a complex 3× 3 system which can be solved numerically. We
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formally prove that the system does not maximize on the boundary of the system and we
make a sweep over the domain which confirms the results of the numerical solution.

Due to lack of space, all proofs are omitted or just sketched in this extended abstract. As
usual, asymptotically almost surely (a.a.s.) will mean with probability tending to 1 as n → ∞.
All asymptotic expressions as 1− o(1) are always with respect to n. Our main result in the
paper is the following:

THEOREM 1. Let γ = 4.4898 and m = bγnc. A random 3-CNF formula in Fn,m (i.e. with n
variables and m clauses, no repetition of clauses and no repetition of variables in a clause)
is not satisfiable a.a.s.

2 Background and Technical highlights.
Consider a given set of n Boolean variables, and let m = bγnc. Let Fn,m be the set of
3-CNF formulas with n variables and m clauses, where repetition of clauses or repetition
of variables in a clause is not allowed. We also denote by Fn,m the probability space of
formulas in Fn,m drawn with uniform probability. Throughout the paper, we fix the value
γ = 4.4898 and prove that for that value a random 3-CNF formula is not satisfiable with
high probability.

Throughout the paper, scaled will always mean divided by n, and a scaled natural will
be a member of 1

n N. Given a formula φ ∈ Fn,m, we define the following parameters which
depend on φ: For any i, j ∈ N, let di,j be the scaled number of variables with i positive
occurrences and j negative occurrences in φ. Then,

∑
i,j∈N

di,j = 1. (1)

The sequence d = (di,j)i,j∈N is called the degree sequence of φ. The scaled number of clauses
of φ is denoted by c, and can be expressed by

c(d) =
1
3 ∑

i,j∈N

(i + j)di,j. (2)

Note that if φ ∈ Fn,m, then c must additionally satisfy c = bγnc/n.
Given ε1 > 0 and any sequence ξ = (ξi,j)i,j∈N of nonnegative reals with ∑i,j∈N ξi,j = 1,

define

N (n, ξ, ε1) =
{

d = (di,j)i,j∈N : ∑
i,j∈N

di,j = 1,
n
3 ∑

i,j∈N

(i + j)di,j ∈ N, ∀i, j ∈ N di,jn ∈ N,

and |di,j − ξi,j| ≤ ε1, and if i > n1/6 or j > n1/6 then di,j = 0
}

.

Intuitively N (n, ξ, ε1) can be interpreted as the set of degree sequences d which are close
to the ideal sequence ξ, which in general is not a degree sequence since its entries ξi,j need
not be scaled naturals. However, if n is large enough, then N (n, ξ, ε1) 6= ∅. Now we con-
sider the 2D Poisson ideal sequence δ defined by δi,j = e−3γ(3γ/2)i+j/(i!j!). The following
lemma reflects the fact that almost all φ ∈ Fn,m have a degree sequence d which is close to
δ. A proof of an analogous result can be found in [5].
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LEMMA 2. Let d be the degree sequence of a random φ ∈ Fn,m. For any ε1 > 0, we have
that PrFn,m(d ∈ N (n, δ, ε1)) = 1− o(1).

Given a fixed degree sequence d = (di,j)i,j∈N satisfying (1) and such that c = c(d) de-
fined by (2) is also a scaled natural, we wish to generate 3-CNF formulas with that particular
degree sequence d. A natural approach to this is to use the configuration model. A configu-
ration ϕ with degree sequence d = (di,j)i,j∈N is constructed as follows: consider n variables
and the corresponding 2n literals x1, x̄1 . . . , xn, x̄n; each literal has a certain number of dis-
tinct labelled copies in a way that the scaled number of variables with i positive copies and
j negative copies is di,j; then partition the set of copies into sets of size 3, which we the call
clauses of ϕ. Let Cn,d be the set of all configurations with degree sequence d, and we also
denote by Cn,d the probability space on the set Cn,d with the uniform distribution.

A 3-CNF multi-formula is a formula with possible repetition of variables in one clause
and/or possible repetition of clauses. A simple formula is a formula in Fn,m. Let π be the
projection from Cn,d to 3-CNF multi-formulas obtained by unlabelling the copies of each
literal. A configuration ϕ ∈ Cn,d is satisfiable if φ = π(ϕ) is satisfiable. A configuration
ϕ ∈ Cn,d is simple iff φ = π(ϕ) is a simple formula, i.e. does not have repetition of variables or
clauses. Notice that the number of anti-images of a simple formula φ with degree sequence
d under π does not depend on the particular choice of φ. Hence,

PrFn,m(φ is SAT | d) = PrCn,d(ϕ is SAT | SIMPLE). (3)

We need a lower bound on the probability that a configuration is simple. The following
result gives a weak bound which is enough for our purposes.

LEMMA 3.
Let ε1 > 0 and d ∈ N (n, δ, ε1). Then

PrCn,d(SIMPLE) ≥ e−Θ(n1/3 log n),

where the e−Θ(n1/3 log n) bound is uniform for all d ∈ N (n, δ, ε1).

Given ϕ ∈ Cn,d, a pure variable of ϕ is a variable which has a non-zero number of
occurrences which are either all syntactically positive or all syntactically negative. The only
literal occurring in ϕ and all its copies are also called pure. If ϕ is satisfiable and x is a
pure variable of ϕ, then there exists some satisfying truth assignment of ϕ which satisfies
all copies of x in ϕ. Hence, in order to study the satisfiability of a ϕ ∈ Cn,d, we can satisfy
each pure variable in ϕ and remove all clauses containing a copy of that variable. For each
ϕ ∈ Cn,d, let ϕ̃ be the configuration obtained by greedily removing all pure variables and
their corresponding clauses from ϕ. This ϕ̃ is independent of the particular elimination
order of pure literals and is called the impure core of ϕ. In fact, in our analysis we will
eliminate only one clause containing one copy of a pure literal at a time (the ϕ̃ obtained still
remains the same). Note that ϕ is satisfiable iff ϕ̃ is satisfiable. Moreover, if ϕ is simple
then ϕ̃ is also simple (but the converse is not necessarily true).

Furthermore, let ϕ̂ be the configuration obtained from ϕ̃ by positively unbalancing all
variables, i.e. switching the syntactic sign of those variables having initially more negative
than positive occurrences in ϕ̃. Let Ĉn,d denote the probability space of configurations ϕ̂,
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where ϕ was chosen from Cn,d with uniform probability. Note that the probability distri-
bution in Ĉn,d is not necessarily uniform. Since the simplicity and the satisfiability of a
configuration are not affected by positively unbalancing the variables, we have

PrCn,d(ϕ is SAT ∧ SIMPLE) ≤ PrĈn,d
(ϕ̂ is SAT ∧ SIMPLE). (4)

Let the random variable d̂ be the degree sequence of a random configuration in Ĉn,d. We
prove in the following result that if the original d is close to the ideal sequence δ, then with
high probability d̂ must be close to the ideal sequence δ̂ = (δ̂i,j)i,j∈N defined by

δ̂i,j =





2e−3γb (3γb/2)i+j

i!j! , if i > j,

e−3γb (3γb/2)i+j

i!j! , if i = j,

0, if i < j,

where b = (1− tD/γ)2/3 and tD is the scaled number of steps in the pure literal elimination
algorithm.

PROPOSITION 4. Given ε2 > 0, there exists ε1 > 0 and 0 < β < 1 such that for any
d ∈ N (n, δ, ε1)

PrĈn,d

(
d̂ ∈ N (n, δ̂, ε2)

)
= 1−O(βn1/2

).

Moreover, for each d̂ ∈ N (n, δ̂, ε2), the probability space Ĉn,d conditional upon having de-
gree sequence d̂ has the uniform distribution (i.e. Ĉn,d conditional upon a fixed d̂ behaves
exactly as Cn,d̂).

Let d̂ ∈ N (n, δ̂, ε2). Then, each ϕ ∈ Cn,d̂ has a scaled number of clauses of ĉ = c(d̂)
(see (2)). Moreover, let `p and `n be the scaled number of copies in ϕ of positive and of
negative literals respectively. Then

`p(d̂) = ∑
i,j∈N

id̂i,j, `n(d̂) = ∑
i,j∈N

jd̂i,j. (5)

Given any fixed ϕ ∈ Cn,d̂ and for k ∈ {0, . . . , 3}, let ĉk be the scaled number of clauses in ϕ

containing exactly k positive copies (clauses of syntactic type k). We call ĉ = (ĉ0, . . . , ĉ3) the
clause-type sequence of ϕ. By definition

ĉ1 + 2ĉ2 + 3ĉ3 = `p, 3ĉ0 + 2ĉ1 + ĉ2 = `n, (6)

and by adding the equations in (6), ĉ0 + · · ·+ ĉ3 = ĉ. The ĉ0, . . . , ĉ3 are random variables in
Cn,d̂, but the next result shows that if d̂ is close enough to δ̂, then ĉ0, · · · , ĉ3 as well as their
sum ĉ0 + · · ·+ ĉ3 = ĉ are concentrated with high probability. In order to see this, we need
to define γ̂ = c(δ̂), λp = `p(δ̂) and λn = `n(δ̂) (see (2) and (5)), which can be interpreted as
the limit of ĉ, `p and `n respectively when d̂ approaches δ̂. In terms of these numbers, we
thus define for all k ∈ {0, . . . , 3}

γ̂k =
(

3
k

)
λp

kλn
3−k

(λp + λn)3 γ̂ (7)
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and also γ̂ = (γ̂0, . . . , γ̂3). Then we have γ̂1 + 2γ̂2 + 3γ̂3 = λp, 3γ̂0 + 2γ̂1 + γ̂2 = λn and
γ̂0 + γ̂1 + γ̂2 + γ̂3 = γ̂.

The next result shows that when d̂ is close enough to δ̂, then each ĉk is close to the
corresponding γ̂k. Indeed, given ε > 0 and for any d̂ ∈ N (n, δ̂, ε2), let Cε

n,d̂
be the set of all

ϕ ∈ Cn,d̂ such that for k ∈ {0, . . . , 3}, |ĉk − γ̂k| ≤ ε. We also denote by Cε
n,d̂

the corresponding
uniform probability space.

LEMMA 5. Given ε > 0, there is ε2 > 0 and 0 < β < 1 such that for any d̂ ∈ N (n, δ̂, ε2),

PrCn,d̂
(Cε

n,d̂
) = 1−O(βn).

All the previous lemmata establish a connection between the uniform probability spaces
Fn,m and Cε

n,d̂
. In order to prove Theorem 1, it remains to bound the probability that a con-

figuration ϕ ∈ Cε
n,d̂

is simple and satisfiable, as it is done in the following result.

LEMMA 6. There exists ε > 0 and 0 < β < 1 such that for any d̂ ∈ N (n, δ̂, ε),

PrCε
n,d̂

(SAT ∧ SIMPLE) = O(βn).

The proof of Lemma 6 is sketched in Section 3 below. The proof of Theorem 1 then
follows from all the previous lemmata (see the full version for the proof).

3 Proof of Lemma 6
Let N (n, δ̂, γ̂, ε) be the set of tuples (d̂, ĉ) such that d̂ ∈ N (n, δ̂, ε) and ĉ = (ĉk)0≤k≤3 is a
tuple of scaled naturals satisfying (6) (recall also from (5) the definition of `p and `n), and
moreover |ĉk − γ̂k| ≤ ε. For each (d̂, ĉ) ∈ N (n, δ̂, γ̂, ε), we define Cn,d̂,̂c to be the uniform

probability space of all configurations with degree sequence d̂ and clause-type sequence ĉ.
In order to prove the lemma, it suffices to show that for any (d̂, ĉ) ∈ N (n, δ̂, γ̂, ε) we have
PrCn,d̂,̂c

(SAT ∧ SIMPLE) = O(βn). Hence, we consider d̂, ĉ and the probability space Cn,d̂,̂c to
be fixed throughout this section, and we try to find a suitable bound for Pr(SAT ∧ SIMPLE).

We need some definitions. Let us fix any given configuration ϕ ∈ Cn,d̂,̂c. A light variable
of ϕ is a variable with i ≤ M positive occurrences and j ≤ M negative occurrences in ϕ (we
use in the numerical calculations the value M = 23). The other variables are called heavy. We
consider a weaker notion of satisfiability in which heavy variables are treated as jokers and
are always satisfied regardless of their sign in the formula and their assigned value. Given
a configuration ϕ ∈ Cn,d̂,̂c and a truth assignment A, we say that A |=[ ϕ iff each clause of
ϕ contains at least one heavy variable or at least one satisfied occurrence of a light variable.
Let SAT[ be the set of configurations ϕ ∈ Cn,d̂,̂c for which there exists at least one truth

assignment A such that A |=[ ϕ. Clearly, if A |= ϕ, then also A |=[ ϕ, and hence SAT ⊂ SAT[.
We still introduce a further restriction to satisfiability in a way similar to [11] and [4], in
order to decrease the number of satisfying truth assignments of each configuration without
altering the set of satisfiable configurations (at least without alterating this set for simple
configurations). Given a configuration ϕ ∈ Cn,d̂,̂c and a truth assignment A, we say that
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A |=[′ ϕ iff A |=[ ϕ and moreover each light variable which is assigned the value zero by
A appears at least once as the only satisfied literal of a blocking clause (i.e. a clause with one
satisfied negative literal and two unsatisfied ones). Let SAT[′ be the set of configurations
which are satisfiable according to this latter notion. Notice that if ϕ ∈ SIMPLE, then ϕ ∈
SAT[′ iff ϕ ∈ SAT[ (by an argument analogous to the one in [11] and [4]). Therefore, we have
Pr(SAT ∧ SIMPLE) ≤ Pr(SAT[ ∧ SIMPLE) = Pr(SAT[′ ∧ SIMPLE) ≤ Pr(SAT[′). Let X be the
random variable counting the number of satisfying truth assignments of a randomly chosen
configuration ϕ ∈ Cn,d̂,̂c in the SAT[′ sense. We need to bound

Pr(SAT[′) = Pr(X > 0) ≤ EX =
|{(ϕ, A) : ϕ ∈ Cn,d̂,̂c, A |=[′ ϕ}|

|Cn,d̂,̂c|
. (8)

In the following subsection, we obtain an exact but complicated expression for EX by a
counting argument, and then we give a simple asymptotic bound which depends on the
maximization of a particular continuous function over a bounded polytope. The next sub-
section contains the maximization of that function.

3.1 Asymptotic bound on EX

First, we compute the denominator of the rightmost member in (8).

|Cn,d̂,̂c| =
(

n
(d̂i,jn)i,j

)(
`pn

ĉ1n, 2ĉ2n, 3ĉ3n

)(
`nn

3ĉ0n, 2ĉ1n, ĉ2n

)
(3ĉ0n)!

(ĉ0n)!6ĉ0n
(2ĉ1n)!

2ĉ1n
(2ĉ2n)!

2ĉ2n
(3ĉ3n)!

(ĉ3n)!6ĉ3n

=
n!

∏i,j(d̂i,jn)!

(`pn)!(`nn)!
2ĉn3(ĉ0+ĉ3)n(ĉ0n)!(ĉ1n)!(ĉ2n)!(ĉ3n)!

In order to deal with the numerator in (8), we need some definitions. Let us consider any
fixed ϕ ∈ Cn,d̂,̂c and any assignment A such that A |=[′ ϕ. We will classify the variables, the
clauses and the copies of literals in ϕ into several types, and define parameters counting the
scaled number of items of each type. Variables are classified according to their degree. A
variable is said to have degree (i, j) if it appears i times positively and j times negatively in
ϕ. Let L and H, respectively, be the set of possible degrees for light and heavy variables,
i.e. L = {(i, j) ∈ N2 : 0 ≤ i, j ≤ M}, H = {(i, j) ∈ N2 : i > M or j > M}. We also
consider an extended notion of degree for light variables which are assigned 0 by A. One
of such variables has extended degree (i, j, k) if it has degree (i, j) and among its j negative
occurrences k appear in a blocking clause (being the only satisfied literal of the clause). Let
L′ = {(i, j, k) ∈ N3 : 0 ≤ i ≤ M, 1 ≤ k ≤ j ≤ M}, be the set of possible extended degrees
for these light 0-variables. For each (i, j) ∈ L, let ti,j be the scaled number of light variables
assigned 1 by A with degree (i, j) in ϕ. For each (i, j, k) ∈ L′, let fi,j,k be the scaled number
of light variables assigned 0 by A with extended degree (i, j, k) in ϕ. We must have

ti,j +
j

∑
k=1

fi,j,k = d̂i,j, ∀(i, j) ∈ L. (9)

On the other hand, we classify the copies of literals occurring in ϕ into five different types
depending on their sign in ϕ, their assignment by A and whether they belong or not to a
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blocking clause. Each copy receives a label from the set S = {ps, ns1, ns2, pu, nu}, where
the labels ps, pu, ns1, ns2 and nu denote positive-satisfied, positive-unsatisfied, negative-
satisfied in a blocking clause, negative-satisfied in a non-blocking clause and negative-
unsatisfied, respectively. It is useful to consider as well coarser classifications of the copies of
literals in ϕ and thus we define the types p, n and ns which correspond to positive, negative
and negative-satisfied copies, respectively. Also, let S ′ = {ps, ns, pu, nu} and S ′′ = {p, n}.
For each of the types σ ∈ S ∪ S ′ ∪ S ′′ that we defined, let `σ be the scaled number of copies
of type σ. Note that `p and `n were already defined (see (5) and (6)). Also, let hσ be the scaled
number of copies of type σ which come from heavy variables (recall that these copies are al-
ways satisfied by definition regardless of their sign). In view of hps = ∑H id̂i,j, hns = ∑H jd̂i,j
and of (5) and (6), we observe that `p, `n, hps and hns are constants which do not depend
on the particular choice of (ϕ, A). The parameters hns1 and hns2 depend on the particular
(ϕ, A) and satisfy

hns1 + hns2 = hns. (10)

The parameters `ps, `pu, `ns1, `ns2 and `nu also depend on (ϕ, A) and can be expressed as

`ps = ∑
L

iti,j + hps, `pu = ∑
L′

i fi,j,k, `ns1 = ∑
L′

k fi,j,k + hns1,

`ns2 = ∑
L′

(j− k) fi,j,k + hns2, `nu = ∑
L

jti,j. (11)

Finally, the clauses of ϕ are classified into 16 extended types (not to be mistaken with the
four syntactic types defined immediately before (6)). Each type is represented by a 2× 2 ma-

trix from the set A =
{

α =
(
ps(α) ns(α)
pu(α) nu(α)

)
∈ N4 : ∑σ∈S ′ σ(α) = 3, ps(α) + ns(α) > 0

}
.

A clause is said to be of extended type α =
(
ps(α) ns(α)
pu(α) nu(α)

)
if for each σ ∈ S ′ the clause

contains σ(α) copies of literals of type σ. Notice that all clauses of extended type α also
contain the same number of copies of type σ for all other σ ∈ S ∪ S ′′ and thus we can define
σ(α) to be this number. For each α ∈ A, let cα be the scaled number of clauses of extended
type α (while ĉk, 0 ≤ k ≤ 3 is the number of clauses of syntactic type k, i.e. with k positive
literals). We have

∑
α∈A

p(α)=k

cα = ĉk. (12)

The parameters `ps, `pu, `ns1, `ns2 and `nu can also be expressed in terms of the cα by

`σ = ∑
α∈A

σ(α)cα, ∀σ ∈ S . (13)

We now consider the following equations:

`ps + `pu = `p `ns1 + `ns2 + `nu = `n (14)

`ps = ∑
L

iti,j + hps `ns1 = ∑
L′

k fi,j,k + hns1 `ns2 = ∑
L′

(j− k) fi,j,k + hns2 (15)

`ps = ∑
α∈A

ps(α)cα `ns1 = ∑
α∈A

ns1(α)cα `ns2 = ∑
α∈A

ns2(α)cα (16)
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In view of (5) and (6), the system of equations {(9), (10), (11), (12), (13)} is equivalent to {(9),
(10), (12), (14), (15), (16)}.

So far we verified that the constraints {(9), (10), (12), (14), (15), (16)} express necessary
conditions for the parameters of any particular (ϕ, A), with ϕ ∈ Cn,d̂,̂c and A |=[′ ϕ. Now we
will see that they are also sufficient, in the sense that for each tuple of parameters satisfying
the above-mentioned constraints we will be able to construct pairs (ϕ, A).

Let t̄ = (ti,j)L, f̄ = ( fi,j,k)L′ , h̄ = (hns1, hns2), c̄ = (cα)α∈A, ¯̀ = (`σ)σ∈S and K =
|L| + |L′| + 2 + |A| + |S| = (M + 1)2(1 + M/2) + 23. We define the bounded polytope
P(d̂, ĉ) ⊂ RK as the set of tuples x̄ = (t̄, f̄ , h̄, c̄, ¯̀) of non-negative reals satisfying {(9), (10),
(12), (14), (15), (16)}, and consider the following set of lattice points in P(d̂, ĉ): I(n, d̂, ĉ) =
P(d̂, ĉ) ∩ ( 1

n N
)K

. For any tuple of parameters x̄ ∈ I(n, d̂, ĉ), we count the number of pairs
(ϕ, A), with ϕ ∈ Cn,d̂,̂c and A |=[′ ϕ, satisfying these parameters. We denote this number by

T(x̄, n, d̂, ĉ). We obtain (see the full version for details)

T(x̄, n, d̂, ĉ) = 2∑H d̂i,jn
(

n
(ti,jn)L, ( fi,j,kn)L′ , (d̂i,jn)H

)

(
∏
L′

(
j
k

) fi,j,kn
) (

hnsn
hns1n, hns2n

)
∏
σ∈S

(
`σn

(σ(α)cαn)α∈A

)
∏
α∈A

W(α),

where W(α) = (w(α)cαn)!(cαn)!2−w(α)

(w(α)!)cαn , and w(α) is the number of 0’s in the matrix α. Hence

EX = 1
|Cn,d̂,̂c| ∑x̄∈I(n,d̂,̂c) T(x̄, n, d̂, ĉ).

To characterize the asymptotic behaviour of T(x̄, n, d̂, ĉ)/|Cn,d̂,̂c| with respect to n, we
define

F(x̄) = ∏σ∈S `σ
`σ

∏L ti,j
ti,j ∏L′

(
fi,j,k/( j

k)
) fi,j,k

hns1hns1hns2hns2 ∏α∈A
(
(w(α)!/2)cα

)cα

and

B(d̂, ĉ) = 2∑H d̂i,j hnshns ∏
L

d̂
d̂i,j
i,j

3c0+c3 c0
c0 c1

c1 c2
c2 c3

c3

`p
`p`n

`n
.

By Stirling’s inequality we obtain T(x̄,n,d̂,̂c)
|Cn,d̂,̂c|

≤ poly1(n)
(

B(d̂, ĉ)F(x̄)
)n, where poly1(n) is

some fixed polynomial in n which can be chosen to be independent of x̄, d̂ and ĉ (as long
as x̄ ∈ I(n, d̂, ĉ) and (d̂, ĉ) ∈ N (n, δ̂, γ̂, ε)). Moreover, since the size of I(n, d̂, ĉ) is also
polynomial in n, we can write

EX ≤ poly2(n)

(
B(d̂, ĉ) max

x̄∈I(n,d̂,̂c)
F(x̄)

)n

≤ poly2(n)

(
B(d̂, ĉ) max

x̄∈P(n,d̂,̂c)
F(x̄)

)n

,

for some other fixed polynomial poly2(n). By continuity, if we choose ε to be small enough,
we can guarantee that

EX ≤
(

(1 + 10−7)B max
x̄∈P(n,δ̂,γ̂)

F(x̄)

)n

, (17)
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where (recall the definition in (7))

B = B(δ̂, γ̂) = 2∑H δ̂i,j

(
∑
H

jδ̂i,j

)∑H jδ̂i,j

∏
L

δ̂
δ̂i,j
i,j

3γ̂0+γ̂3 γ̂
γ̂0
0 γ̂

γ̂1
1 γ̂

γ̂2
2 γ̂

γ̂3
3

λp
λpλn

λn

= 2∑H δ̂i,j

(
∑
H

jδ̂i,j

)∑H jδ̂i,j ∏L δ̂
δ̂i,j
i,j

(3γ̂)2γ̂
. (18)

3.2 Maximization of F(x̄)

We wish to maximize F or equivalently log F over the domain P(n, δ̂, γ̂). We need the
following lemma:

LEMMA 7. F(x̄) does not maximize on the boundary of P(n, δ̂, γ̂).

Since log F does not maximize on the boundary of its domain, the maximum must
be attained at a critical point of log F in the interior of P(n, δ̂, γ̂). We use the Lagrange
multipliers technique and characterize each critical point of log F in terms of the solution of
a 3× 3 system. The system is numerically solved with the help of Maple, which finds just
one solution. We express the maximum of F over P(n, δ̂, γ̂) in terms of this solution, and
multiply it by B given in (18), and from (17) we obtain the bound

EX ≤ (
(1 + 10−7)0.9999998965

)n
, (19)

which concludes the proof of Lemma 6, since (1 + 10−7)0.9999998965 < 1.
Note that the validity of our approach relies on the assumption that the solution of the

3 × 3 system found by Maple is unique, which implies that the critical point of log F we
found is indeed the global maximum (if an alternative solution exists it could happen that
at the corresponding critical point the function F attains a value greater than the maximum
obtained).

In order to be more certain about the correctness of (19) we performed the following
alternative experiment: Let P ¯̀ be the polytope obtained by restricting P(n, δ̂, γ̂) to the co-
ordinates `ps, `pu, `ns1, `ns2, `nu. Observe that this is a 3-dimensional polytope in R5, since
its elements are determined by the values of the coordinates `ps, `ns1, `ns2. We performed a
sweep over this polytope by considering a grid of 100 equispaced points in each of the three
dimensions. For each of the 1003 fixed tuples of (`ps, `ns1, `ns2) which correspond to the
points on the grid, we determine the remaining two coordinates of P ¯̀ , and maximize log F
restricted to those fixed values of ¯̀. Observe that in this case log F is strictly concave and
thus has a unique maximum which can be efficiently found by any iterative Newton-like
algorithm. We checked, again using Maple, that the value obtained for each fixed tuple of ¯̀

is below the maximum in (19).
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[14] M. Mézard and R. Zecchina. Random k-satisfiability: from an analytic solution to a
new efficient algorithm. Physics Review, E-66, 056126:1357–1361, 2002.

[15] R. Monasson and R. Zecchina. Statistical mechanics of the random k-SAT problem.
Physics Review, E-56:1357–1361, 1997.

[16] N. C. Wormald. The differential equation method for random graph processes and
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