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a b s t r a c t

In this paper we present a new upper bound for randomly chosen 3-CNF formulas. In
particular we show that any random formula over n variables, with a clauses-to-variables
ratio of at least 4.4898 is, as n grows large, asymptotically almost surely unsatisfiable.
The previous best such bound, due to Dubois in 1999, was 4.506. The first such bound,
independently discovered by many groups of researchers since 1983, was 5.19. Several
decreasing values between 5.19 and 4.506were published in the years between.Webelieve
that the probabilistic techniques we use for the proof are of independent interest.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Satisfiability of Boolean formulas is a problem universally believed to be hard. Determining the source of this hardness
will lead, as is often stressed, to applications in domains even outside the realm of mathematics or computer science;
moreover, and perhaps more importantly, it will enhance our understanding of the foundations of computing.
In the beginning of the 90s, several groups of experimentalists chose to examine the source of this hardness from the

following viewpoint: consider a random 3-CNF formulawith a given clauses-to-variables ratio, which is known as the density
of the formula. What is the probability of it being satisfied and how does this probability depend on the density? Their
simulation results led to the conclusion that, if the density is fixed and below a number approximately equal to 4.27, then
for large n a randomly chosen formula is almost always satisfiable;whereas if the density is fixed and above 4.27, a randomly
chosen formula is, for large n, almost always unsatisfiable. More importantly, around 4.27 the complexity of several well-
known complete algorithms for checking satisfiability reaches a steep peak (see e.g. [10,15,16]). So in a certain sense, 4.27
is the point where, from an empirical statistical viewpoint, the ‘‘hard’’ instances of SAT are to be found. Similar results were
obtained for other combinatorial problems and also for k-SAT for values of k > 3.
These experimental results were followed by an intense activity to provide ‘‘rigorous results’’ (the expression IS often

used in this context to refer to theorems). Perhaps the most important advance is due to Friedgut: in [7] he proved that
there is a sequence of reals (cn)n such that, for any ε > 0, the probability of a randomly chosen 3-CNF formula with density
cn − ε being satisfiable approaches 1 (as n→∞); whereas for density cn + ε, it approaches 0. Intuitively, this means that
the transition from satisfiability to unsatisfiability is sharp. However, it is still not known if (cn)n converges.

I Partially supported by the Spanish CYCIT: TIN2007-66523 (FORMALISM). The first and second authors were also partially supported by the EU within
the 7th Framework Programme under contract 215270 (FRONTS).
II An extended abstract of this paper was accepted for presentation at FSTTCS-08.
∗ Corresponding author.
E-mail addresses: diaz@lsi.upc.edu (J. Díaz), kirousis@ceid.upatras.gr (L. Kirousis), dmitsche@lsi.upc.edu (D. Mitsche), xperez@lsi.upc.edu

(X. Pérez-Giménez).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.02.020

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:diaz@lsi.upc.edu
mailto:kirousis@ceid.upatras.gr
mailto:dmitsche@lsi.upc.edu
mailto:xperez@lsi.upc.edu
http://dx.doi.org/10.1016/j.tcs.2009.02.020


J. Díaz et al. / Theoretical Computer Science 410 (2009) 2920–2934 2921

Despite the fact that the convergence of (cn)n is still an open problem, increasingly improved upper and lower bounds on
its terms have been computed in a rigorous way by many groups of researchers. The current best lower bound is 3.52 [9,2].
With respect to upper bounds, which is the subject of this work, the progress was slower but better, in the sense that the

experimentally established threshold ismore closely bounded fromabove, rather than frombelow. A naïve application of the
first-moment method yields an upper bound of 5.191 (see e.g. [6]). An important advance was made in [8], where the upper
bound was improved to 4.76. In what follows, the work of several groups of researchers, based on more refined variants
of the first-moment method, culminated in the value of 4.571 [4,11] (see the nice surveys [12,3] for a complete sequence
of the events). The core idea in these works was to use the first-moment method by computing the expected number of
not all satisfying truth assignments, but only of those among them that are local maxima in the sense of a lexicographic
ordering, within a degree of locality determined by the Hamming distance between truth assignments (considered as binary
sequences). For degree of locality 1, this amounts to computing the expected number of satisfying assignments that become
unsatisfying assignments by flipping any of their ‘‘false’’ values (value 0) to ‘‘true’’ (value 1). Such assignments are sometimes
referred to as single-flip satisfying assignments.
The next big step was taken by Dubois et al. [5], who showed that 4.506 is an upper bound. Instead of considering further

variations of satisfiability, they limited the domain of computations to formulas that have a typical syntactic characteristic.
Namely, they considered formulas where the cardinality of variables with given numbers of occurrences as positive and
negative literals, respectively, approaches a 2D Poisson distribution. Asymptotically almost all formulas have this typical
property (we say that such formulas have a Poisson 2D degree sequence). It turns out that the expectation of the number of
single-flip satisfying assignments is exponentially reduced when computed for such formulas. To get the aforementioned
upper bound,Dubois et al. further limited thedomain of computations to formulas that are positively unbalanced, i.e. formulas
where every variable has at least as many occurrences as a positive literal as it has as a negated one.
A completely different direction was recently taken in [13]. Their work was motivated by results on the geometry of

satisfying assignments, and especially the way they form clusters (components where one can move from one satisfying
assignment to another by hops of small Hamming distance). Most of these results were originally based on analytical, but
non-rigorous, techniques of Statistical Physics; lately however important rigorous advances were made [1,14]. The value of
the upper bound obtained by Maneva and Sinclair (see [13]) was 4.453, far below any other upper bound presently known
(including the one in this paper). However it was proved assuming a conjecture on the geometry of the satisfying truth
assignments which is presently proved only for k-SAT for k ≥ 8 in the mentioned paper by Achlioptas and Ricci-Tersenghi.
In this paper, we show that 4.4898 is an upper bound. More precisely, our main result is the following:

Theorem 1.1. Let γ = 4.4898 andm = bγ nc. A random 3-CNF formula inFn,m (i.e. with n variables andm clauses, no repetition
of clauses and no repetition of variables in a clause) is not satisfiable a.a.s.

Our approach builds upon previous work. It makes use of (i) single-flip satisfying truth assignments, (ii) formulas with a
Poisson 2D degree sequence and (iii) positively unbalanced formulas. We add to these previously known techniques two
novel elements that further reduce the expectation computed. Our approach is rigorous: althoughwemake use of computer
programs, the outputs we use are formally justified. What is interesting is not that much the numerical value we get,
although it constitutes a further improvement to a long series of results. The main interest lies, we believe, on the one hand
in the new techniques themselves and on the other hand in the fact that putting together so many disparate techniques
necessitates a delicately balanced proof structure. Let us mention, for example, that each one of the techniques we used
requires a particular assumption about the type of the underlying random formulamodel; but then to successfully integrate
them, a careful analysis of how these models are related became necessary. For example, at some points (see the proof for
details) we need to work over the model we call Fn,m, the uniform probability space of 3-CNF formulas with n variables
and m clauses, where repetition of clauses or repetition of variables in a clause is not allowed; at other points we need to
work with the non-uniform configuration model (see below); and elsewhere we need to work with multi-formulas (not
configurations) where repetitions of clauses or literals are allowed and the degree sequence is fixed. To make things worse,
we had to go back and forth between such models, as the first-moment method refinement techniques were successively
applied. As a result, we came up with a model translating machinery that we believe has its own interest and might prove
useful to researchers investigating problems that require randommodel transitions.
First, we start by recursively eliminating one-by-one the occurrences of pure literals from the random formula, until we

get its impure core, i.e. the largest sub-formula with no pure literals (a pure literal is one that has at least one occurrence in
the formula but whose negation has none). Obviously this elimination has no effect on the satisfiability of the formula. Since
we consider random formulas with a given 2D degree sequence, we first have to determine what is the 2D degree sequence
of the impure core. For this, we use the differential equation method [18]. The setting of the differential equations is more
conveniently carried out in the so-called configurationmodel, where the random formula is constructed by starting with as
many labelled copies of each literal as its number of occurrences and then by considering random 3D matchings of these
copies. The matchings define the clauses. The change of models from the standard one to the configuration model with a
Poisson 2D degree sequence is formalized in Lemma 2.1. We also take care of the fact that the configuration model allows
formulas with (i) multiple clauses and (ii) multiple occurrences of the same variable in a clause, whereas we are interested
in simple formulas, i.e. formulas where neither (i) nor (ii) holds. For our purposes, it is enough to bound from below the
probability of getting a simple formula in the configurationmodel by e−Θ(n

1/3 log n), see Lemma 3.1. The differential equations
are then analytically solved, and we thus obtain the 2D degree sequence of the core, see Proposition 4.1.
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Second, we require that not only the 2D degree sequence is Poisson, but also that the numbers of clauses with none, one,
two and three positive literals, respectively, are close to the expected numbers. Notice that these expected numbers have
to reflect the fact that we consider positively unbalanced formulas. This is formalized in Lemma 5.1.
The expectation of the number of satisfying assignments, in the framework determined by all the restrictions above, is

computed in Proposition 6.1. This expectation turns out to be given by a sum of polynomially many terms of functions that
are exponential in n. We estimate this sum by its maximum term, using a standard technique. However in this case, finding
the maximum term entails maximizing a function of many variables whose number depends on n. To avoid a maximization
that depends on nweprove a truncation result which allows us to consider formulas that have a Poisson 2D degree sequence
only for light variables, i.e. variableswhose number of occurrences, either as positive or negated literals, is atmost a constant
independent of n.
Thenwe carry out themaximization. The techniquewe use is the standard one by Lagrangemultipliers.We get a complex

3 × 3 system which can be solved numerically. We formally prove that the system does not maximize on the boundary of
the system and we make a sweep over the domain which confirms the results of the numerical solution. It must be pointed
out that the computer-based (i.e. non-analytic) part of our argument is only used for the calculation of the numerical value
of our bound. Everything else in the proof is absolutely rigorous. Moreover, our numerical technique stabilizes, i.e. refining
even further the sweeping does not affect the first five digits of our bound. This approach of a rigorous proof plus numerical
techniques for the final computations is often used in the literature, especiallywith respect to computations of lower bounds,
where systems of differential equations are numerically solved to produce the final number (see, e.g., [9]). It has also been
used in the seminal paper [8], where the first significant lowering of the naïve first-moment upper bound was exhibited.
As usual, asymptotically almost surely (a.a.s.) will mean with probability tending to 1 as n → ∞. All asymptotic

expressions as 1− o(1) are always with respect to n.

2. Background and basic definitions

Consider a given set of n Boolean variables, and letm = bγ nc. Let Fn,m be the set of 3-CNF formulas with n variables and
m clauses, where repetition of clauses or repetition of variables in a clause is not allowed.Without loss of generality, we also
denote by Fn,m the probability space of formulas in Fn,m drawn with uniform probability. Throughout the paper, we fix the
value γ = 4.4898, and prove for that value that a random 3-CNF formula is not satisfiable with high probability.
Throughout the paper, scaled will always mean divided by n, and a scaled natural will be a member of 1nN. For a formula

φ ∈ Fn,m, we define the following parameters which depend on φ: For any i, j ∈ N, let di,j be the scaled number of variables
with i positive occurrences and j negative occurrences in φ. Then,∑

i,j∈N

di,j = 1. (1)

The sequence d = (di,j)i,j∈N is called the degree sequence of φ. The scaled number of clauses of φ is denoted by c , and can be
expressed in terms of d by

c(d) =
1
3

∑
i,j∈N

(i+ j)di,j. (2)

Note that if φ ∈ Fn,m, then c must additionally satisfy c = bγ nc/n.
Given ε1 > 0 and any sequence ξ = (ξi,j)i,j∈N of non-negative reals with

∑
i,j∈N ξi,j = 1, we define the following set of

degree sequences:

N (n, ξ, ε1) =
{
d = (di,j)i,j∈N :

∑
i,j∈N

di,j = 1,
n
3

∑
i,j∈N

(i+ j)di,j ∈ N, ∀i, j ∈ N di,jn ∈ N,

and |di,j − ξi,j| ≤ ε1, and if i > n1/6 or j > n1/6 then di,j = 0
}
.

Intuitively N (n, ξ, ε1) can be interpreted as the set of degree sequences d which are close to the ideal sequence ξ, which
in general is not a degree sequence since its entries ξi,j need not be scaled naturals. However, if n is large enough, then
N (n, ξ, ε1) 6= ∅. Now we consider the 2D Poisson ideal sequence δ defined by δi,j = e−3γ (3γ /2)i+j/(i!j!). The following
lemma reflects the fact that almost all φ ∈ Fn,m have a degree sequence d which is close to δ. A proof of an analogous result
can be found in [5] (the main difference is that we have to apply Markov’s inequality in the end to show that there are no
variables of degree n1/6 or larger).
Lemma 2.1. Let d be the degree sequence of a random φ ∈ Fn,m. For any ε1 > 0, we have that PrFn,m(d ∈ N (n, δ, ε1)) =
1− o(1).

3. The configuration model for formulas

Given a fixed degree sequence d = (di,j)i,j∈N satisfying (1) and such that c = c(d) defined by (2) is also a scaled
natural, we wish to generate 3-CNF formulas with that particular degree sequence d. A natural approach to this is to use the
configuration model. A configuration ϕ with degree sequence d = (di,j)i,j∈N is constructed as follows: consider n variables
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and the corresponding 2n literals x1, x̄1, . . . , xn, x̄n; each literal has a certain number of distinct labelled copies in a way that
the scaled number of variables with i positive copies and j negative copies is di,j; then partition the set of copies into sets of
size 3, which we call the clauses of ϕ. Let Cn,d be the set of all configurations with degree sequence d, and we also denote
by Cn,d the probability space on the set Cn,d with the uniform distribution.
A 3-CNFmulti-formula is a formulawith possible repetition of variables in one clause and/or possible repetition of clauses.

A simple formula is a formula inFn,m. Let π be the projection from Cn,d to 3-CNF multi-formulas obtained by unlabelling the
copies of each literal.
A configuration ϕ ∈ Cn,d is satisfiable if φ = π(ϕ) is satisfiable. A configuration ϕ ∈ Cn,d is simple iff φ = π(ϕ) is

a simple formula, i.e. does not have repetition of variables or clauses. Notice that the number of anti-images of a simple
formula φ with degree sequence d under π does not depend on the particular choice of φ. Hence,

PrFn,m(φ is Sat | d) = PrCn,d (ϕ is Sat | Simple), (3)
where d also denotes the event that a random φ ∈ Fn,m has degree sequence d.
We need a lower bound on the probability that a configuration is simple. The following result gives a weak bound which

is enough for our purposes.
Lemma 3.1. Let ε1 > 0 and d ∈ N (n, δ, ε1). Then

PrCn,d (Simple) ≥ e−Θ(n
1/3 log n),

where the e−Θ(n
1/3 log n) bound is uniform for all d ∈ N (n, δ, ε1).

Proof. In order to prove the lemma, we give a lower bound on the number of simple configurations and then divide it by
the total number of configurations. The total number of configurations is

(3cn)!
6cn(cn)!

.

To obtain a lower bound on the number of simple configurations, we construct a subset of these. Consider the set of labelled
copies of literals according to the degree sequence d. Among those copies which correspond to variables with one unique
occurrence, we select any 2d9n1/3e (recall that inN (n, δ, ε1) there is a linear number of such variables). Call this setU0. Let
U be the set of all the remaining copies. We pick an arbitrary order of the copies inU and put them into a list. At each step,
we remove the first copy of the list, match it with two other suitable copies in the list (which are also removed) and repeat
until the list contains exactly d9n1/3e labelled copies of literals. Let x be the variable corresponding to the first labelled copy
of the list at some step of the procedure. If we want to avoid repetitions of variables in clauses then, when choosing the two
other copies to be matched with that first one, we have to exclude at most 2n1/6 other copies of x (recall that inN (n, δ, ε1)
the degrees of all variables are at most 2n1/6). If we want to avoid multiple clauses, we have to exclude at most 8n1/3 copies
of the variables which are already in some clause containing a copy of x. Therefore, at most d9n1/3e copies are excluded in
total at each choice. This gives rise to at least

(3cn− 3d9n1/3e)!

6cn−d9n1/3e(cn− d9n1/3e)!
(4)

different ways of grouping the copies inU into clauses except for the d9n1/3e copies which remain in the list at the end of
the procedure. Finally, each one of the d9n1/3e remaining copies is matched arbitrarily with any two copies inU0 to create
a clause, and this completes the construction of the configurations. The choice ofU0 guarantees that all the configurations
we obtained are simple. Hence, dividing (4) by the total number of configurations gives a lower bound of e−Θ(n

1/3 log n). �

4. Elimination of pure literals

Given ϕ ∈ Cn,d , a pure variable of ϕ is a variable which has a non-zero number of occurrences which are either all
syntactically positive or all syntactically negative. The only literal occurring in ϕ and all its copies are also called pure.
Observe that if ϕ is satisfiable and x is a pure variable of ϕ, then there exists some satisfying truth assignment of ϕ

which satisfies all copies of x in ϕ. Hence, in order to study the satisfiability of a configuration ϕ ∈ Cn,d , we are allowed to
iteratively satisfy each pure variable inϕ and remove all clauses containing a copy of that variable. For eachϕ ∈ Cn,d , let ϕ̃ be
the configuration obtained by greedily removing all pure variables and their corresponding clauses from ϕ, in any arbitrary
order. Notice that during this elimination procedure new pure variables are created, which will be eventually eliminated.
This ϕ̃ is independent of the particular elimination order of pure literals and is called the impure core of ϕ. In fact, in our

analysis we will eliminate only one clause containing one copy of a pure literal at a time, as the ϕ̃ obtained remains the
same. This fact can be proved in a completely analogous way to the standard argument that shows that the obtention of the
k-core of a graph does not depend on how we remove the vertices of degree less than k.
Note that ϕ is satisfiable iff ϕ̃ is satisfiable, since we are allowed to choose a truth assignment which satisfies all literals

iteratively removed during the process for obtaining ϕ̃. Moreover, if ϕ is simple then ϕ̃ is also simple, but the converse is
not necessarily true.
Furthermore, let ϕ̂ be the configuration obtained from ϕ̃ by positively unbalancing all variables, i.e. switching the

syntactic sign of those variables having initiallymore negative than positive occurrences in ϕ̃. Let Ĉn,d denote the probability
space of configurations ϕ̂, where ϕ was chosen from Cn,d with uniform probability. Note that the probability distribution
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in Ĉn,d is not necessarily uniform. Since the simplicity and the satisfiability of a configuration are not affected by positively
unbalancing the variables, we have

PrCn,d (ϕ is Sat ∧ Simple) ≤ PrĈn,d ( ϕ̂ is Sat ∧ Simple). (5)

Let the random variable d̂ be the degree sequence of a random configuration in Ĉn,d . We prove in the following result that if
the original d is close to the ideal sequence δ, then with high probability d̂ must be close to the ideal sequence δ̂ = (̂δi,j)i,j∈N
defined by

δ̂i,j =


2e−3γ b (3γ b/2)

i+j

i!j! , if i > j,

e−3γ b (3γ b/2)
i+j

i!j! , if i = j,
0, if i < j,

where b = (1− tD/γ )2/3 and tD is the scaled number of steps in the pure literal elimination algorithm.

Proposition 4.1. Given ε2 > 0, there exist ε1 > 0 and 0 < β < 1 such that for any d ∈ N (n, δ, ε1)

PrĈn,d

(̂
d ∈ N (n, δ̂, ε2)

)
= 1− O(βn

1/2
).

Moreover, for each d̂ ∈ N (n, δ̂, ε2), the probability space Ĉn,d conditional upon having degree sequence d̂ has the uniform
distribution (i.e. Ĉn,d conditional upon a fixed d̂ behaves exactly as Cn,̂d).

Proof. Given ϕ ∈ Cn,d with d ∈ N (n, δ, ε1), we apply the following pure literal elimination algorithm to ϕ: at each time
step t ≥ 0, one literal occurrence is chosen uniformly at random from all pure literal occurrences appearing in ϕ = ϕ(t)
at time t (if the variable of the chosen literal occurrence is not yet assigned a value, it is set such that this literal occurrence
is satisfied) and the clause containing this occurrence is eliminated. The algorithm stops when there is no more pure literal
occurrence left. The resulting configuration is denoted by ϕ̃. It is easy to see that ϕ̃ is unique and independent of the order
of elimination of pure literal occurrences. Moreover, at any time step t , the algorithm retains the conditional randomness
of the configuration, i.e., conditional under having any (fixed) degree sequence d at time t , any configuration ϕ obeying this
degree sequence and whose image φ = π(ϕ) is a simple formula, is equally likely to appear at time t in this algorithm. To
analyze the expected degree distribution of ϕ̃, we introduce the following variables: for any 0 ≤ i, j ≤ n, Yi,j(t) denotes the
random variable counting the number of variables with i positive and j negative occurrences at time t , and Y0(t) denotes the
random variable counting the number of pure literal occurrences at time t , i.e., Y0(t) =

∑
i>0 iYi,0(t) +

∑
j>0 jY0,j(t). Also

define by L(t) the random variable counting the total number of literal occurrences at time t . Clearly, L(t + 1)− L(t) = −3.
Note also that Y0(t) = L(t) −

∑
i,j>0(i + j)Yi,j(t). Defining by G(t) the sequence of Y0(t), Y1,1(t), . . . , Yn,n(t), we have that

for any t , for any i, j > 0 and conditional upon any values of G(t)

E
(
Yi,j(t + 1)− Yi,j(t) | G(t)

)
=
2
L

(
(i+ 1)Yi+1,j(t)+ (j+ 1)Yi,j+1(t)− (i+ j)Yi,j(t)

)
(1+ o(1)),

E
(
Y0(t + 1)− Y0(t) | G(t)

)
=

(
2
L

(∑
i>0

iYi,1(t)+
∑
j>0

jY1,j(t)− Y0(t)
)
− 1

)
(1+ o(1)).

If we now interpolate the variables L(t) and Yij(t), by defining the scaled versions yi,j(t) = 1
nYi,j(tn) for i, j > 0, `(t) =

1
n L(tn)

and y0(t) = 1
nY0(tn), (to understand the limiting behavior as n tends to infinity) this suggests the following system of

differential equations:

d`
dt
= −3,

dyi,j
dt
=
2
`

(
(i+ 1)yi+1,j + (j+ 1)yi,j+1 − (i+ j)yi,j

)
, i, j > 0,

dy0
dt
=
2
`

(∑
i>0

iyi,1 +
∑
j>0

jy1,j − y0
)
− 1,

with the initial conditions `(0) = 3γ , y0(0) =
∑
i>0 i d(i, 0) +

∑
j>0 j d(0, j), and for i, j > 0 we have yi,j(0) = d(i, j),

where d(i, j) is the scaled number of variables of ϕ appearing i times positively and j times negatively. It can be easily seen
that `(t) = 3γ − 3t . Furthermore, defining the auxiliary function b(t) = (1− t/γ )2/3, it can be checked, that a solution (its
uniqueness will be proven below) for the system of differential equations involving yi,j is the following function:

yi,j(t) =
∑
k≥i

∑
`≥j

d(k, l)
(
k
i

)(
`

j

)
(b(t))i+j(1− b(t))k−i(1− b(t))`−j.
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Also, it follows then that

y0(t) = 3γ − 3t −
∑
i,j>0

(i+ j)yi,j(t).

We are interested in the smallest value of t for which y0(t/n) = 0. This value of t will be the stopping time TD of our process
(for our particular system of differential equations, starting with ϕ ∈ Cn,d with d ∈ N (n, δ, ε1), we empirically observed
that TD/n is between 0.15 and 0.16, and hence the resulting configuration ϕ̃ a.a.s. still contains many literal occurrences.
This observation is used to simplify the statement of Wormald’s theorem).
To prove the uniqueness of the solution and the concentration of the resulting distribution, we use the following version

of Wormald’s theorem tailored to our specific system of ODEs:

Theorem 4.2 (Wormald [18]). Suppose that for any value of G(t) and any Yi,j(t) (throughout the statement of the theorem Yi,j(t)
also includes the case of Y0(t)) we have

E[Yi,j(t + 1)− Yi,j(t) | G(t)] = fi,j(t/n, {Yi,j(t)/n}i,j)+ O(1/n),

where the fi,j : Ra → R (a being equal to the number of variables Yi,j plus 1 for the variable t) are continuous functions with
all Lipschitz constants uniformly bounded. Suppose also that |Yi,j(t + 1)− Yi,j(t)| ≤ B, and suppose that there is an order of the
functions fi,j such that any fi,j depends on at most the terms preceding it in this order (including itself). Then, for some large enough
constant C and 0 < α < 1/3, the system of differential equations

dyi,j(x)/dx = fi,j(x, {yi,j(x)})

with the initial conditions yi,j(0) = Yi,j(0)/n has a unique solution and moreover, for any t ≤ TD − Cn1−α , we have

Yi,j(t) = nyi,j(t/n)+ O(n1−α)

with probability at least 1− O(n2+αe−n
1−3α

).

Defining the fi,j’s to be the right-hand sides of the system of differential equations of the yi,j, i.e.,

fi,j(x, yi,j, yi,j+1, yi+1,j) =
2(−(i+ j)yi,j + (i+ 1)yi+1,j + (j+ 1)yi,j+1)

3γ − 3x
,

and

f0(x, y0, y1,1, y2,1, . . . , yn,1, y1,2, . . . , y1,n) =
2

3γ − 3x

(
−y0 +

∑
i>0

iyi,1 +
∑
j>0

jy1,j

)
− 1,

it is easily seen that these functions are continuous and satisfy a uniformly bounded Lipschitz constant. Next, it is a routine
calculation to show that for any 1 ≤ i, j ≤ n

|E(Yi,j(t + 1)− Yi,j(t) | G(t))− fi,j
(
t/n, Yi,j(t/n), Yi,j+1(t/n), Yi+1,j(t/n)

)
| = O(1/n),

and

|E(Y0(t + 1)− Y0(t) | G(t))− f0
(
t/n, Y0(t/n), . . . , Y1,n(t/n)

)
| = O(1/n).

Also, we have

max
1≤i,j≤n

|Yi,j(t + 1)− Yi,j(t)| ≤ 2 and |Y0(t + 1)− Y0(t)| ≤ 3.

Moreover, we can rearrange the fi,j’s in descending order of the sum of i and j (being f0 the last element of this order), and
hence we can apply Wormald’s theorem. That is, for any t ≤ TD − Cn1−α , we have for any i, j > 0

Yi,j(t) = nyi,j(t/n)+ O(n1−α)

and

Y0(t) = ny0(t/n)+ O(n1−α),

with probability at least 1−O(n2+αe−n
1−3α

). Since in each step Y0 as well as Yi,j change by at most 3, the change of Yi,j and Y0
caused by the eliminations of pure literal occurrences after time TD − Cn1−α is at most O(n1−α), and thus the concentration
results for Yi,j(t) and Y0(t) hold throughout the whole algorithm.

Now, since originally we start with ϕ ∈ Cn,d and d ∈ N (n, δ, ε1), we have |d(i, j) −
e−3γ (3γ /2)i+j

i!j! | ≤ ε1 for any i, j ∈ N.
Since the functions fi,j and f0 appearing in the system of ODEs are continuous and their Lipschitz constants are uniformly
bounded, by the continuous dependence theorem (see e.g., [17], Theorem A.68) the solutions of the system of ODEs are
continuous with respect to the initial conditions, uniformly for all n. That is, there exists an ε′2 > 0, such that the degree
sequence d̃ of ϕ̃ satisfies |̃d(i, j)− δ̃(i, j)| ≤ ε′2 with probability at least 1− O(n

2+αe−n
1−3α

), where (using the notation of b
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and δ from above)

δ̃(i, j) =
∑
k≥i

∑
`≥j

δ(k, `)
(
k
i

)(
`

j

)
(b(TD/n))i+j(1− b(TD/n))k−i(1− b(TD/n))`−j.

When plugging in the initial condition δ(k, `) = e−3γ (3γ /2)
k+`

k!`! , the expression for δ̃(i, j) can be simplified and we obtain

δ̃(i, j) = e−3γ b
(3γ b/2)i+j

i!j!
,

where b = b(t) = (1− t/γ )2/3. Setting α = 1/6 and unbalancing ϕ̃ (i.e., changing the syntactic sign of a variable appearing
more often negatively than positively) we obtain a configuration ϕ̂ whose degree sequence d̂ satisfies for all i, j ∈ N

|̂d(i, j)− δ̂(i, j)| ≤ ε2
with probability at least 1− O(e−

√
n), where ε2 = 2ε′2 and δ̂(i, j) is defined as follows:

δ̂(i, j) =

2̃δ(i, j), if i > j,
δ̃(i, j), if i = j,
0, if i < j.

Setting β = 1/e concludes the proof of the proposition. �

5. Clause typicality

Let d̂ ∈ N (n, δ̂, ε2). Then, each ϕ ∈ Cn,̂d has a scaled number of clauses of ĉ = c (̂d) (see (2)). Moreover, let `p and `n be
the scaled number of copies in ϕ of positive and of negative literals respectively. Then

`p(̂d) =
∑
i,j∈N

îdi,j, `n(̂d) =
∑
i,j∈N

ĵdi,j. (6)

Given any fixed ϕ ∈ Cn,̂d and for k ∈ {0, . . . , 3}, let ĉk be the scaled number of clauses in ϕ containing exactly k positive
copies (clauses of syntactic type k). We call ĉ = ( ĉ0, . . . , ĉ3) to the clause-type sequence of ϕ. By definition

ĉ1 + 2 ĉ2 + 3 ĉ3 = `p, 3 ĉ0 + 2 ĉ1 + ĉ2 = `n, (7)
and by adding the equations in (7), ĉ0 + · · · + ĉ3 = ĉ . The ĉ0, . . . , ĉ3 are random variables in Cn,̂d , but the next result shows
that if d̂ is close enough to δ̂, then ĉ0, . . . , ĉ3 as well as their sum ĉ0 + · · · + ĉ3 = ĉ are concentrated with high probability.
In order to see this, we need to define γ̂ = c (̂δ), λp = `p(̂δ) and λn = `n(̂δ) (see (2) and (6)), which can be interpreted as
the limit of ĉ , `p and `n respectively when d̂ approaches δ̂. In terms of these numbers, we thus define for all k ∈ {0, . . . , 3}

γ̂k =

(
3
k

)
λp
kλn

3−k

(λp + λn)3
γ̂ , (8)

and let γ̂ = (γ̂0, . . . , γ̂3). Then we have γ̂1 + 2γ̂2 + 3γ̂3 = λp, 3γ̂0 + 2γ̂1 + γ̂2 = λn and γ̂0 + γ̂1 + γ̂2 + γ̂3 = γ̂ .
The next result shows that when d̂ is close enough to δ̂, then each ĉk is close to the corresponding γ̂k. Indeed, given ε > 0

and for any d̂ ∈ N (n, δ̂, ε2), let Cεn,̂d be the set of all ϕ ∈ Cn,̂d such that for k ∈ {0, . . . , 3}, | ĉk − γ̂k| ≤ ε. We also denote by
Cε
n,̂d
the corresponding uniform probability space.

Lemma 5.1. Given ε > 0, there is ε2 > 0 and 0 < β < 1 such that for any d̂ ∈ N (n, δ̂, ε2),
PrCn,̂d

(Cεn,̂d) = 1− O(β
n).

Proof. Let us fix k ∈ {0, 1, 2, 3}. We will show that for a small enough ε2 > 0 the probability that | ĉk − γ̂k| > ε is O(βn)
with 0 < β < 1. Given a ϕ ∈ Cn,̂d , we choose an ordering of the ĉn clauses uniformly at random. For each t = 1, . . . , ĉn,
define the random variable Yt to be 1 if the tth clause has syntactic type k and 0 otherwise. These random variables are all
identically distributed, and we have that

Pr(Yt = 1) =

(
`pn
k

)(
`nn
3−k

)(
`pn+`nn
3

) = (3
k

)
[`pn]k[`nn]3−k
[`pn+ `nn]3

, ∀t, 1 ≤ t ≤ ĉn.

Let S =
∑ĉn
t=1 Yt and consider the following Doob martingale

Si = E
(
S | Y1, . . . , Yi

)
, ∀i, 0 ≤ i ≤ ĉn.

We have Ŝcn = S and also S = ĉkn. Moreover,

S0 = ES =
(
3
k

)
[`pn]k[`nn]3−k
[`pn+ `nn]3

ĉn ∼
(
3
k

)
`p
k`n

3−k

(`p + `n)3
ĉn.

Since d̂ ∈ N (n, δ̂, ε2), by choosing ε2 small enough, we can guarantee that ĉ is arbitrarily close to γ̂ and thus
|S0/n− γk| < ε/2. (9)
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Nowwe show that |Si−Si+1| ≤ C for some constant C > 0, for any i ∈ {0, . . . , ĉn−1}. For such a fixed i, define by g = ĉn− i
the number of clauses remaining at step i (i.e., when the value of Yi but not yet Yi+1 is known), and denote by 3gp (0 ≤ p ≤ 1)
the number of positive literals remaining (by 3gq the number of negative literals, respectively, where q = 1 − p) at step i.
Furthermore, for such a fixed i ≥ 1, we define r ∈ {0, . . . , 3} to be the random variable indicating the syntactic type of the
ith clause. Then,

|Si − Si+1| =

∣∣∣∣∣
(3gp
k

)( 3gq
3−k

)(3g
3

) g −

(3gp−r
k

)(3gq−3+r
3−k

)(3g−3
3

) (g − 1)+ D

∣∣∣∣∣ , (10)

where D = 1 if k = r and 0 otherwise. Since for our purposes we do not need to calculate the exact constant C , we ignore
D. The right-hand side of (10) excluding D can be written as∣∣∣∣g(3gp)!(3gq)!3!(3g − 3)! − (g − 1)(3gp− r)!(3gq− 3+ r)!3!(3g − 6)!3g(3g − 1)(3g − 2)F1F2F3(3gp− k)!k!(3− k)!(3g)!(3gq− 3+ k)!

∣∣∣∣ , (11)

where F1, F2 and F3 are altogether 3 factors, such that in r of them the leading term is 3gp, and in 3− r of them the leading
term is 3gq. (11) can then be rewritten as∣∣∣∣ 1

k!(3− k)!

(
3!F4F5F6

3(3g − 1)(3g − 2)
−

3!F1F2F3G
3(3g − 4)(3g − 5)

)∣∣∣∣ , (12)

where F4, F5 and F6 are altogether 3 factors, such that in k of them the leading term is 3gp, and in 3− k of them the leading
term is 3gq. G consists of k− r factors which contain 3gp as leading term and r−k factors which contain 3gq as leading term
(negative values appear in the denominator). Hence, both terms of (12) contain a total of k factors containing 3gp as leading
term, and 3− k factors containing 3gq as a leading term. When bringing these terms to a common denominator, we obtain∣∣∣∣ 1

k!(3− k)!

(
3!F4F5F6(3g − 4)(3g − 5)− 3!(3g − 1)(3g − 2)F1F2F3G

3(3g − 1)(3g − 2)(3g − 4)(3g − 5)

)∣∣∣∣ . (13)

Observe that after expanding the products in the numerator the leading terms cancel out and the remaining terms are all
O(g5). Since the denominator is clearlyΩ(g5), we obtain that |Si − Si+1| ≤ C . Thus, by Azuma’s inequality,

Pr(|Ŝcn − S0| ≥ R) ≤ e
−

R2

2C2 ĉn .

Setting R = εn/2, and by (9), we get
Pr(| ĉk − γk| ≥ ε) = Pr(|Ŝcn − γkn| ≥ εn) ≤ Pr(|Ŝcn − S0| ≥ εn/2) ≤ e−Θ(n) = Θ(βn),

for some 0 < β < 1. Taking a union bound over all k completes the proof of the lemma. �

6. Counting simple and satisfiable configurations

All the previous results establish a connection between the uniform probability spaces Fn,m and Cε
n,̂d
. In order to prove

Theorem 1.1, it remains to bound the probability that a configuration ϕ ∈ Cε
n,̂d
is simple and satisfiable. More precisely, the

goal of this section is to prove the following proposition.
Proposition 6.1. There exist ε > 0 and 0 < β < 1 such that for any d̂ ∈ N (n, δ̂, ε),

PrCε
n,̂d
(Sat ∧ Simple) = O(βn).

We now build up the machinery for its proof. Let N (n, δ̂, γ̂, ε) be the set of tuples (̂d, ĉ ) such that d̂ ∈ N (n, δ̂, ε) and
ĉ = ( ĉk)0≤k≤3 is a tuple of scaled naturals satisfying (7) (recall also from (6) the definition of `p and `n), and moreover
| ĉk− γ̂k| ≤ ε. For each (̂d, ĉ ) ∈ N (n, δ̂, γ̂, ε), we defineCn,̂d ,̂c to be the uniform probability space of all configurations with
degree sequence d̂ and clause-type sequence ĉ . It suffices to show that for any (̂d, ĉ ) ∈ N (n, δ̂, γ̂, ε)we have

PrCn,̂d ,̂c
(Sat ∧ Simple) = O(βn).

Hence, we consider d̂, ĉ and the probability space Cn,̂d ,̂c to be fixed throughout this section, and we try to find a suitable
bound for Pr(Sat ∧ Simple).
We need some definitions. Let us fix any given configuration ϕ ∈ Cn,̂d ,̂c . A light variable of ϕ is a variable with i ≤ M

positive occurrences and j ≤ M negative occurrences in ϕ. We will use here and in the numerical calculations that follow
the value M = 23. The other variables are called heavy. We consider a weaker notion of satisfiability in which heavy
variables are treated as jokers and are always satisfied regardless of their sign in the formula and their assigned value.
Given a configuration ϕ ∈ Cn,̂d ,̂c and a truth assignment A, we say that A |=

[ ϕ iff each clause of ϕ contains at least one
heavy variable or at least one satisfied occurrence of a light variable. Let Sat[ be the set of configurationsϕ ∈ Cn,̂d ,̂c forwhich
there exists at least one truth assignment A such that A |=[ ϕ. Clearly, if A |= ϕ, then also A |=[ ϕ, and hence Sat ⊂ Sat[. We
still introduce a further restriction to satisfiability in a way similar to [11,4], in order to decrease the number of satisfying
truth assignments of each configuration without altering the set of simple satisfiable configurations. Given a configuration
ϕ ∈ Cn,̂d ,̂c and a truth assignment A, we say that A |=

[′ ϕ iff A |=[ ϕ and moreover each light variable which is assigned the
value zero by A appears at least once as the only satisfied literal of a blocking clause, i.e. a clause with one satisfied negative
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literal and two unsatisfied ones. Let Sat[′ be the set of configurations which are satisfiable according to this latter notion.
Notice that if ϕ ∈ Simple, then ϕ ∈ Sat[′ iff ϕ ∈ Sat[, which can be proved by an argument analogous to the one in [11]
and [4]. Therefore, we have

Pr(Sat ∧ Simple) ≤ Pr(Sat[ ∧ Simple) = Pr(Sat[′ ∧ Simple) ≤ Pr(Sat[′).
Let X be the random variable counting the number of satisfying truth assignments of a randomly chosen configuration
ϕ ∈ Cn,̂d ,̂c in the Sat

[′ sense. We need to bound

Pr(Sat[′) = Pr(X > 0) ≤ EX =
|{(ϕ, A) : ϕ ∈ Cn,̂d ,̂c , A |=

[′ ϕ}|

|Cn,̂d ,̂c |
. (14)

In the following subsection, we obtain an exact but complicated expression for EX by a counting argument, and then we
give a simple asymptotic bound which depends on the maximization of a particular continuous function over a bounded
polytope. The next subsection contains the maximization of that function.

6.1. Asymptotic bound on EX

First, we compute the denominator of the rightmost member in (14).

|Cn,̂d ,̂c | =

(
n

(̂di,jn)i,j

)(
`pn

ĉ1n, 2 ĉ2n, 3 ĉ3n

)(
`nn

3 ĉ0n, 2 ĉ1n, ĉ2n

)
(3 ĉ0n)!
( ĉ0n)!6̂c0n

(2 ĉ1n)!
2̂c1n

(2 ĉ2n)!
2̂c2n

(3 ĉ3n)!
( ĉ3n)!6̂c3n

=
n!∏

i,j(̂di,jn)!

(`pn)!(`nn)!
2̂cn3( ĉ0+̂c3)n( ĉ0n)!( ĉ1n)!( ĉ2n)!( ĉ3n)!

.

In order to deal with the numerator in (14), we need some definitions. Let us consider any fixed ϕ ∈ Cn,̂d ,̂c and any
assignment A such that A |=[′ ϕ. We will classify the variables, the clauses and the copies of literals in ϕ into several types,
and define parameters counting the scaled number of items of each type. Variables are classified according to their degree.
A variable is said to have degree (i, j) if it appears i times positively and j times negatively in ϕ. Let L andH , respectively,
be the set of possible degrees for light and heavy variables.

L = {(i, j) ∈ N2 : 0 ≤ i, j ≤ M}, H = {(i, j) ∈ N2 : i > M or j > M}.

We also consider an extended notion of degree for light variables which are assigned 0 by A. One of such variables has
extended degree (i, j, k) if it has degree (i, j) and among its j negative occurrences k appear in a blocking clause, being the
only satisfied literal of the clause. Let

L′ = {(i, j, k) ∈ N3 : 0 ≤ i ≤ M, 1 ≤ k ≤ j ≤ M},

be the set of possible extended degrees for these light 0-variables. For each (i, j) ∈ L, let ti,j be the scaled number of light
variables assigned 1 by Awith degree (i, j) inϕ. For each (i, j, k) ∈ L′, let fi,j,k be the scaled number of light variables assigned
0 by Awith extended degree (i, j, k) in ϕ. We must have

ti,j +
j∑
k=1

fi,j,k = d̂i,j, ∀(i, j) ∈ L. (15)

On the other hand, we classify the copies of literals occurring in ϕ into five different types depending on their sign in ϕ, their
assignment by A and whether they belong or not to a blocking clause. Each copy receives a label from the set

S = {ps, ns1, ns2, pu, nu},

where the labels ps, pu, ns1, ns2 and nu denote positive-satisfied, positive-unsatisfied, negative-satisfied inside a blocking
clause, negative-satisfied inside a non-blocking clause and negative-unsatisfied, respectively. It is useful to consider as well
coarser classifications of the copies of literals in ϕ and thus we define the types p, n and ns which correspond to positive,
negative and negative-satisfied copies, respectively. Also, let

S′ = {ps, ns, pu, nu} and S′′ = {p, n}.

For each of the types σ ∈ S ∪ S′ ∪ S′′ that we defined, let `σ be the scaled number of copies of type σ . Note that `p and `n
were already defined (see Eqs. (6) and (7)). Also, let hσ be the scaled number of copies of type σ which come from heavy
variables. Recall that these copies are always satisfied by definition regardless of their sign. In view of Eqs. (6) and (7), and
of

hps =
∑
H

îdi,j, hns =
∑
H

ĵdi,j,

we observe that `p, `n, hps and hns are constants which do not depend on the particular choice of (ϕ, A). The parameters
hns1 and hns2 depend on the particular (ϕ, A) and satisfy

hns1 + hns2 = hns. (16)
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The parameters `ps, `pu, `ns1, `ns2 and `nu also depend on (ϕ, A) and can be expressed as

`ps =
∑

L

iti,j + hps, `pu =
∑
L′

ifi,j,k, `ns1 =
∑
L′

kfi,j,k + hns1,

`ns2 =
∑
L′

(j− k)fi,j,k + hns2, `nu =
∑

L

jti,j. (17)

Finally, the clauses of ϕ are classified into 16 extended types (not to be mistaken with the four syntactic types defined
immediately before (7)). Each type is represented by a 2× 2 matrix from the set

A =

{
α =

(
ps(α) ns(α)
pu(α) nu(α)

)
∈ N4 :

∑
σ∈S′

σ(α) = 3, ps(α)+ ns(α) > 0

}
.

A clause is said to be of extended type α =
(
ps(α) ns(α)
pu(α) nu(α)

)
if for each σ ∈ S′ the clause contains σ(α) copies of literals of

type σ . Notice that all clauses of extended type α also contain the same number of copies of type σ for all other σ ∈ S ∪ S′′

and thus we can define σ(α) to be this number. For each α ∈ A, let cα be the scaled number of clauses of extended type α
(while ĉk, 0 ≤ k ≤ 3 is the number of clauses of syntactic type k, i.e. with k positive literals). We have∑

α∈A
p(α)=k

cα = ĉk. (18)

The parameters `ps, `pu, `ns1, `ns2 and `nu can also be expressed in terms of the cα by

`σ =
∑
α∈A

σ(α)cα, ∀σ ∈ S. (19)

We now consider the following equations:

`ps + `pu = `p, `ns1 + `ns2 + `nu = `n (20)

`ps =
∑

L

iti,j + hps, `ns1 =
∑
L′

kfi,j,k + hns1, `ns2 =
∑
L′

(j− k)fi,j,k + hns2 (21)

`ps =
∑
α∈A

ps(α)cα, `ns1 =
∑
α∈A

ns1(α)cα, `ns2 =
∑
α∈A

ns2(α)cα. (22)

In view of (6) and (7), the system of equations {(15), (16), (17), (18), (19)} is equivalent to {(15), (16), (18), (20), (21), (22)}.
So far we verified that the constraints {(15), (16), (18), (20), (21), (22)} express necessary conditions for the parameters

of any particular (ϕ, A), with ϕ ∈ Cn,̂d ,̂c and A |=
[′ ϕ. Nowwe will see that they are also sufficient, in the sense that for each

tuple of parameters satisfying the above-mentioned constraints we will be able to construct pairs (ϕ, A).
Let t̄ = (ti,j)L, f̄ = (fi,j,k)L′ , h̄ = (hns1, hns2), c̄ = (cα)α∈A, ¯̀ = (`σ )σ∈S and

K = |L| + |L′| + 2+ |A| + |S| = (M + 1)2(1+M/2)+ 23.

We define the bounded polytope P (̂d, ĉ ) ⊂ RK as the set of tuples x̄ = (t̄, f̄ , h̄, c̄, ¯̀) of non-negative reals satisfying {(15),
(16), (18), (20), (21), (22)}, and consider the following set of lattice points in P (̂d, ĉ ):

I(n, d̂, ĉ ) = P (̂d, ĉ ) ∩
(
1
n

N
)K
.

For any tuple of parameters x̄ ∈ I(n, d̂, ĉ ), we proceed to count the number of pairs (ϕ, A), with ϕ ∈ Cn,̂d ,̂c and A |=
[′ ϕ,

satisfying these parameters. We denote this number by T (x̄, n, d̂, ĉ ). In order to do the counting, we first consider the
number ofways of assigning to each variable a truth value and a degree (and an extended degree aswell for light 0-variables).
This gives

2
∑

H d̂i,jn
(

n
(ti,jn)L, (fi,j,kn)L′ , (̂di,jn)H

)
.

Notice that the only constraints required at this stage for the parameters are those in (15). Then we have to choose for each
light 0-variable which k of the j negatively satisfied copies contribute to blocking clauses, and also (taking into account (16))
which hns1 of the hns negative copies of heavy variables contribute to blocking clauses:(∏

L′

(
j
k

)fi,j,kn)( hnsn
hns1n, hns2n

)
.
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So far, we have assigned labels in S to all copies of literals in ϕ. This construction is compatible with (17). Now we have to
decide which specific copies of each type σ ∈ S will be used in the construction of clauses of each extended type α ∈ A.
The number of ways of doing that is∏

σ∈S

(
`σn

(σ (α)cαn)α∈A

)
,

where it is sufficient that the c̄ parameters satisfy (18) and that the ¯̀ parameters are expressible as in (19). Finally, the
number of ways of constructing cα clauses of each extended type α ∈ A is

∏
α∈AW (α),where

W (α) =
(w(α)cαn)!(cαn)!2−w(α)

(w(α)!)cαn
=


(cαn)!2 ifw(α) = 1,
(2cαn)!
2cαn ifw(α) = 2,
(3cαn)!

(cαn)!6cαn
ifw(α) = 3,

andw(α) is the number of 0’s in the matrix α. Putting everything together, we have that

T (x̄, n, d̂, ĉ ) = 2
∑

H d̂i,jn
(

n
(ti,jn)L, (fi,j,kn)L′ , (̂di,jn)H

)
×

(∏
L′

(
j
k

)fi,j,kn)( hnsn
hns1n, hns2n

)∏
σ∈S

(
`σn

(σ (α)cαn)α∈A

)∏
α∈A

W (α).

Hence

EX =
1

|Cn,̂d ,̂c |

∑
x̄∈I(n,̂d ,̂c )

T (x̄, n, d̂, ĉ ).

To characterize the asymptotic behavior of T (x̄, n, d̂, ĉ )/|Cn,̂d ,̂c |with respect to n, we define

F(x̄) =

∏
σ∈S

`σ
`σ

∏
L

ti,jti,j
∏
L′

(
fi,j,k/

( j
k

))fi,j,k
hns1hns1hns2hns2

∏
α∈A

(
(w(α)!/2)cα

)cα
and

B(̂d, ĉ ) = 2
∑

H d̂i,jhnshns
∏
L

d̂̂
di,j
i,j
3c0+c3c0c0c1c1c2c2c3c3

`p
`p`n

`n
.

Then we use the following form of Stirling’s inequality which holds for any k ∈ N:√
2π(k+ 1/8)(k/e)k ≤ k! ≤

√
2π(k+ 1/4)(k/e)k,

and we obtain
T (x̄, n, d̂, ĉ )
|Cn,̂d ,̂c |

≤ poly1(n)
(
B(̂d, ĉ )F(x̄)

)n
,

where poly1(n) is some fixed polynomial in nwhich can be chosen to be independent of x̄, d̂ and ĉ (as long as x̄ ∈ I(n, d̂, ĉ )
and (̂d, ĉ ) ∈ N (n, δ̂, γ̂, ε)). Moreover, since the size of I(n, d̂, ĉ ) is also polynomial in n, we can write

EX ≤ poly2(n)
(
B(̂d, ĉ ) max

x̄∈I(n,̂d ,̂c )
F(x̄)

)n
≤ poly2(n)

(
B(̂d, ĉ ) max

x̄∈P (n,̂d ,̂c )
F(x̄)

)n
,

for some other fixed polynomial poly2(n). By continuity, if we choose ε to be small enough, we can guarantee that

EX ≤
(
(1+ 10−7)B max

x̄∈P (n,̂δ,̂γ)
F(x̄)

)n
, (23)

where (recall the definition in (8))

B = B(̂δ, γ̂) = 2
∑

H δ̂i,j

(∑
H

ĵδi,j

)∑
H ĵδi,j∏

L

δ̂
δ̂i,j
i,j
3γ̂0+γ̂3 γ̂ γ̂00 γ̂

γ̂1
1 γ̂

γ̂2
2 γ̂

γ̂3
3

λp
λpλn

λn

= 2
∑

H δ̂i,j

(∑
H

ĵδi,j

)∑
H ĵδi,j ∏

L δ̂
δ̂i,j
i,j

(3γ̂ )2γ̂
. (24)
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6.2. Maximization of F(x̄)

We wish to maximize F or equivalently log F over the domain P (n, δ̂, γ̂). We first show the following lemma:

Lemma 6.2. F(x̄) does not maximize on the boundary of P (n, δ̂, γ̂).

Proof. We show the equivalent statement that log(F) does not maximize on the boundary of P = P (n, δ̂, γ̂). Let x̄ be a
fixed point on the boundary of P . Since the boundary of P consists only of non-negativity constraints of some parameters,
this means that some values of `σ , ti,j, fi,j,k, cα , hns1 or hns2 of x̄ have to be zero. It turns out that the only `σ which can be
zero is `ns2: for all other `σ one can consider the linear programwhich contains all constraints and as objective function the
minimization of the particular `σ . Then, the value of the objective function is in all cases except for `ns2 strictly greater than
zero (this is shown using CPLEX). In the following we call all cα for which ns2(α) > 0, all fi,j,k withM ≥ j > k ≥ 1 as well as
hns2 (cf. (21) and (22)) to be forced. We now make a case analysis depending on which of the remaining parameters is zero.
Case 1: None of the `σ is equal to zero.
In this case we know that at least one of the ti,j, fi,j,k, cα , hns1 or hns2 is equal to zero. First observe that the interior of P
contains at least one feasible point x̄0: since all constraints are linear, one can add additional linear constraints to ensure
that all values of `σ , ti,j, fi,j,k, cα , hns1 and hns2 are strictly positive and then check the feasibility of the constraints (we did
this using CPLEX). Since P is convex, we can find a direction that points towards x̄0. In this direction all the ti,j, fi,j,k, cα , hns1
and hns2 components which were zero must increase (perhaps at different rates), while the non-zero variables can either
increase or decrease (and remain non-zero). Hence, the directional derivative in this direction contains at least one term
which is− log(0) (i.e.+∞) (plus/minus some constants) and hence it is an increasing direction.
Case 2: `ns2 = 0, and in addition to the forced values of cα , fi,j,k and hns2 at least one of the other values of cα , ti,j, fi,j,k or
hns1 is zero as well.
Using a similar argument as in the previous case, we can find a feasible point x̄1 for which `ns2 = 0, all forced parameters
are zero, but no other parameters are zero (we did this using CPLEX). Again, by convexity of P , we can find a direction that
points towards x̄1. In this direction `ns2 and all the forced parameters remain zero, but all other cα , ti,j, fi,j,k and hns1 which
were zero before increase (there is at least one of them). Hence, the directional derivative in this direction contains at least
one term which is− log(0) (plus/minus some constants), and hence it is an increasing direction.
Case 3: `ns2 = 0, all the forced cα , fi,j,k and hns2 are zero, but nothing else is zero.
In this case we move infinitesimally in the following direction: we increase `ns2 and decrease `ns1 by the same

infinitesimally small amount =: ζ , we increase cα for α ∈
{(
1 0
1 1

)
,

(
1 0
0 2

)
,

(
2 0
1 0

)}
by ζ , we decrease cα for

α ∈

{(
0 1
1 2

)
,

(
1 0
1 1

)
,

(
3 0
0 0

)}
by ζ , and we also increase f2,2,1 and hns2 by ζ/2 and decrease f2,2,2 and hns1 by ζ/2

(note that since all values of fi,j,k, cα and hns1 which are not forced are strictly positive, all the changes are allowed). It can
be checked that when performing all these changes, all constraints remain valid, and by convexity of P , we can move into

this direction. In this direction the variables `ns2, cα with α =
(
1 0
1 1

)
, f2,2,1 and hns2 which were zero before move away

from zero, all other zero variables remain zero, and all other non-zero variables remain non-zero. Hence, the directional
derivative in this direction contains one term log(0) and three terms− log(0) (plus/minus some constants), and hence it is
an increasing direction. �

Since log F does not maximize on the boundary of its domain, the maximum must be attained at a critical point of log F
in the interior of P (n, δ̂, γ̂). Next, we use the Lagrange multipliers technique to characterize each critical point of log F in
terms of the solution of a 3× 3 system.
In order to characterize the critical points of log F and the value of the maximum of F , we need some definitions. Let us

consider the functions

Ψi,j = νps
i
+ (νns1 + νns2)

j
− νns2

j
∀(i, j) ∈ L,

Ψk =
∑
α∈A

p(α)=k

2
w(α)!

µps
ps(α)µns1

ns1(α)µns2
ns2(α)

∀k ∈ {0, . . . , 3},

Ψ = νns1 + νns2, Ψp = νpsµps + 1, Ψn = νns1µns1 + νns2µns2 + 1,

defined on tuples (ν̄, µ̄) = (νps, νns1, νns2, µps, µns1, µns2) of positive reals, and let

L = νpshps
(∏

L

Ψi,ĵ
δi,j

)
Ψ hns

(
3∏
k=0

Ψk
γ̂k

)
Ψp
−λpΨn

−λn .

Lemma 6.3. There is a bijective correspondence between critical points of log F in the interior ofP (n, δ̂, γ̂) and positive solutions
of the 6× 6 system of equations

∇ν̄,µ̄(log L) = 0. (25)
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Moreover, the value of F at each of these critical points can be expressed in terms of the corresponding solution by

ν
hps
ps

(
λp

Ψp

)λp ( λn
Ψn

)λn ∏
L

(
Ψi,j

δ̂i,j

)δ̂i,j ( Ψ

hns

)hns 3∏
k=0

(
Ψk

γ̂k

)γ̂k
. (26)

Proof. We use the Lagrangemultipliers technique to characterize the critical points of log F in the interior ofP (n, δ̂, γ̂). Let
(ρ ′i,j)L, ρ

′, (ρ ′k)k∈{0,...,3} and (ρ
′
p, ρ
′
n) be the Lagrange multipliers of the equations in (15), (16), (18) and (20) respectively.

These equations are called partition constraints. Moreover, let (ν ′ps, ν
′
ns1, ν

′
ns2) and (µ

′
ps, µ

′
ns1, µ

′
ns2) be the Lagrange

multipliers of the equations in (21) and (22) respectively. After a few manipulations, the standard Lagrange multiplier
equations can be written as

ti,j = ρi,jνpsi ∀(i, j) ∈ L, fi,j,k =
(
j
k

)
ρi,jνns1

kνns2
j−k
∀(i, j, k) ∈ L′,

hns1 = ρνns1, hns2 = ρνns2,

cα =
2

w(α)!
ρp(α)µps

ps(α)µns1
ns1(α)µns2

ns2(α)
∀α ∈ A,

`ps = ρpνpsµps, `pu = ρp, `ns1 = ρnνns1µns1

`ns2 = ρnνns2µns2, `nu = ρn, (27)

where

ρi,j = e
ρ′i,j−1 ∀(i, j) ∈ L, ρ = eρ

′
−1

ρk = eρ
′
k−1 ∀k ∈ {0, . . . , 3}, ρσ = e−ρ

′
σ−1 ∀σ ∈ {p, n},

νσ = eν
′
σ ∀σ ∈ {ps, ns1, ns2}, µσ = eµ

′
σ ∀σ ∈ {ps, ns1, ns2}.

Notice that the new variables defined above must be strictly positive. By combining (27) with the partition constraints (15),
(16), (18) and (20), the variables (ρi,j)L, ρ, (ρk)k∈{0,...,3} and (ρp, ρn) are eliminated and (t̄, f̄ , h̄, c̄, ¯̀) can be expressed just
in terms of νσ and µσ (σ ∈ {ps, ns1, ns2}):

ti,j = δ̂i,j
νps

i

Ψi,j
∀(i, j) ∈ L, fi,j,k = δ̂i,j

( j
k

)
νns1

kνns2
j−k

Ψi,j
∀(i, j, k) ∈ L′

hns1 = hns
νns1

Ψ
, hns2 = hns

νns2

Ψ
,

cα = γ̂p(α)
2

w(α)!
µps

ps(α)µns1
ns1(α)µns2

ns2(α)

Ψp(α)
∀α ∈ A,

`ps = λp
νpsµps

Ψp
, `pu = λp

1
Ψp
, `ns1 = λn

νns1µns1

Ψn
,

`ns2 = λn
νns2µns2

Ψn
, `nu = λn

1
Ψn
. (28)

Then we plug these expressions into the constraints (21) and (22) and after a few manipulations we obtain the following
6× 6 system on variables νσ , µσ

νps

(
λp

∂Ψp/∂νps
Ψp

)
= νps

(∑
L δ̂i,j

∂Ψi,j/∂νps
Ψi,j

)
+ hps,

νns1

(
λn

∂Ψn/∂νns1
Ψn

)
= νns1

(∑
L δ̂i,j

∂Ψi,j/∂νns1
Ψi,j

+ hns
∂Ψ /∂νns1

Ψ

)
,

νns2

(
λn

∂Ψn/∂νns2
Ψn

)
= νns2

(∑
L δ̂i,j

∂Ψi,j/∂νns2
Ψi,j

+ hns
∂Ψ /∂νns2

Ψ

)
,

(29a)

µps

(
λp

∂Ψp/∂µps
Ψp

)
= µps

(∑3
k=0 γ̂k

∂Ψk/∂µps
Ψk

)
,

µns1

(
λn

∂Ψn/∂µns1
Ψn

)
= µns1

(∑3
k=0 γ̂k

∂Ψk/∂µns1
Ψk

)
,

µns2

(
λn

∂Ψn/∂µns2
Ψn

)
= µns2

(∑3
k=0 γ̂k

∂Ψk/∂µns2
Ψk

)
,

(29b)

which can be rewritten as in (25). (26) then follows by direct substitution. �

By restricting our attention to (29b), we observe that we can easily express νps, νns1 and νns2 in terms ofµps,µns1 andµns2.
By plugging this expression into (29a), we obtain a 3 × 3 system in terms of the variables µps, µns1 and µns2 (recall that
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only positive solutions of the µσ which lead to positive νσ are considered). We numerically solved this 3 × 3 system with
the help of Maple, using 50 digits of precision andM = 23. The unique solution obtained by Maple is

µps ≈ 1.9972796, µns1 ≈ 0.45029358, µns2 ≈ 0.33794030,
νps ≈ 1.2782018, νns1 ≈ 0.33277280, νns2 ≈ 0.95336927.

In view of (23) and Lemma 6.3, we evaluate (26) at these values andmultiply this by B given in (24), andwe obtain the bound

EX ≤
(
(1+ 10−7)0.9999998965

)n
. (30)

Once we have proved the system does not maximized at the boundary and characterized the critical points, we go into
solving numerically the system with the help of Maple, which finds just one solution. We express the maximum of F over
P (n, δ̂, γ̂) in terms of this solution, and multiply it by B given in (24), and from (23) we obtain the bound

EX ≤
(
(1+ 10−7)0.9999998965

)n
, (31)

which concludes the proof of Proposition 6.1, since (1+ 10−7)0.9999998965 < 1.
Note that the validity of our approach relies on the assumption that the solution of the 3× 3 system found by Maple is

unique, which implies that the critical point of log F we found is indeed the globalmaximum (if an alternative solution exists
it could happen that at the corresponding critical point the function F attains a value greater than the maximum obtained).
In order to be more certain about the correctness of (31) we performed the following alternative experiment: Let P ¯̀ be

the polytope obtained by restrictingP (n, δ̂, γ̂) to the coordinates `ps, `pu, `ns1, `ns2, `nu. Observe that this is a 3D polytope
in R5, since its elements are determined by the values of the coordinates `ps, `ns1, `ns2. We performed a sweep over this
polytope by considering a grid of 100 equispaced points in each of the three dimensions. For each of the 1003 fixed tuples
of (`ps, `ns1, `ns2) which correspond to the points on the grid, we determine the remaining two coordinates of P ¯̀ , and
maximize log F restricted to those fixed values of ¯̀ . Observe that in this case log F is strictly concave and thus has a unique
maximum which can be efficiently found by some iterative variant of Newton algorithm. We checked, again using Maple,
that the value obtained for each fixed tuple of ¯̀ is below the maximum in (31).
Therefore, through this section we have proved Proposition 6.1.

7. Proof of Theorem 1.1

Choose ε, ε2, ε1 > 0 and 0 < β < 1 which satisfy the statements of Proposition 4.1, Lemma 5.1 and Proposition 6.1. We
can assume that ε1 < ε2 < ε. LetN1 = N (n, δ̂, ε2) ⊂ N (n, δ̂, ε). Using Lemma 5.1 and Proposition 6.1, for any d̂ ∈ N1

PrCn,̂d
(Sat ∧ Simple) ≤ PrCε

n,̂d
(Sat ∧ Simple)+ O(βn) = O(βn). (32)

LetN2 = N (n, δ, ε1), and consider any given d ∈ N2. Then from (5), (32) and Proposition 4.1,

PrCn,d (Sat ∧ Simple) ≤ PrĈn,d (Sat ∧ Simple)

= PrĈn,d (̂d /∈ N1)+
∑
d̂∈N1

PrCn,̂d
(Sat ∧ Simple)PrĈn,d (̂d)

≤ O(βn
1/2
)+ O(βn)PrĈn,d (̂d ∈ N1) = O(βn

1/2
), (33)

where the events (̂d) and (̂d ∈ N1) on the probability space Ĉn,d denote that the degree sequence is d̂ and the degree
sequence is inN1. Finally, from (3), Lemmas 2.1, 3.1 and (33) we get

PrFn,m(Sat) = PrFn,m(d /∈ N2)+
∑
d∈N2

PrCn,d (Sat | Simple)PrFn,m(d)

= o(1)+
∑
d∈N2

PrCn,d (Sat ∧ Simple)

PrCn,d (Simple)
PrFn,m(d)

≤ o(1)+ eΘ(n
1/3 log n)

∑
d∈N2

PrCn,d (Sat ∧ Simple)PrFn,m(d)

≤ o(1)+ eΘ(n
1/3 log n)O(βn

1/2
)PrFn,m(d ∈ N2) = o(1),

where (d) and (d ∈ N2) denote respectively the event that a random formula φ ∈ Fn,m has degree sequence d and the
event that the degree sequence of φ belongs toN2.

8. Conclusion and further work

In this paper, we presented an improvement to the existing upper bound on the conjectured 3-SAT-threshold of 4.27.
We believe that further improvements based on thinning the space of satisfying assignments will have to deal with very
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complicated mathematics. In fact, we first tried the same counting approach to analyze double flips instead of single flips,
but we were unable to handle the resulting function.
One promising direction is the recent paper by Maneva and Sinclair [13], mentioned in the introduction. Their approach

toworkwith non-trivial core assignments instead of satisfying assignments couldmake themathematics a lotmore feasible.
However, to obtain completely rigorous results using this method, additional work is needed.
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