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Abstract

We show for an arbitrary ℓp norm that the property that a random
geometric graph G(n, r) contains a Hamiltonian cycle exhibits a sharp

threshold at r = r(n) =
√

log n

αpn
, where αp is the area of the unit disk in

the ℓp norm. The proof is constructive and yields a linear time algorithm
for finding a Hamiltonian cycle of G(n, r) a.a.s., provided r = r(n) ≥
√

log n

(αp−ǫ)n
for some fixed ǫ > 0.

1 Introduction

Given a graph G on n vertices, a Hamiltonian cycle is a simple cycle that visits
each vertex of G exactly once. A graph is said to be Hamiltonian if it contains a
Hamiltonian cycle. The problem of given a graph, deciding if it is Hamiltonian
or not is known to be NP-complete [5]. Two known facts for the Hamiltonicity
of random graphs are that almost all d-regular graphs (d ≥ 3) are Hamiltonian
[14], and that in the Gn,p model if p(n) = (log n + log log n + ω(n))/n, then
a.a.s. Gn,p is Hamiltonian [9] (see also chapter 8 of [3]). Throughout this paper,
“a.a.s.” will abbreviate asymptotically almost surely, that is with probability
tending to 1 as n goes to ∞.

A random geometric graph G(n, r) [6] is a graph resulting from placing a
set of n vertices uniformly at random and independently on the unit square
[0, 1]2, and connecting two vertices if and only if their distance is at most the
given radius r, the distance depending on the type of metric being used. The
two more often used metrics are the ℓ2 and the ℓ∞ norms. In recent times,
random geometric graphs have received quite a bit of attention to model sensor
networks, and in general ad-hoc wireless networks (see e.g. [1]).

Random geometric graphs are the randomized version of unit disk graphs.
An undirected graph is a unit disk graph if its vertices can be put in one-to-one
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correspondence with circles of equal radius in the plane in such a way that two
vertices are joined by an edge iff their corresponding circles intersect. W.l.o.g.
it can be assumed that the radius of the circles is 1 [4]. The problem of deciding
if a given unit disk graph is Hamiltonian is known to be NP-complete [8].

Many properties of random geometric graphs have been intensively studied,
both from the theoretical and from the empirical point of view. It is known
(see [7]) that all monotone properties of G(n, r) exhibit a sharp threshold. For
the present paper, the most relevant result on random geometric graphs is the
connectivity threshold: in [10] it is proven that r = r(n) =

√

log n/(πn) is the
sharp threshold for the connectivity of G(n, r) in the ℓ2 norm. For the ℓ∞ norm,
the sharp threshold for connectivity occurs at r = r(n) =

√

log n/(4n) (see [2]).
In general, for an arbitrary ℓp norm, for some fixed p, 1 ≤ p ≤ ∞, the sharp

threshold is known to be r = r(n) =
√

log n/(αpn), where αp is the area of the
unit disk in the ℓp norm (see [11] and [12]).

A natural issue to study is the existence of Hamiltonian cycles in G(n, r).
Penrose in his book [12] poses it as an open problem whether exactly at the point
where G(n, r) gets 2-connected, the graph also becomes Hamiltonian a.a.s. Petit
in [13] proved that for r = ω(

√

log n/n), G(n, r) is Hamiltonian a.a.s. and he
also gave a distributed algorithm to find a Hamiltonian cycle in G(n, r) with
his choice of radius. In the present paper, we find the sharp threshold for this
property in any ℓp metric. In fact, let p (1 ≤ p ≤ ∞) be arbitrary but fixed
throughout the paper, and let G=G(n, r) be a random geometric graph with
respect to ℓp. We first show the following

Theorem 1 The property that a random geometric graph G=G(n, r) contains

a Hamiltonian cycle exhibits a sharp threshold at r =
√

log n
αpn , where αp is the

area of the unit disk in the ℓp norm.
More precisely, for any ǫ > 0,

• if r =
√

log n
(αp+ǫ)n , then a.a.s. G contains no Hamiltonian cycle,

• if r =
√

log n
(αp−ǫ)n , then a.a.s. G contains a Hamiltonian cycle.

and as a corollary of the proof, we describe a linear time algorithm that finds a

Hamiltonian cycle in G(n, r) a.a.s., provided that r ≥
√

log n
(αp−ǫ)n for some fixed

ǫ > 0.

2 Proof of Theorem 1

To prove Theorem 1, note that the lower bound of the threshold is trivial. In

fact, if r =
√

log n
(αp+ǫ)n , then a.a.s. G is disconnected [11] and hence it cannot

contain any Hamiltonian cycle. To simplify the proof of the upper bound, we
need some auxiliary definitions and lemmas. In the remainder of the section,

we assume that r =
√

log n
(αp−ǫ)n for some fixed ǫ > 0, and we show that a.a.s. G

contains a Hamiltonian cycle.

Let us take y =
⌊

2
r

⌋−1
. Intuitively, y is close to r/2 but slightly smaller. We

divide [0, 1]2 into squares of side length y. Call this the initial tessellation of
[0, 1]2. Two different squares R and S are defined to be friends if they are either
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adjacent (i.e., they share at least one corner) or there exists at least one other
square T adjacent to both R and S. Thus, each square has at most 24 friends.
Then, we create a second and finer tessellation of [0, 1]2 by dividing each square
into k2 new squares of side length y/k ∼ r/(2k), for some large enough but fixed
k = k(ǫ) ∈ N. We call this the fine tessellation of [0, 1]2, and we refer to these
smaller squares as cells. We note that the total numbers of squares and cells
are both Θ(1/r2). Note that with probability 1, for every fixed n, any vertex
will be contained in exactly one cell (and exactly one square). In the following
we always assume this.

We say that a cell is dense, if it contains at least 48 vertices of G. If the cell
contains at least one vertex but less than 48 vertices, we say the cell is sparse. If
the cell contains no vertex, the cell is empty. Furthermore we define an animal
to be a union of cells which is topologically connected. The size of an animal
is the number of different cells it contains. In particular, the squares of the
initial tessellation of [0, 1]2 are animals of size k2. An animal is called dense if
it contains at least one dense cell. If an animal contains no dense cell, but it
contains at least one vertex of G, it is called sparse.

From hereinafter, all distances in [0, 1]2 will be taken in the ℓp metric. As
usual, the distance between two sets of points P1 and P2 in [0, 1]2 is the infimum
of the distances between any pair of points in P1 and P2. Two cells c1 and c2

are said to be close to each other if

sup
p1∈c1,p2∈c2

{distance(p1, p2)} ≤ r.

For an arbitrary cell c at distance at least r from the boundary of [0, 1]2, let
K = K(n) be the number of cells which are close to c and also above and to
the right of c. Obviously, K does not depend on the particular cell we chose.

Figure 1: Set of cells close, above and to the right of the shaded cell

Lemma 1 For any η > 0, we can choose k sufficiently large such that K ≥
(αp − η)k2 for n large enough.

Proof Let c be a cell at distance at least r from the boundary of [0, 1]2. Call
A the union of the cells which are close to c and also above and to the right of
c. Let p be the top right corner point of c. Define the set

B = {q ∈ [0, 1]2 : distance(p, q) ≤ r − 4y/k}.

Observe that B ⊆ A. Moreover, if k is chosen large enough, the area of B is at
least 1

4 (αp − η)r2. Thus, A contains at least 1
4 (αp − η)r2/(y/k)2 ≥ (αp − η)k2

cells.
�

3



Lemma 2 The following statements are true a.a.s.

i. All animals of size 4K are dense.

ii. All animals of size 2K which touch any of the four sides of [0, 1]2 are
dense.

iii. All cells at distance less than 4y from two sides of [0, 1]2 are dense.

Proof Let 0 < δ < ǫ. Taking into account that the side length of each cell is

y/k ≥ 1
2k

√

log n
(αp−δ)n (but also y/k ≤ c

√

log n/n for some c > 0), the probability

that any given cell is not dense (i.e. it contains at most 47 vertices) is

47
∑

i=0

(

n

i

) (

y2

k2

)i (

1 −
y2

k2

)n−i

= Θ(1)n47

(

y2

k2

)47 (

1 −
y2

k2

)n

,

since the weight of this sum is concentrated in the last term. Then, plugging in
the bounds for y/k, we get that the probability above is

O(1)(ny2/k2)47e−y2n/k2

= O(1)(log n)47n
−

1
4k2(αp−δ) .

For each one of the cells of a given animal, we can consider the event that this
particular cell is not dense. Notice that these events are negatively correlated
(i.e. the probability that any particular cell is not dense conditional upon having
some other cells with at most 47 vertices is not greater than the unconditional
probability). Thus, the probability that a given animal of size 4K contains no
dense cell is at most

(

O(1)(log n)47n
−

1
4k2(αp−δ)

)4K

= O(1)(log n)Cn
−

K

k2(αp−δ) ,

for some constant C. Let ρ = K
k2(αp−δ) . From Lemma 1 applied with any

0 < η < δ, by choosing k sufficiently large, we can guarantee that ρ > 1. Now
note that the number of animals of size 4K is O(1/r2) since for each fixed shape
of an animal there are O(1/r2) many choices and there is only a constant number
of shapes. Thus, by taking a union bound over all animals and plugging in the
value of r, we get that the probability of having an animal without any dense
cell is

O(1)(log n)C−1/nρ−1 = o(1),

and (i) holds.
An analogous argument shows that any given animal of size 2K is not dense

with probability
O(1)(log n)C/2n−ρ/2.

Observe that there exist only O(1/r) animals touching any of the four sides of
[0, 1]2. Hence, the probability that one of these is not dense is

O(1)(log n)(C−1)/2/n(ρ−1)/2 = o(1),

and (ii) is proved.
To prove (iii), we simply recall that the probability that a given cell is not

dense is o(1). By taking a union bound, the same argument holds for a constant
number of cells.

�
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Lemma 3 For any cell c1, there exists a cell c2 which is dense and close to c1.

Proof Let S be the square of the initial tessellation of [0, 1]2 where c1 is
contained, and let A be the animal containing all the cells which are close to c1

but different from c1. Suppose that S is at distance at least 2y from all sides of
[0, 1]2. Then, A has size greater than 4K, and it must contain some dense cell
by Lemma 2[i].

Otherwise, suppose that S is at distance less than 2y from just one side of
[0, 1]2. Then, A has size greater than 2K and it touches one side of [0, 1]2, and
thus it must contain some dense cell by Lemma 2[ii].

Finally, if S is at distance less than 2y from two sides of [0, 1]2, then all cells
in that square must be dense by Lemma 2[iii].

�

We now consider the following auxiliary graph G′: the vertices of G′ are all those
squares belonging to the initial tessellation of [0, 1]2 which are dense, and there
is an edge between two dense squares R and S if they are friends and there exist
cells c1 ⊂ R and c2 ⊂ S which are dense and close to each other. We observe
that the maximal degree of G′ is 24.

Lemma 4 A.a.s., G′ is connected.

Proof Suppose for contradiction that G′ contains at least two connected
components C1 and C2. We denote by D the union of all dense cells which
are contained in some vertex (i.e., dense square) of C1, and let H ⊇ D be the
union of all cells which are close to some cell contained in D. Note that H
is topologically connected, and let the closed curve γ be the outer boundary
of H with respect to R

2. Each connected part obtained by removing from
γ the intersection with the sides of [0, 1]2 is called a piece of γ. Define by
E the union of all cells in H but not in D. In general, E might have several
connected components (animals). Moreover, all cells in E must be not dense, by
construction. Note that any cell in D cannot touch any piece of γ. Hence, each
piece of γ is touched by exactly one connected component A ⊆ E. Observe that,
if γ touches some side of [0, 1]2, then all connected components of E touching
some piece of γ must also touch some side of [0, 1]2.

Given any of the four sides s of [0, 1]2, the distance between s and C1 is
understood to be the distance between s and the dense square of C1 which has
the smallest distance to s. We now distinguish between a few cases depending
on the fact whether C1 is at distance less than 2y from one (or more) side(s) of
[0, 1]2 or not.
Case 1: C1 is at distance at least 2y from any side of [0, 1]2.
In this case, let A be the only connected component of E which touches γ.
Consider the uppermost dense cell c ⊂ D (if there are several ones, choose an
arbitrary one) and the lowermost dense cell d ⊂ D (possibly equal to c). Then
all cells which are close to c and above c and all cells which are close to d and
below d belong to A. Since there are at least as many as 4K of these, we have
an animal A of size at least 4K without any dense cell, which by Lemma 2[i]
does not happen a.a.s.
Case 2: C1 is at distance less than 2y from exactly one side of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the bottom
side of [0, 1]2. Consider the uppermost dense cell c ⊂ D (if there are several
ones, choose an arbitrary one). Let A be the connected component of E which
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contains all cells which are close to c and above c. Note that there are at least
as many as 2K of these cells. Moreover, A touches one of the pieces of γ. Hence,
we have an animal A of size at least 2K without any dense cell and that touches
some side of [0, 1]2. By Lemma 2[ii] this does not happen a.a.s.
Case 3: C1 is at distance less than 2y from two opposite sides of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the top and the
bottom sides of [0, 1]2. Among all cells contained in squares of C1 that are at
distance less than 4y from the top side of [0, 1]2, consider the rightmost dense
cell c. If c is at distance less than 2y from that side, consider all K cells which
are close to c and below and to the right of c. Otherwise, if c is at distance
at least 2y from that side, consider all K cells which are close to c and above
and to the right of c. Let A be the connected component of E containing these
cells. Similarly, among all cells contained in squares of C1 that are at distance
less than 4y from the bottom side of [0, 1]2, consider the rightmost dense cell d.
Again, if d is at distance less than 2y from that side, consider all K cells which
are close to d and above and to the right of d. Otherwise, if d is at distance
at least 2y from that side, consider all K cells which are close to d and below
and to the right of d. Thus, in either case, we obtain K cells pairwise different
from the K previously described ones, and let A′ be the connected component
containing them. A and A′ must be the same, since they touch the same piece
of γ. Hence, we have an animal A of size at least 2K touching at least one side
of [0, 1]2 and without any dense cell. By Lemma 2[ii] this does not happen a.a.s.
Case 4: C1 is at distance less than 2y from one vertical and one horizontal
side of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the left and
the top side of [0, 1]2. Among all cells contained in squares of C1 that are at
distance less than 4y from the top side of [0, 1]2, consider the rightmost dense
cell c. If c is at distance less than 2y from that side, consider all K cells which
are close to c and below and to the right of c. Otherwise, if c is at distance at
least 2y from that side, consider all K cells which are close to c and above and
to the right of c. Let A be the connected component of E containing all these
K cells. By construction, all these K cells are at distance less than 4y from the
top side of [0, 1]2. Then, by of Lemma 2[iii], they must be a.a.s. at distance
at least 4y from the left side of [0, 1]2, since otherwise they would be all dense.
Similarly, among all cells contained in squares of C1 that are at distance less
than 4y from the left side of [0, 1]2, consider the lowermost dense cell d. Again,
if d is at distance less than 2y from that side, consider all K cells which are
close to d and below and to the right of d. Otherwise, if d is at distance at least
2y from that side, consider all K cells which are close to d and below and to
the left of d. Let A′ be the connected component of E containing these K cells.
By construction, all these K cells are at distance less than 4y from the left side
of [0, 1]2, and hence they must be pairwise different from the K ones previously
described a.a.s. Moreover, A and A′ must be the same, since they touch the
same piece of γ. Then we have an animal A of size at least 2K touching at least
one side of [0, 1]2 without any dense cell. By Lemma 2[ii] this does not happen
a.a.s.
Case 5: C1 is at distance less than 2y from three sides of [0, 1]2.
W.l.o.g. we can assume that C1 is at distance less than 2y from the left, top
and bottom sides of [0, 1]2. The argument is exactly the same as in Case 3, and
hence this case does not occur a.a.s.
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In case C2 is at distance at least 2y from some side of [0, 1]2, we can apply
one of the above cases with C2 instead of C1. Thus, it suffices to consider the
following:
Case 6: Both C1 and C2 are at distance less than 2y from all four sides of
[0, 1]2.
Let Q be the union of all those cells at distance less than 4y from both the
bottom and left sides of [0, 1]2. By Lemma 2, all the cells in Q must be dense, and
thus must belong to squares of the same connected component of G′. W.l.o.g.,
we can assume that they are not in D (i.e. are not contained in squares of C1).
Among all cells contained in squares of C1 that are at distance less than 4y from
the bottom side of [0, 1]2, consider the leftmost dense cell c. If c is at distance
less than 2y from that side, consider all K cells which are close to c and above
and to the left of c. Otherwise, if c is at distance at least 2y from that side,
consider all K cells which are close to c and below and to the left of c. Let A
be the connected component of E containing all these K cells. By construction,
all these K cells are at distance less than 4y from the bottom side of [0, 1]2.
Then, by Lemma 2[iii], they must be a.a.s. at distance at least 4y from the left
side of [0, 1]2, since otherwise they would be all dense. Similarly, among all cells
contained in squares of C1 that are at distance less than 4y from the left side of
[0, 1]2, consider the lowermost dense cell d. Again, if d is at distance less than
2y from that side, consider all K cells which are close to d and below and to the
right of d. Otherwise, if d is at distance at least 2y from that side, consider all K
cells which are close to d and below and to the left of d. Let A′ be the connected
component of E containing all these K cells. By construction, all these K cells
are at distance less than 4y from the left side of [0, 1]2, and hence they must
be pairwise different from the K ones previously described a.a.s. Moreover, A
and A′ must be the same, since they touch the same piece of γ. Then we have
an animal A of size at least 2K touching at least one side of [0, 1]2 without any
dense cell. By Lemma 2[ii] this does not happen a.a.s.

�

Proof of the upper bound of Theorem 1. Starting from G′ we construct
a new graph G′′, by adding some new vertices and edges as follows. Let us
consider one fixed sparse square S of the initial tessellation of [0, 1]2. For each
sparse cell c contained in S, we can find at least one dense cell close to it (by
Lemma 3) which we call the hook cell of c (if this cell is not unique, or even
the square containing these cell(s) is not unique, take an arbitrary one). This
hook cell must lie inside some dense square R, which is a friend of S. Then,
that sparse cell c gets the label R. By grouping those ones sharing the same
label, we partition the sparse cells of S into at most 24 groups. Each of these
groups of sparse cells will be thought as a new vertex, added to graph G′ and
connected by an edge to the vertex of G′ described by the common label. By
doing this same procedure for all the remaining sparse squares, we obtain the
aimed graph G′′. Those vertices in G′′ which already existed in G′ (i.e., dense
squares) are called old, and those newly added ones are called new. Notice that
by construction of G′′ and by Lemma 4, G′′ must be connected a.a.s.

Now, consider an arbitrary spanning tree T of G′′. Observe that the maximal
degree of T is 24, and that all new vertices of T have degree one and are
connected to old vertices. We use capital letters U , V to denote vertices of T
and reserve the lowercase u, v, w for vertices of G. Fix an arbitrary traversal of
T which, starting at an arbitrary vertex, traverses each edge of T exactly twice
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Figure 2: Illustration of G′′

and returns to the starting vertex. This traversal gives an ordering in which
we construct our Hamiltonian cycle in G (i.e., as the Hamiltonian cycle travels
along the vertices of G, it will visit the vertices of T according to this traversal).

Let us give a constructive description of our Hamiltonian cycle. Suppose
that at some time we visit an old vertex U of T and that the next vertex V
(w.r.t. the traversal) is also old. Then, there must exist a pair of dense cells
c1 ⊂ U , c2 ⊂ V close to each other, and let u ∈ c1 and v ∈ c2 be vertices not
used so far. In case this is not the last time we visit U (w.r.t. the traversal),
immediately after entering vertex w inside U we connect w to u and then u is
connected to v. If U is visited for the last time (w.r.t. the traversal), we connect
from the entering vertex w all vertices inside U not yet used by an arbitrary
Hamiltonian path (note that they form a clique in G) before leaving U via u,
and subsequently we connect u to v.

Otherwise, suppose that at some time we visit an old vertex U of T and
that the next vertex V (w.r.t. the traversal) is new. We connect all the vertices
inside V (possibly just one) by an arbitrary Hamiltonian path, whose endpoints
lie inside the sparse cells d1 ⊂ V and d2 ⊂ V (possibly equal). Again this is
possible since these vertices form a clique in G. Let c1 ⊂ U and c2 ⊂ U (possibly
equal) be the hook cells of d1 and d2 (i.e., ci is a dense cell in U close to the
sparse cell di in V ). Let u ∈ c1 and v ∈ c2 be vertices not used so far. Then,
immediately after entering vertex w inside U we connect w to u and then u is
joined to the corresponding endpoint of the Hamiltonian path connecting the
vertices inside V . The other endpoint is connected to v, and so we visit again
U .

We observe that at some steps of the above construction we request for
unused vertices of G. This is always possible: in fact, each vertex of T is visited
as many times as its degree (at most 24); for each visit of an old vertex U our
construction requires exactly two unused vertices v ∈ c, w ∈ c inside some dense
cell c ⊂ U ; and c contains at least 48 vertices. By construction, the described
cycle is Hamiltonian and the result holds.

�
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In the following corollary, we give an informal definition of a linear time
algorithm that constructs a Hamiltonian cycle for a specific instance of G(n, r).
The procedure is based on the previous constructive proof. We assume that real
arithmetic can be done in constant time.

Corollary 1 Let r ≥
√

log n
(αp−ǫ)n , for some fixed ǫ > 0. The proof of Theorem 1

yields an algorithm that a.a.s. produces a Hamiltonian cycle in G(n, r) in linear
time with respect to n.

Proof Assume that the input graph satisfies all the conditions required in
the proof of Theorem 1, which happens a.a.s. Assume also that each vertex of
the input graph is represented by a pair of coordinates. Observe that the total
number of squares is O(n/ log n), and since the number of cells per square is
constant, the same holds for the total number of cells. First we compute in
linear time the label of the cell and the square where each vertex is contained.
At the same time, we can find for each cell (and square) the set of vertices it
contains, and mark those cells (squares) which are dense. Now, for the con-
struction of G′, note that each dense square has at most a constant number of
friends to which it can be connected. Thus, the edges of G′ can be obtained in
time O(n/ log n). In order to construct G′′, for each of the O(n/ log n) cells in
sparse squares, we compute in constant time its hook cell and the dense square
containing it. Since both the number of vertices and the number of edges of G′′

are O(n/ log n), we can compute in time O(n) (e.g., by Kruskal’s algorithm) an
arbitrary spanning tree T of G′′. The traversal and construction of the Hamil-
tonian cycle is proportional to the number of edges in T plus the number of
vertices in G and thus can be done in linear time.

�

3 Conclusion and outlook

We believe that the above construction can be generalized to obtain sharp
thresholds for Hamiltonicity for random geometric graphs in [0, 1]d (d being
fixed). However, it seems much more difficult to generalize the results to arbi-
trary distributions of the vertices. The problem posed by Penrose [12], whether
exactly at the point where G(n, r) gets 2-connected the graph also becomes
Hamiltonian a.a.s. or not, still remains open.
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