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Abstract

In this work we give precise asymptotic expressions on the probability of the
existence of fixed-size components at the threshold of connectivity for random
geometric graphs.

1 Introduction and basic results on Random Geometric

Graphs.

Recently, quite a bit of work has been done on Random Geometric graphs, due to the
importance of these graphs as theoretical models for ad hoc networks (for applications
we refer to [5]). Most of the theoretical results on random geometric graphs can be
found in the book by M. D. Penrose [7]. In this section we succinctly recall the results
needed to motivate and prove our main theorem.

Given a set of n vertices and a non-negative real r = r(n), each vertex is placed at
some random position in the unit torus [0, 1)2 selected independently and uniformly
at random (u.a.r.). We denote by Xi = (xi, yi) the random position of vertex i for
i ∈ {1, . . . , n}, and let X = X (n) = {X1, . . . , Xn}. Note that with probability 1,
no two vertices choose the same position and thus we restrict the attention to the
case that |X | = n. We define G(X ; r) as the random graph having X as the vertex
set, and with an edge connecting each pair of vertices Xi and Xj in X at distance
d(Xi, Xj) ≤ r, where d(·, ·) denotes the Euclidean distance in the torus.

Unless otherwise stated, all our stated results are asymptotic as n → ∞. We use
the following standard notation for the asymptotic behaviour of sequences of non-
negative numbers an and bn: a = O(b), if there exist constants C and n0 such that
an ≤ Cbn for n ≥ n0. Furthermore, a = Ω(b) if b = O(a), a = Θ(b) if a = O(b) and
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a = Ω(b) and finally a = o(b) if an/bn → 0 as n → ∞. As usual, the abbreviation a.a.s.
stands for asymptotically almost surely, i.e. with probability 1 − o(1). All logarithms
in this paper are natural logarithms.

Let K1 be the random variable counting the number of isolated vertices in G(X ; r).
By multiplying the probability that one vertex is isolated by the number of vertices
we obtain

E (K1) = n(1 − πr2)n−1 = ne−πr2n−O(r4n). (1)

Define µ := ne−πr2n. Observe from the previous expression that µ is closely related
to E (K1). In fact, µ = o(1) iff E (K1 = o(1)), and if µ = Ω(1) then E (K1) ∼ µ.
Moreover, the asymptotic behaviour of µ characterizes the connectivity of G(X ; r).
The following proposition is well known: a result similar to item 1 can be found in
Corollary 3.1 of [4] and it can also be found in Section 1.4, p.10 of [7], item 2 is
Theorem 13.11 of [7], and item 3 can as well be found in Section 1.4, p.10 of [7]. For
the sake of completeness, we give a simple proof of Proposition 1 in Section 4.

Proposition 1. In terms of µ the connectivity can be characterized as follows:

1. If µ → 0, then a.a.s. G(X ; r) is connected.

2. If µ = Θ(1), then a.a.s. G(X ; r) consists of one giant component of size > n/2
and a Poisson number (with parameter µ) of isolated vertices.

3. If µ → ∞, then a.a.s. G(X ; r) is disconnected.

From the definition of µ we have that µ = Θ(1) iff r =

√
log n±O(1)

πn . Therefore

we conclude that the property of connectivity of G(X ; r) exhibits a sharp threshold

at r =
√

log n
πn . Note that the previous classification of the connectivity of G(X ; r),

indicates that if µ = Θ(1), the components of size 1 are predominant and those
components have the main contribution to the connectivity of G(X ; r). In fact if
µ = Θ(1), the probability that G(X ; r) has some component of size greater than 1
other than the giant component is o(1).

On the other hand, M.D. Penrose [7] studied the number of components in G(X ; r)
that are isomorphic to a given fixed graph; equivalently, he studied the probability of
finding components of a given size in G(X ; r). However the range of radii r covered
by Penrose does not exceed the thermodynamical threshold Θ(

√
1/n) where a giant

component appears at G(X ; r), which is below the connectivity threshold treated
in the present paper. In fact, a percolation argument in [7] only shows that with
probability 1−o(1) no components other than isolated vertices and the giant one exist
at the connectivity threshold, whithout giving accurate bounds on this probability (see
Section 1.4 of [7] and Proposition 13.12 and Proposition 13.13 of [7]).

Throughout the paper we shall consider G(X ; r) with r =

√
log n±O(1)

πn . We prove
that for such a choice of r, given a fixed ℓ > 1, the probability of having components

of size exactly ℓ is Θ
(

1
logℓ−1 n

)
. Moreover, in the process of the proof we characterize

the different types of components that could exist for such a value of r.
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Figure 1: Non-embeddable components on the unit torus. To the left two non-
embeddable and non-solitary components, to the right a solitary non-embeddable
and an embeddable component.

2 Basic definitions and statements of results

Given a component Γ of G(X ; r), Γ is embeddable if it can be mapped into the square
[r, 1− r]2 by a translation in the torus. Embeddable components do not wrap around
the torus.

Components which are not embeddable must have a large size (at least Ω(1/r)).
Sometimes several non-embeddable components can coexist together (see Figure 1).
However, there are some non-embeddable components which are so spread around the
torus, that they do not allow any room for other non-embeddable ones. Call these
components solitary. Clearly, we can have at most one solitary component. We cannot
disprove the existence of a solitary component, since with probability 1 − o(1) there
exists a giant component of this nature (see Corollary 2.1 of [4], implicitly it is also
in Theorem 13.11 of [7]). For components which are not solitary, we give asymptotic
bounds on the probability of their existence according to their size.

Given a fixed integer ℓ ≥ 1, let Kℓ be the number of components in G(X ; r) of size
exactly ℓ. For large enough n, we can assume these to be embeddable, since r = o(1).
Moreover, for any fixed ǫ > 0, let K ′

ǫ,ℓ be the number of components of size exactly ℓ,
which have all their vertices at distance at most ǫr from their leftmost one. Finally,
K̃ℓ denotes the number of components of size at least ℓ and which are not solitary.
In Figure 2 an example of a component Γ of size exactly ℓ = 9 is given, which has all
its vertices at distance at most ǫr from the leftmost one u.

Notice that K ′
ǫ,ℓ ≤ Kℓ ≤ K̃ℓ. However, in the following we show that asymptot-

ically all the weight in the probability that K̃ℓ > 0 comes from components which
also contribute to K ′

ǫ,ℓ for ǫ arbitrarily small. This means that the more common
components of size at least ℓ are cliques of size exactly ℓ with all their vertices close
together.

We now have all definitions to state our main theorem, which is proved in Section 3.

Theorem 2. Let ℓ ≥ 2 be a fixed integer. Let 0 < ǫ < 1/2 be fixed. Assume that
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Figure 2: A component Γ belonging to K ′
ǫ,9

µ = Θ(1). Then

Pr
[
K̃ℓ > 0

]
∼ Pr [Kℓ > 0] ∼ Pr

[
K ′

ǫ,ℓ > 0
]

= Θ

(
1

logℓ−1 n

)
.

Given a random set X of n points in [0, 1)2, let (G(X ; r))r∈R+ be the continuous
random graph process describing the evolution of G(X ; r) for r between 0 and +∞
(X remains fixed for the whole process). Observe that the graph process starts at
r = 0 with all n vertices being isolated, then edges are progressively added, and
finally at r ≥

√
2/2 we have the complete graph on n vertices. In this context,

consider the random variables rc = rc(n) = inf{r ∈ R
+ : G(X ; r) is connected} and

ri = ri(n) = inf{r ∈ R
+ : G(X ; r) has no isolated vertex}.

As a corollary of Theorem 2 we obtain an alternative proof of the following
well known result (see Theorem 1 of [6]): intuitively speaking, we show that a.a.s.
(G(X ; r))r∈R+ becomes connected exactly at the same moment when the last isolated
vertex disappears. Note that this is stronger than the results stated in the introduc-
tion, which just say that the properties of connectivity and having no isolated vertex
have a sharp threshold with the same asymptotic characterization (see Proposition 1).

Corollary 3. With probability 1 − o(1), we have rc = ri.

The proof of Corollary 3 is given in Section 4.

3 Proof of Theorem 2

We state and prove three lemmata from which Theorem 2 will follow easily.

Lemma 4. Let ℓ ≥ 2 be a fixed integer, and 0 < ǫ < 1/2 be also fixed. Assume that
µ = Θ(1). Then,

E
(
K ′

ǫ,ℓ

)
= Θ(1/ logℓ−1 n).

Proof. First observe that with probability 1, for each component Γ which contributes
to K ′

ǫ,ℓ, Γ has a unique leftmost vertex Xi and the vertex Xj in Γ at greatest distance
from Xi is also unique. Hence, we can restrict our attention to this case.

4



u

v
ρ

C

S

r

r

Figure 3: The set S for the component Γ of Figure 2

Fix an arbitrary set of indices J ⊂ {1, . . . , n} of size |J | = ℓ, with two distinguished
elements i and j. Denote by Y =

⋃
k∈J Xk the set of random points in X with indices

in J . Let E be the following event: All vertices in Y are at distance at most ǫr from
Xi and to the right of Xi; vertex Xj is the one in Y with greatest distance from Xi;
and the vertices of Y form a component Γ of G(X ; r). If Pr(E) is multiplied by the
number of possible choices of i, j and the remaining ℓ − 2 elements of J , we get

EK ′
ǫ,ℓ = n(n − 1)

(
n − 2

ℓ − 2

)
Pr(E). (2)

In order to bound the probability of E we need some definitions. Let ρ = d(Xi, Xj)
and let S be the set of all points in the torus [0, 1)2 which are at distance at most
r from some vertex in Y (see Figure 3). Notice that ρ and S depend on the set of
random points Y.

We first need bounds of Area(S) in terms of ρ. Observe that S is contained in the
circle of radius r + ρ and center Xi, and thus

Area(S) ≤ π(r + ρ)2. (3)

Let iL = i, iR, iT and iB be respectively the indices of the leftmost, rightmost, topmost
and bottommost vertices in Y (some of these indices possibly equal). Assume w.l.o.g.
that the vertical length of Y (i.e. the vertical distance between XiT and XiB) is at
least ρ/

√
2. Otherwise, the horizontal length of Y has this property and we can

rotate the descriptions in the argument. The upper halfcircle with center XiT and
the lower halfcircle with center XiB are disjoint and are contained in S. If XiR is
at greater vertical distance from XiT than from XiB , then consider the rectangle of
height ρ/(2

√
2) and width r − ρ/(2

√
2) with one corner on XiR and above and to the

right of XiR . Otherwise, consider the same rectangle below and to the right of XiR .
This rectangle is also contained in S and its interior does not intersect the previously
described halfcircles. Analogously, we can find another rectangle of height ρ/(2

√
2)

and width r−ρ/(2
√

2) to the left of XiL and either above or below XiL with the same
properties. Hence,

Area(S) ≥ πr2 + 2

(
ρ

2
√

2

)(
r − ρ

2
√

2

)
. (4)
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From (3), (4) and the fact that ρ < r/2, we can write

πr2

(
1 +

1

6

ρ

r

)
< Area(S) < πr2

(
1 +

5

2

ρ

r

)
<

9π

4
r2. (5)

Now consider the probability P that the n− ℓ vertices not in Y lie outside S. Clearly
P = (1−Area(S))n−ℓ. Moreover, by (5) and using the fact that e−x−x2 ≤ 1−x ≤ e−x

for all x ∈ [0, 1/2], we obtain

e−(1+5ρ/(2r))πr2n−(9πr2/4)2n < P <
e−(1+ρ/(6r))πr2n

(1 − 9πr2/4)ℓ
,

and after plugging in the definition of µ (recall that µ = ne−r2πn) we have

(µ

n

)1+5ρ/(2r)
e−(9πr2/4)2n < P <

(µ

n

)1+ρ/(6r) 1

(1 − 9πr2/4)ℓ
. (6)

Event E can also be described as follows: There is some non-negative real ρ ≤ ǫr
such that Xj is placed at distance ρ from Xi and to the right of Xi; all the remaining
vertices in Y are inside the halfcircle of center Xi and radius ρ; and the n−ℓ vertices not
in Y lie outside S. Hence, Pr(E) can be bounded from above (below) by integrating
with respect to ρ the probability density function of d(Xi, Xj) times the probability
that the remaining ℓ − 2 selected vertices lie inside the right halfcircle of center Xi

and radius ρ times the upper (lower) bound on P we obtained in (6):

Θ(1) I(5/2) ≤ Pr(E) ≤ Θ(1) I(1/6), (7)

where

I(β) =

∫ ǫr

0
πρ
(π

2
ρ2
)ℓ−2 1

n1+βρ/r
dρ

=
2

n

(π

2
r2
)ℓ−1

∫ ǫ

0
x2ℓ−3n−βx dx (8)

Since ℓ is fixed, for β = 5/2 or β = 1/6,

I(β) = Θ

(
logℓ−1 n

nℓ

)∫ ǫ

0
x2ℓ−3n−βx dx

= Θ

(
logℓ−1 n

nℓ

)
(2ℓ − 3)!

(β log n)2ℓ−2

= Θ

(
1

nℓ logℓ−1 n

)
. (9)

The statement follows from (2), (7) and (9).

Lemma 5. Let ℓ ≥ 2 be a fixed integer. Let ǫ > 0 be also fixed. Assume that µ = Θ(1).
Then

Pr
[
K̃ℓ − K ′

ǫ,ℓ > 0
]

= O(1/ logℓ n).
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Proof. We assume throughout this proof that ǫ ≤ 10−18, and prove the claim for this
case. The case ǫ > 10−18 follows from the fact that (K̃ℓ − K ′

ǫ,ℓ) ≤ (K̃ℓ − K ′

10−18,ℓ).

Consider all the possible components in G(X ; r) which are not solitary. Remove
from these components the ones of size at most ℓ and diameter at most ǫr, and denote
by M the number of remaining components. By construction K̃ℓ − K ′

ǫ,ℓ ≤ M , and

therefore it is sufficient to prove that Pr(M > 0) = O(1/ logℓ n). The components
counted by M are classified into several types according to their size and diameter.
We deal with each type separately.

Part 1. Consider all the possible components in G(X ; r) which have diameter at most
ǫr and size between ℓ + 1 and log n/37. Call them components of type 1, and let M1

denote their number.
For each k, ℓ + 1 ≤ k ≤ log n/37, let Ek be the expected number of components

of type 1 and size k. We observe that these components have all of their vertices at
distance at most ǫr from the leftmost one. Therefore, we can apply the same argument
we used for bounding EK ′

ǫ,ℓ in the proof of Lemma 4. Note that (2), (7) and (8) are
also valid for sizes not fixed but depending on n. Thus, we obtain

Ek ≤ O(1)n(n − 1)

(
n − 2

k − 2

)
I(1/6),

where I(1/6) is defined in (8). We use the fact that
(
n−2
k−2

)
≤ ( ne

k−2)k−2 and get

Ek = O(1) log n

(
e

2

log n

k − 2

)k−2 ∫ ǫ

0
x2k−3n−x/6 dx. (10)

The expression x2k−3n−x/6 can be maximized for x ∈ R
+ by elementary techniques,

and we deduce that

x2k−3n−x/6 ≤
(

2k − 3

(e/6) log n

)2k−3

.

We can bound the integral in (10) and get

Ek = O(1) log n

(
e

2

log n

k − 2

)k−2

ǫ

(
2k − 3

(e/6) log n

)2k−3

= O(1)

(
36

2e

(2k − 3)2

(k − 2) log n

)k−2

k.

Note that for k ≤ log n/37 the expression k
(

36
2e

(2k−3)2

(k−2) log n

)k−2
is decreasing with k.

Hence we can write

Ek = O

(
1

logℓ+1 n

)
, ∀k : ℓ + 3 ≤ k ≤ 1

37
log n.

Moreover the bounds Eℓ+1 = O(1/ logℓ n) and Eℓ+2 = O(1/ logℓ+1 n) are obtained
from Lemma 4, and hence

EM1 =

1

37
log n∑

k=ℓ+1

Ek = O

(
1

logℓ n

)
+ O

(
1

logℓ+1 n

)
+

log n

37
O

(
1

logℓ+1 n

)
= O

(
1

logℓ n

)
,
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Figure 4: The tessellation for counting components of type 2 with two particular
boxes marked.

and then Pr(M1 > 0) ≤ EM1 = O(1/ logℓ n).

Part 2. Consider all the possible components in G(X ; r) which have diameter at most
ǫr and size greater than log n/37. Call them components of type 2, and let M2 denote
their number.

We tessellate the torus with square cells of side y = ⌊(ǫr)−1⌋−1 (y ≥ ǫr but also
y ∼ ǫr). We define a box to be a square of side 2y consisting of the union of 4 cells of
the tessellation. Consider the set of all possible boxes. Note that any component of
type 2 must be fully contained in some box (see Figure 4).

Let us fix a box b. Let W be the number of vertices which are contained inside b.
Notice that W has a binomial distribution with mean EW = (2y)2n ∼ (2ǫ)2 log n/π.
By setting δ = log n

37EW − 1 and applying the Chernoff inequality to W (see e.g. [3],
Theorem 12.7), we have

Pr(W >
1

37
log n) = Pr(W > (1 + δ)EW ) ≤

(
eδ

(1 + δ)1+δ

)EW

= n−
(log(1+δ)− δ

1+δ
)

37 .

Note that δ ∼ π
148ǫ2

− 1 > e79, therefore

Pr(W >
1

37
log n) < n−2.1.

Taking a union bound over the set of all Θ(r−1) = Θ(n/ log n) boxes, the probability
that there is some box with more than 1

37 log n vertices is O(1/(n1.1 log n)). Since
each component of type 2 is contained in some box, we have

Pr(M2 > 0) = O(1/(n1.1 log n)).

Part 3. Consider all the possible components in G(X ; r) which are embeddable and
have diameter at least ǫr. Call them components of type 3, and let M3 denote their
number.

We tessellate the torus into square cells of side αr, for some α = α(ǫ) > 0 fixed
but sufficiently small. Let Γ be a component of type 3. Let S = SΓ be the set of
all points in the torus [0, 1)2 which are at distance at most r from some vertex in Γ.
Remove from S the vertices of Γ and the edges (represented by straight line segments)
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Figure 5: The tessellation for counting components of type 3.

and denote by S ′ the outer connected topologic component of the remaining set. By
construction, S ′ must contain no vertex in X (see Figure 5, left picture).

Now let iL, iR, iT and iB be respectively the indices of the leftmost, rightmost,
topmost and bottommost vertices in Γ (some of these indices possibly equal). As in
the previous setting, assume that the vertical length of Γ (i.e. the vertical distance
between XiT and XiB) is at least ǫr/

√
2. Otherwise, the horizontal length of Γ has this

property and we can rotate the descriptions in the argument. The upper halfcircle
with center XiT and the lower halfcircle with center XiB are disjoint and are contained
in S ′. If XiR is at greater vertical distance from XiT than from XiB , then consider the
rectangle of height ǫr/(2

√
2) and width r−ǫr/(2

√
2) with one corner on XiR and above

and to the right of XiR . Otherwise, consider the same rectangle below and to the right
of XiR . This rectangle is also contained in S ′ and its interior does not intersect the
previously described halfcircles. Analogously, we can find another rectangle of height
ǫr/(2

√
2) and width r − ǫr/(2

√
2) to the left of XiL and either above or below XiL ,

with the same properties. Hence, taking into account that ǫ ≤ 10−18, we have

Area(S ′) ≥ πr2 + 2

(
ǫr

2
√

2

)(
r − ǫr

2
√

2

)
>
(
1 +

ǫ

5

)
πr2. (11)

Let S∗ be the union of all the cells in the tessellation which are fully contained in S ′.
We loose a bit of area compared to S ′. However, if α was chosen small enough, we can
guarantee that S∗ is topologically connected and has area Area(S∗) ≥ (1 + ǫ/6)πr2.
This α can be chosen to be the same for all components of type 3 (see Figure 5, right
picture).

Hence, we showed that the event (M3 > 0) implies that some connected union of
cells S∗ of area Area(S∗) ≥ (1 + ǫ/6)πr2 contains no vertices. By removing some cells
from S∗, we can assume that (1 + ǫ/6)πr2 ≤ Area(S∗) < (1 + ǫ/6)πr2 + α2r2. Let S∗

be any union of cells with these properties. Note that there are Θ(1/r2) = Θ(n/ log n)
many possible choices for S∗. The probability that S∗ contains no vertices is

(1 − Area(S∗))n ≤ e−(1+ǫ/6)πr2n =
(µ

n

)1+ǫ/6
.

Therefore, we can take the union bound over all the Θ(n/ log n) possible S∗, and
obtain an upper bound of the probability that there is some component of the type 3:

Pr(M3 > 0) ≤ Θ

(
n

log n

)(µ

n

)1+ǫ/6
= Θ

(
1

nǫ/6 log n

)
.
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Part 4. Consider all the possible components in G(X ; r) which are not embeddable
and not solitary either. Call them components of type 4, and let M4 denote their
number.

We tessellate the torus [0, 1)2 into Θ(n/ log n) small square cells of side length αr,
where α > 0 is a sufficiently small positive constant.

Let Γ be a component of type 4. Let S = SΓ be the set of all points in the torus
[0, 1)2 which are at distance at most r from some vertex in Γ. Remove from S the
vertices of Γ and the edges (represented by straight segments) and denote by S ′ the
remaining set. By construction, S ′ must contain no vertex in X .

Suppose there is a horizontal or a vertical band of width 2r in [0, 1)2 which does
not intersect the component Γ (assume w.l.o.g. that it is the topmost horizontal band
consisting of all points with the y-coordinate in [1 − 2r, 1)). Let us divide the torus
into vertical bands of width 2r. All of them must contain at least one vertex of Γ,
since otherwise Γ would be embeddable. Select any 9 consecutive vertical bands and
pick one vertex of Γ with maximal y-coordinate in each one. For each one of these 9
vertices, we select the left upper quartercircle centered at the vertex if the vertex is
closer to the right side of the band or the right upper quartercircle otherwise. These
nine quartercircles we chose are disjoint and must contain no vertices by construction.
Moreover, they belong to the same connected component of the set S ′, which we denote
by S ′′, and which has an area of Area(S ′′) ≥ (9/4)πr2. Let S∗ be the union of all the
cells in the tessellation of the torus which are completely contained in S ′′. We lose a
bit of area compared to S ′′. However, as usual, by choosing α small enough we can
guarantee that S∗ is connected and it has an area of Area(S∗) ≥ (11/5)πr2. Note that
this α can be chosen to be the same for all components Γ of this kind.

Suppose otherwise that all horizontal and vertical bands of width 2r in [0, 1)2

contain at least one vertex of Γ. Since Γ is not solitary it must be possible that it
coexists with some other non-embeddable component Γ′. Then all vertical bands or
all horizontal bands of width 2r must also contain some vertex of Γ′ (assume w.l.o.g.
the vertical bands do). Let us divide the torus into vertical bands of width 2r. We can
find a simple path Π with vertices in Γ′ which passes through 11 consecutive bands.
For each one of the 9 internal bands, pick the uppermost vertex of Γ in the band
below Π (in the torus sense). As before each one of these vertices contributes with
a disjoint quartercircle which must be empty of vertices, and by the same argument
we obtain a connected union of cells of the tessellation, which we denote by S∗, with
Area(S∗) ≥ (11/5)πr2 and containing no vertices.

Hence, we showed that the event (M4 > 0) implies that some connected union
of cells S∗ with Area(S∗) ≥ (11/5)πr2 contains no vertices. By repeating the same
argument we used for components of type 3 but replacing (1 + ǫ/6)πr2 by (11/5)πr2,
we get

Pr(M4 > 0) = Θ

(
1

n6/5 log n

)
.

For a random variable X and any k ≥ 1, we denote by E[X]k the kth factorial
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moment of X, i.e. E[X]k = E[X(X − 1) . . . (X − k + 1)].

Lemma 6. Let ℓ ≥ 2 be a fixed integer. Let 0 < ǫ < 1/2 be fixed. Assume that
µ = Θ(1). Then

E
(
K ′

ǫ,ℓ

)
2

= O(1/ log2ℓ−2 n).

Proof. As in the proof of Lemma 4, we assume that each component Γ which con-
tributes to K ′

ǫ,ℓ has a unique leftmost vertex Xi, and the vertex Xj in Γ at greatest
distance from Xi is also unique. In fact, this happens with probability 1.

Choose any two disjoint subsets of {1, . . . , n} of size ℓ each, namely J1 and J2,
with four distinguished elements i1, j1 ∈ J1 and i2, j2 ∈ J2. For k ∈ {1, 2}, denote by
Yk =

⋃
l∈Jk

Xl the set of random points in X with indices in Jk. Let E be the event
that the following conditions hold for both k = 1 and k = 2: All vertices in Yk are at
distance at most ǫr from Xik and to the right of Xik ; vertex Xjk

is the one in Yk with
greatest distance from Xik ; and the vertices of Yk form a component Γ of G(X ; r).
If Pr(E) is multiplied by the number of possible choices of ik, jk and the remaining
vertices of Jk, we get

E[K ′
ǫ,ℓ]2 = O(n2ℓ)Pr(E). (12)

In order to bound the probability of E we need some definitions. For each k ∈
{1, 2}, let ρk = d(Xik , Xjk

) and let Sk be the set of all the points in the torus [0, 1)2

which are at distance at most r from some vertex in Yk. Obviously ρk and Sk depend
on the set of random points Yk. Also define S = S1 ∪ S2.

Let F be the event that d(Xi1 , Xi2) > 3r. This holds with probability 1 − O(r2).
In order to bound Pr(E | F), we apply a similar approach to the one in the proof of
Lemma 4. In fact, observe that if F holds then S1 ∩ S2 = ∅. Therefore in view of (5)
we can write

πr2(2 + (ρ1 + ρ2)/(6r)) < Area(S) <
18π

4
r2, (13)

and using the same techniques that gave us (6) we get

(1 − Area(S))n−2ℓ <
(µ

n

)2+(ρ1+ρ2)/(6r) 1

(1 − 18πr2/4)2ℓ
. (14)

Observe that E can also be described as follows: For each k ∈ {1, 2} there is some
non-negative real ρk ≤ ǫr such that Xjk

is placed at distance ρk from Xik and to the
right of Xik ; all the remaining vertices in Yk are inside the halfcircle of center Xik

and radius ρk; and the n − ℓ vertices not in Yk lie outside Sk. In fact, rather than
this last condition, we only require for our bound that all vertices in X \ (Y1 ∪ Y2)
are placed outside S, which has probability (1 − Area(S))n−2ℓ. Then, from (14) and
following an analogous argument to the one that leads to (7), we obtain the bound

Pr(E | F) ≤ Θ(1)

∫ ǫr

0

∫ ǫr

0
πρ1

(π

2
ρ2
1

)ℓ−2
πρ2

(π

2
ρ2
2

)ℓ−2 1

n2+(ρ1+ρ2)/(6r)
dρ1dρ2

= Θ(1) I(1/6)2,

11



where I(1/6) is defined in (8). Thus from (9) we conclude

Pr(E ∧ F) ≤ Θ(1) P (F) I(1/6)2 = O

(
1

n2ℓ log2ℓ−2 n

)
. (15)

Otherwise, suppose that F does not hold (i.e. d(Xi1 , Xi2) ≤ 3r). Observe that E
implies that d(Xi1 , Xi2) > r, since Xi1 and Xi2 must belong to different components.
Hence the circles with centers on Xi1 and Xi2 and radius r have an intersection of
area less than (π/2)r2. These two circles are contained in S and then we can write
Area(S) ≥ (3/2)πr2. Note that E implies that all vertices in X \ (Y1 ∪ Y2) are placed
outside S and that for each k ∈ {1, 2} all the vertices in Yk \ {Xik} are at distance at
most ǫr and to the right of Xik . This gives us the following rough bound

Pr(E | F) ≤
(π

2
(ǫr)2

)2ℓ−2
(

1 − 3π

2
r2

)n−2ℓ

= O(1)

(
log n

n

)2ℓ−2 (µ

n

)3/2
.

Multiplying this by Pr(F) = O(r2) = O(log n/n) we obtain

Pr(E ∧ F) = O

(
log2ℓ−1 n

n2ℓ+1/2

)
, (16)

which is negligible compared to (15). The statement follows from (12), (15) and (16).

Our main theorem now follows easily: From Corollary 1.12 in [2], we have

EK ′
ǫ,ℓ −

1

2
E[K ′

ǫ,ℓ]2 ≤ Pr(K ′
ǫ,ℓ > 0) ≤ EK ′

ǫ,ℓ,

and therefore by Lemmata 4 and 6 we obtain

Pr(K ′
ǫ,ℓ > 0) = Θ(1/ logℓ−1 n).

Combining this and Lemma 5, yields the statement.

4 Proof of Corollary 3

Before proving Corollary 3, we give a proof of Proposition 1, since we will make use
of the arguments used in the proof of this proposition.

Proof of Proposition 1. Recall that µ = ne−πr2n and r =
√

log n−log µ
πn . Observe that

r ∈ [0, +∞) is monotonically decreasing with respect to µ ∈ (0, n]. Hence, the
probability that G(X ; r) is connected is also decreasing with respect to µ.

Suppose first that µ = Θ(1). From (1) and since O(r4n) = o(1) we have that
EK1 ∼ µ. We shall compute the factorial moments of K1 and show that E[K1]k ∼ µk

for each fixed k. As in Lemma 4, for k ≥ 2, we fix an arbitrary set of indices

12



J ⊂ {1, . . . , n} of size |J | = k. Denote by Y =
⋃

k∈J Xk the set of random points in
X with indices in J . Let E be the event that all vertices in Y are isolated, and denote
by S the set of points in [0, 1)2 that are at distance at most r from some vertex in Y.
We have E[K1]k ∼ nkPr(E). Note that in order for the event E to happen, we must
have S ∩ (X \ Y) = ∅. To compute Pr(E), we distinguish two cases:
Case 1: Let J0 be the event that ∀i 6= j ∈ J , d(Xi, Xj) > 4r, which has probability
1 − O(r2) = 1 − o(1). Note that if J0 holds then Area(S) = kr2π, and thus the
contribution to Pr(E) is

Pr(E | J0)Pr(J0) ∼ (1 − kr2π)n−k ∼ e−kr2πn.

Case 2: Otherwise there exists ∃i 6= j ∈ J such that d(Xi, Xj) ≤ 4r. Define J ′ =
{j ∈ J | ∃i ∈ J, i < j, d(Xi, Xj) ≤ 4r} and let ℓ = |J ′|. Note that 1 ≤ ℓ ≤ k − 1.
Let j′ be the smallest element of J ′ and let i′ < j′ be the (smallest) element of J
with d(Xi′ , Xj′) ≤ 4r. Denote by Ci′ the circle of radius r centered at Xi′ , and
consider the halfcircle of radius r centered at Xj′ delimited by the line going through
Xj′ , perpendicular to the line connecting Xi′ with Xj′ , and which does not intersect
Ci′ (note that d(Xi′ , Xj′) > r, so this halfcircle exists). This circle and halfcircle
contribute to Area(S) by 3

2r2π, and thus in total Area(S) ≥ (k− ℓ+ 1
2)r2π. Moreover,

the probability that any j ∈ J to belongs to J ′ is at most Θ(r2). Hence, if we denote
by Jℓ the event that such a set J ′ with |J ′| = ℓ exists, we have for any 1 ≤ ℓ ≤ k − 1,

Pr(E | Jℓ)Pr(Jℓ) ≤ (1 − (k − ℓ + 1/2))r2πnΘ(r2)ℓ = o(e−kr2πn).

Then, the main contribution to Pr(E) comes from Case 1, and therefore EK1 ∼
nke−kr2πn = µk, so the random variable K1 is asymptotically Poisson with parameter
µ (see Theorem 1.22 in [2]). By Theorem 2, a.a.s. G(X ; r) consists only of isolated
vertices and a solitary component, and the second statement in the result is proven.

The first and third statements follow directly from the fact that, for any µ = Θ(1),
Pr(G(X ; r) is connected) ∼ e−µ, combined with the decreasing monotonicity of this
probability with respect to µ.

Proof of Corollary 3. For any ǫ > 0, one can find a large enough constant κ = κ(ǫ)

such that e−eκ

< ǫ/2 and 1− e−e−κ

< ǫ/2. Let rℓ =
√

log n−κ
πn and ru =

√
log n+κ

πn . By

Proposition 1, K1 is asymptotically Poisson in G(X ; rℓ) and G(X ; ru), with parameter
µ = eκ and µ = e−κ respectively. Therefore, in G(X ; rℓ) we have Pr(K1 = 0) ∼
e−eκ

< ǫ/2, and in G(X ; ru) we have Pr(K1 > 0) ∼ 1 − e−e−κ

< ǫ/2. Moreover, by
Theorem 2, a.a.s. both G(X ; rℓ) and G(X ; ru) consist only of isolated vertices and a
giant solitary component. Hence, with probability at least 1 − ǫ, the random process
(G(X ; r))r∈R+ has the following evolution: for r ≤ rℓ, the graph stays disconnected;
at r = rℓ, there are only a few isolated vertices and a giant component; for r between
rℓ and ru, all isolated vertices merge together or with other components; finally for
r ≥ ru, the graph is connected. For this particular evolution of the process, rc = ri

unless for an r with rℓ < r < ru some isolated vertices merge together and create a
small component before being absorbed by the giant one. Then, it is sufficient for our
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purposes to show that a.a.s. any two isolated vertices in G(X ; rℓ) are at a distance
bigger than ru.

Define Z to be the random variable that counts the pairs of vertices i and j
which are both isolated in G(X ; rℓ) and such that d(Xi, Xj) ≤ ru. By the same
argument as in the proof of Proposition 1, setting S to be the set of points in [0, 1)2

at distance at most rℓ from either Xi or Xj , we obtain Area(S) ≥ 3
2r2

ℓ π. Moreover,
since rℓ < d(Xi, Xj) ≤ ru, Xj must lie in an annulus of area Θ(1/n) around Xi, which
occurs with probability Θ(1/n). Taking a union bound over all pairs of vertices i and
j,

Pr(Z > 0) ≤ n(n − 1)

(
1 − 3

2
r2
ℓ π

)n−2

Θ(1/n) = Θ
(
n−1/2

)
.

Therefore, when gradually increasing r from rℓ to ru, a.a.s. no pair of isolated ver-
tices in G(X ; rℓ) gets connected before joining the solitary component, and thus no
component of size 2 or larger (except for the solitary component) appears in this part
of the process. Hence, with probability at least 1 − ǫ, we have that rc = ri, and the
statement follows, since ǫ can be chosen to be arbitrarily small.

Acknowledgment. We thank an anonymous referee for suggesting the application
of Theorem 2 to obtain Corollary 3.
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