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Abstract

In this work we give precise asymptotic expressions on the probability of the
existence of fixed-size components at the threshold of connectivity for random
geometric graphs.

1 Introduction and basic results on Random Geometric
Graphs.

Recently, quite a bit of work has been done on Random Geometric graphs, due to the
importance of these graphs as theoretical models for ad hoc networks (for applications
we refer to [5]). Most of the theoretical results on random geometric graphs can be
found in the book by M. D. Penrose [7]. In this section we succinctly recall the results
needed to motivate and prove our main theorem.

Given a set of n vertices and a non-negative real r = r(n), each vertex is placed at
some random position in the unit torus [0,1)? selected independently and uniformly
at random (u.a.r.). We denote by X; = (z;,y;) the random position of vertex ¢ for
i€ {l,...,n}, and let X = X(n) = {X1,...,X,}. Note that with probability 1,
no two vertices choose the same position and thus we restrict the attention to the
case that |X| = n. We define G(X;7) as the random graph having X’ as the vertex
set, and with an edge connecting each pair of vertices X; and X; in X at distance
d(X;, X;) <r, where d(-,-) denotes the Euclidean distance in the torus.

Unless otherwise stated, all our stated results are asymptotic as n — oco. We use
the following standard notation for the asymptotic behaviour of sequences of non-
negative numbers a, and b,: a = O(b), if there exist constants C' and ng such that
an < Cby, for n > ng. Furthermore, a = Q(b) if b = O(a), a = O(b) if a = O(b) and
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a = (b) and finally a = o(b) if a5, /b, — 0 asn — oo. Asusual, the abbreviation a.a.s.
stands for asymptotically almost surely, i.e. with probability 1 — o(1). All logarithms
in this paper are natural logarithms.

Let K be the random variable counting the number of isolated vertices in G(X; 7).
By multiplying the probability that one vertex is isolated by the number of vertices
we obtain

E (K1) = n(l — ar?)" "t = pe~m =00, (1)

Define p := ne~™’". Observe from the previous expression that p is closely related
to E(K7). In fact, p = o(1) iff E(K; =o0(1)), and if p = Q(1) then E (K;) ~ u.
Moreover, the asymptotic behaviour of p characterizes the connectivity of G(X;r).
The following proposition is well known: a result similar to item 1 can be found in
Corollary 3.1 of [4] and it can also be found in Section 1.4, p.10 of [7], item 2 is
Theorem 13.11 of [7], and item 3 can as well be found in Section 1.4, p.10 of [7]. For
the sake of completeness, we give a simple proof of Proposition 1 in Section 4.

Proposition 1. In terms of p the connectivity can be characterized as follows:
1. If p — 0, then a.a.s. G(X;r) is connected.

2. If p=0(1), then a.a.s. G(X;r) consists of one giant component of size > n/2
and a Poisson number (with parameter p) of isolated vertices.

3. If u — oo, then a.a.s. G(X;r) is disconnected.
From the definition of y we have that p = ©(1) iff r = %
we conclude that the property of connectivity of G(X;r) exhibits a sharp threshold

. Therefore

logn

at r = =. Note that the previous classification of the connectivity of G(&X;r),

indicates that if p = ©(1), the components of size 1 are predominant and those
components have the main contribution to the connectivity of G(X;r). In fact if
@ = O(1), the probability that G(X;r) has some component of size greater than 1
other than the giant component is o(1).

On the other hand, M.D. Penrose [7] studied the number of components in G(X; )
that are isomorphic to a given fixed graph; equivalently, he studied the probability of
finding components of a given size in G(X;r). However the range of radii r covered
by Penrose does not exceed the thermodynamical threshold ©(y/1/n) where a giant
component appears at G(X;r), which is below the connectivity threshold treated
in the present paper. In fact, a percolation argument in [7] only shows that with
probability 1—o0(1) no components other than isolated vertices and the giant one exist
at the connectivity threshold, whithout giving accurate bounds on this probability (see
Section 1.4 of [7] and Proposition 13.12 and Proposition 13.13 of [7]).

Throughout the paper we shall consider G(&X’;r) with r = %. We prove

that for such a choice of r, given a fixed ¢ > 1, the probability of having components
of size exactly £ is © (logz%ln) Moreover, in the process of the proof we characterize
the different types of components that could exist for such a value of r.



Figure 1: Non-embeddable components on the unit torus. To the left two non-
embeddable and non-solitary components, to the right a solitary non-embeddable
and an embeddable component.

2 Basic definitions and statements of results

Given a component I" of G(X;r), I" is embeddable if it can be mapped into the square
[r,1—7]? by a translation in the torus. Embeddable components do not wrap around
the torus.

Components which are not embeddable must have a large size (at least Q(1/r)).
Sometimes several non-embeddable components can coexist together (see Figure 1).
However, there are some non-embeddable components which are so spread around the
torus, that they do not allow any room for other non-embeddable ones. Call these
components solitary. Clearly, we can have at most one solitary component. We cannot
disprove the existence of a solitary component, since with probability 1 — o(1) there
exists a giant component of this nature (see Corollary 2.1 of [4], implicitly it is also
in Theorem 13.11 of [7]). For components which are not solitary, we give asymptotic
bounds on the probability of their existence according to their size.

Given a fixed integer ¢ > 1, let K; be the number of components in G(X;r) of size
exactly ¢. For large enough n, we can assume these to be embeddable, since r = o(1).
Moreover, for any fixed € > 0, let K ;g be the number of components of size exactly £,
which have all their vertices at distance at most er from their leftmost one. Finally,
Ky denotes the number of components of size at least £ and which are not solitary.
In Figure 2 an example of a component I' of size exactly £ =9 is given, which has all
its vertices at distance at most er from the leftmost one w.

Notice that K é,z < Ky < Ky. However, in the following we show that asymptot-

ically all the weight in the probability that Ky > 0 comes from components which
also contribute to K/, for e arbitrarily small. This means that the more common
components of size at least ¢ are cliques of size exactly £ with all their vertices close
together.

We now have all definitions to state our main theorem, which is proved in Section 3.

Theorem 2. Let ¢ > 2 be a fized integer. Let 0 < € < 1/2 be fized. Assume that
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Figure 2: A component I" belonging to K;Q

p=0(1). Then

Pr [INQ>0} ~Pr[K;> 0] ~Pr K[, > 0] =9<10gel1n>'

Given a random set X of n points in [0,1)2, let (G(X;7)),cr+ be the continuous
random graph process describing the evolution of G(X';r) for r between 0 and 400
(X remains fixed for the whole process). Observe that the graph process starts at
r = 0 with all n vertices being isolated, then edges are progressively added, and
finally at > 4/2/2 we have the complete graph on n vertices. In this context,
consider the random variables r. = r.(n) = inf{r € RT : G(X;r) is connected} and
r; = ri(n) = inf{r € R : G(X;r) has no isolated vertex}.

As a corollary of Theorem 2 we obtain an alternative proof of the following
well known result (see Theorem 1 of [6]): intuitively speaking, we show that a.a.s.
(G(X;r)),cr+ becomes connected exactly at the same moment when the last isolated
vertex disappears. Note that this is stronger than the results stated in the introduc-
tion, which just say that the properties of connectivity and having no isolated vertex
have a sharp threshold with the same asymptotic characterization (see Proposition 1).

Corollary 3. With probability 1 — o(1), we have r. = r;.

The proof of Corollary 3 is given in Section 4.

3 Proof of Theorem 2

We state and prove three lemmata from which Theorem 2 will follow easily.

Lemma 4. Let £ > 2 be a fized integer, and 0 < € < 1/2 be also fized. Assume that
p=0(1). Then,
E ( éﬁ) = 0(1/log" 1 n).

Proof. First observe that with probability 1, for each component I' which contributes
to K., T has a unique leftmost vertex X; and the vertex X; in I" at greatest distance
from X is also unique. Hence, we can restrict our attention to this case.



Figure 3: The set S for the component I' of Figure 2

Fix an arbitrary set of indices J C {1,...,n} of size |J| = ¢, with two distinguished
elements i and j. Denote by Y = (J,.c ; X the set of random points in A’ with indices
in J. Let &€ be the following event: All vertices in ) are at distance at most er from
X; and to the right of X;; vertex X; is the one in ) with greatest distance from X;
and the vertices of ) form a component I' of G(X;r). If Pr(€) is multiplied by the
number of possible choices of i, j and the remaining ¢ — 2 elements of J, we get

n—2

EKéyzzn(n—1)<£2

) Pr(&). (2)
In order to bound the probability of £ we need some definitions. Let p = d(X;, X;)
and let S be the set of all points in the torus [0,1)? which are at distance at most
r from some vertex in ) (see Figure 3). Notice that p and S depend on the set of
random points ).
We first need bounds of Area(S) in terms of p. Observe that S is contained in the
circle of radius r + p and center X;, and thus

Area(S) < m(r + p)*. (3)

Let i, =1, iR, i1 and ig be respectively the indices of the leftmost, rightmost, topmost
and bottommost vertices in ) (some of these indices possibly equal). Assume w.l.o.g.
that the vertical length of ) (i.e. the vertical distance between X;, and X;,) is at
least p/v/2. Otherwise, the horizontal length of )’ has this property and we can
rotate the descriptions in the argument. The upper halfcircle with center X;, and
the lower halfcircle with center X;, are disjoint and are contained in S. If X, is
at greater vertical distance from X, than from Xj;, then consider the rectangle of
height p/(2v/2) and width  — p/(2v/2) with one corner on X;, and above and to the
right of Xj,. Otherwise, consider the same rectangle below and to the right of Xj,.
This rectangle is also contained in & and its interior does not intersect the previously
described halfcircles. Analogously, we can find another rectangle of height p/(2v/2)
and width 7 — p/(2v/2) to the left of X; and either above or below X;, with the same
properties. Hence,

Area(S) > mr2 + 2 <2\"/§> <7“ - 2\%) . (4)
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From (3), (4) and the fact that p < r/2, we can write

1p 5p 97
2 2 2
1+-2) <A 1+ 28} < 252,
or < +6r)< rea(S) < mr ( +2r>< yd (5)
Now consider the probability P that the n — ¢ vertices not in ) lie outside S. Clearly
P = (1—Area(S))" ‘. Moreover, by (5) and using the fact that e %* < 1—xz < e "
for all = € [0,1/2], we obtain

e—(1+p/(6'r))71"r2n

14+5p/(2r))mr2n—(97r2 /4)%n
(1— 9mr2/4)0°

e < P<

and after plugging in the definition of u (recall that p = ne"j’r”) we have

M 1+5p/(2r) _(971_7,2/4)2n 7] 1+p/(67) 1
() ¢ <P<(1) A= o2/t (©)

Event £ can also be described as follows: There is some non-negative real p < er
such that X is placed at distance p from X; and to the right of Xj; all the remaining
vertices in ) are inside the halfcircle of center X; and radius p; and the n—{ vertices not
in Y lie outside S. Hence, Pr(€) can be bounded from above (below) by integrating
with respect to p the probability density function of d(X;, X;) times the probability
that the remaining ¢ — 2 selected vertices lie inside the right halfcircle of center X;
and radius p times the upper (lower) bound on P we obtained in (6):

O(1)1(5/2) < Pr(£) < O(1) I(1/6), (7)

where

Since ¢ is fixed, for § =5/2 or

Hm:@C%En)/xw%ﬁwx
n 0

_o log!~1n (2¢ - 3)!

o nt (ﬂ log n)ze 2

1
=0(—+ ). 9
<né logz_1n> ©)

The statement follows from (2), (7) and (9). O

Lemma 5. Let ¢ > 2 be a fized integer. Let e > 0 be also fized. Assume that p = O(1).
Then B
Pr [Kg - K[, > O] = O(1/log" n).



Proof. We assume throughout this proof that € < 107!, and prove the claim for this
case. The case € > 1078 follows from the fact that (K, — K[, < (K¢ — Klg-1s.4)-
Consider all the possible components in G(X';r) which are not solitary. Remove
from these components the ones of size at most ¢ and diameter at most er, and denote
by M the number of remaining components. By construction f(g - K ;e < M, and

therefore it is sufficient to prove that Pr(M > 0) = O(1/log’n). The components
counted by M are classified into several types according to their size and diameter.
We deal with each type separately.

Part 1. Consider all the possible components in G(X’; ) which have diameter at most
er and size between ¢ + 1 and logn/37. Call them components of type 1, and let M;
denote their number.

For each k, £+ 1 < k <logn/37, let E} be the expected number of components
of type 1 and size k. We observe that these components have all of their vertices at
distance at most er from the leftmost one. Therefore, we can apply the same argument
we used for bounding EX7 , in the proof of Lemma 4. Note that (2), (7) and (8) are
also valid for sizes not fixed but depending on n. Thus, we obtain

£ < 0n(n - 1)} ) 101/0),

where 1(1/6) is defined in (8). We use the fact that (Z:%) < (#£25)%2 and get

l k—2 €
Er=0(1)logn <e ogn) / 2?3 =2/0 g, (10)
0

2k—2

2k—3,,—xz/6

can be maximized for x € R* by elementary techniques,

2k—3
L 2h=3, /6 < 2k -3
~ \(e/6)logn '

We can bound the integral in (10) and get

e logn k2 2k —3 23
By =0(1)logn < RO
c=omtesn (57%5) e (riymgn)

B 36 (2k—3)2 \"?
-ow (5 )+

The expression x
and we deduce that

n

Note that for k < logn/37 th fon & (382637 V7% i Gocreasing with &

ote that for k& < logn/37 the expression (Tem) 1s decreasing wit .
Hence we can write
1 1

Er=0|—— Vk : L+3< k< —1 .

g (1ogf+1n>’ tOS RS gl

Moreover the bounds Eypy1 = O(1/logfn) and Epyy = O(1/logt™n) are obtained
from Lemma 4, and hence

1
57 logn

1 1 logn ( 1 ) < 1 )
EM, = E.=0 +0 + O =0 ,
! Z F <log€ n) <logé+1 n) 37 logttn log‘n

k=0+1
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Figure 4: The tessellation for counting components of type 2 with two particular
boxes marked.

and then Pr(M; > 0) < EM; = O(1/log’ n).

Part 2. Consider all the possible components in G(X; ) which have diameter at most
er and size greater than logn/37. Call them components of type 2, and let My denote
their number.

We tessellate the torus with square cells of side y = |(er)™|~! (y > er but also
y ~ er). We define a box to be a square of side 2y consisting of the union of 4 cells of
the tessellation. Consider the set of all possible boxes. Note that any component of
type 2 must be fully contained in some box (see Figure 4).

Let us fix a box b. Let W be the number of vertices which are contained inside b.
Notice that W has a binomial distribution with mean EW = (2y)?n ~ (2¢)?logn/x.
By setting § = 31%;, — 1 and applying the Chernoff inequality to W (see e.g. [3],
Theorem 12.7), we have

) EW Gosi40)- 125
B =n

Pr(W > 3*17 logn) =Pr(W > (14 6)EW) < <(1+5 37

Note that ¢ ~ — 1> €™, therefore

_m
148¢2

1
Pr(W > 37 logn) < n~ 2t
Taking a union bound over the set of all ©(r~!) = ©(n/logn) boxes, the probability
that there is some box with more than z-logn vertices is O(1/(n'!logn)). Since

each component of type 2 is contained in some box, we have
Pr(M; > 0) = O(1/(n*'logn)).

Part 3. Consider all the possible components in G(X;7) which are embeddable and
have diameter at least er. Call them components of type 3, and let M3 denote their
number.

We tessellate the torus into square cells of side ar, for some a = a(e) > 0 fixed
but sufficiently small. Let I' be a component of type 3. Let S = St be the set of
all points in the torus [0,1)? which are at distance at most 7 from some vertex in T.
Remove from S the vertices of I" and the edges (represented by straight line segments)



Figure 5: The tessellation for counting components of type 3.

and denote by S’ the outer connected topologic component of the remaining set. By
construction, 8" must contain no vertex in X' (see Figure 5, left picture).

Now let i, iR, iT and ig be respectively the indices of the leftmost, rightmost,
topmost and bottommost vertices in I' (some of these indices possibly equal). As in
the previous setting, assume that the vertical length of T' (i.e. the vertical distance
between X;, and X, ) is at least er/v/2. Otherwise, the horizontal length of I" has this
property and we can rotate the descriptions in the argument. The upper halfcircle
with center X;; and the lower halfcircle with center X;; are disjoint and are contained
in §'. If X, is at greater vertical distance from X;; than from X;;, then consider the
rectangle of height er/(2v/2) and width 7 —er/(2+/2) with one corner on X, and above
and to the right of X;,. Otherwise, consider the same rectangle below and to the right
of X;,. This rectangle is also contained in S’ and its interior does not intersect the
previously described halfcircles. Analogously, we can find another rectangle of height
er/(2v/2) and width 7 — er/(2v/2) to the left of X;, and either above or below X; ,
with the same properties. Hence, taking into account that e < 10718, we have

Area(S') > mr? +2(2\[>< 2\[> (1+ ) 2, (11)

Let S* be the union of all the cells in the tessellation which are fully contained in S’.
We loose a bit of area compared to S§’. However, if @ was chosen small enough, we can
guarantee that S* is topologically connected and has area Area(S*) > (1 + ¢/6)mr2.
This « can be chosen to be the same for all components of type 3 (see Figure 5, right
picture).

Hence, we showed that the event (M3 > 0) implies that some connected union of
cells S* of area Area(S*) > (14 ¢/6)mr? contains no vertices. By removing some cells
from S*, we can assume that (1 + €/6)7r? < Area(S*) < (1 + €/6)mr? + a?r?. Let S*
be any union of cells with these properties. Note that there are ©(1/72) = ©(n/logn)
many possible choices for §*. The probability that S* contains no vertices is

(1 _Area(s*))n < e—(1+e/6)7rr2n — (H
n

) 14¢/6

Therefore, we can take the union bound over all the ©(n/logn) possible $*, and
obtain an upper bound of the probability that there is some component of the type 3:

n [ 1+¢/6 1
< - = .
Pr(M; >0) < 6 <logn> (n> © <n5/6 logn>




Part 4. Consider all the possible components in G(X’;7) which are not embeddable
and not solitary either. Call them components of type 4, and let M4 denote their
number.

We tessellate the torus [0, 1)? into ©(n/logn) small square cells of side length ar,
where a > 0 is a sufficiently small positive constant.

Let I be a component of type 4. Let S = Sr be the set of all points in the torus
[0,1)? which are at distance at most r from some vertex in I'. Remove from S the
vertices of I and the edges (represented by straight segments) and denote by S’ the
remaining set. By construction, &’ must contain no vertex in X.

Suppose there is a horizontal or a vertical band of width 2r in [0,1)? which does
not intersect the component I' (assume w.l.0.g. that it is the topmost horizontal band
consisting of all points with the y-coordinate in [1 — 2r,1)). Let us divide the torus
into vertical bands of width 2r. All of them must contain at least one vertex of T,
since otherwise I' would be embeddable. Select any 9 consecutive vertical bands and
pick one vertex of I' with maximal y-coordinate in each one. For each one of these 9
vertices, we select the left upper quartercircle centered at the vertex if the vertex is
closer to the right side of the band or the right upper quartercircle otherwise. These
nine quartercircles we chose are disjoint and must contain no vertices by construction.
Moreover, they belong to the same connected component of the set §’, which we denote
by S”, and which has an area of Area(S”) > (9/4)7r%. Let S* be the union of all the
cells in the tessellation of the torus which are completely contained in §”. We lose a
bit of area compared to S”. However, as usual, by choosing « small enough we can
guarantee that S* is connected and it has an area of Area(S*) > (11/5)7r?. Note that
this « can be chosen to be the same for all components I' of this kind.

Suppose otherwise that all horizontal and vertical bands of width 2r in [0,1)?
contain at least one vertex of I'. Since I' is not solitary it must be possible that it
coexists with some other non-embeddable component IV. Then all vertical bands or
all horizontal bands of width 2r must also contain some vertex of I (assume w.l.o.g.
the vertical bands do). Let us divide the torus into vertical bands of width 2r. We can
find a simple path IT with vertices in I which passes through 11 consecutive bands.
For each one of the 9 internal bands, pick the uppermost vertex of I'" in the band
below II (in the torus sense). As before each one of these vertices contributes with
a disjoint quartercircle which must be empty of vertices, and by the same argument
we obtain a connected union of cells of the tessellation, which we denote by §*, with
Area(S*) > (11/5)mr? and containing no vertices.

Hence, we showed that the event (M > 0) implies that some connected union
of cells S* with Area(S*) > (11/5)7r? contains no vertices. By repeating the same
argument we used for components of type 3 but replacing (14 ¢/6)7r? by (11/5)7r2,
we get

Pr(M; > 0) — © <1> |

nb/5logn
O

For a random variable X and any k > 1, we denote by E[X]; the kth factorial
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moment of X, ie. EX]; =E[X(X -1)... (X —k+1)].

Lemma 6. Let { > 2 be a fized integer. Let 0 < € < 1/2 be fized. Assume that
w=0(1). Then
E ( 275)2 = 0(1/10g*2n).

Proof. As in the proof of Lemma 4, we assume that each component I' which con-
tributes to K é,e has a unique leftmost vertex X;, and the vertex X; in I' at greatest
distance from X is also unique. In fact, this happens with probability 1.

Choose any two disjoint subsets of {1,...,n} of size ¢ each, namely J; and Jy,
with four distinguished elements i1, j; € Ji and ig, jo € Jo. For k € {1,2}, denote by
Vi = UlEJk X the set of random points in X with indices in J;. Let £ be the event
that the following conditions hold for both k£ = 1 and k = 2: All vertices in ), are at
distance at most er from Xj;, and to the right of Xj, ; vertex Xj, is the one in )} with
greatest distance from X,-k; and the vertices of Y form a component I' of G(X;7).
If Pr(&) is multiplied by the number of possible choices of i, ji and the remaining
vertices of Ji, we get

E[K Jo = O(n?)Pr(€). (12)

In order to bound the probability of £ we need some definitions. For each k €
{1,2}, let pr, = d(X;,, X;,) and let Sy, be the set of all the points in the torus [0,1)?
which are at distance at most r from some vertex in Vi. Obviously p; and S depend
on the set of random points ). Also define S = §; U Ss.

Let F be the event that d(X;,, X;,) > 3r. This holds with probability 1 — O(r?).
In order to bound Pr(€ | F), we apply a similar approach to the one in the proof of
Lemma 4. In fact, observe that if F holds then §§ NSy = (). Therefore in view of (5)

we can write 18
r2(2+ (p1 + p2)/(61)) < Area(S) < TWTZ (13)

and using the same techniques that gave us (6) we get

)2+(P1+P2)/(6"‘) 1 (14)

(1 - Area(s))" % < (£ T

n
Observe that £ can also be described as follows: For each k € {1,2} there is some
non-negative real p;, < er such that Xj, is placed at distance p; from X;, and to the
right of Xj;,; all the remaining vertices in ) are inside the halfcircle of center X;,
and radius pg; and the n — £ vertices not in )}, lie outside Sg. In fact, rather than
this last condition, we only require for our bound that all vertices in X\ (V1 U )a)
are placed outside S, which has probability (1 — Area(S))" ‘. Then, from (14) and
following an analogous argument to the one that leads to (7), we obtain the bound

77 f 2 T 9\ {2 1
Pr(&|F) / / TFP1 P1 P2 (2P2> 2+ (o1 +p2)/ (6r) dprdpa
1(1/6)2,
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where I(1/6) is defined in (8). Thus from (9) we conclude

Pr(EANF)<O(1) P(F)I(1/6)> =0 (M) : (15)
Otherwise, suppose that F does not hold (i.e. d(X;,, X;,) < 3r). Observe that £
implies that d(X;,, X;,) > r, since X;, and X;, must belong to different components.
Hence the circles with centers on X;, and X;, and radius r have an intersection of
area less than (7/2)r2. These two circles are contained in S and then we can write
Area(S) > (3/2)7r?. Note that £ implies that all vertices in X'\ (J; U )») are placed
outside S and that for each k € {1,2} all the vertices in YV, \ {X;, } are at distance at
most er and to the right of Xj;, . This gives us the following rough bound

Pr(e | F) < (S()) " <1 _ ?mTz)“‘ _ o) <1ogn>2“ (1)

2 n n

Multiplying this by Pr(F) = O(r?) = O(logn/n) we obtain

L logQE—ln

which is negligible compared to (15). The statement follows from (12), (15) and (16).
0

Our main theorem now follows easily: From Corollary 1.12 in [2], we have

1
EK,, — §E[Ké,z]2 <Pr(K/,>0) <EK/,
and therefore by Lemmata 4 and 6 we obtain

Pr(K.,>0) = ©(1/log" ' n).

Combining this and Lemma 5, yields the statement.

4 Proof of Corollary 3

Before proving Corollary 3, we give a proof of Proposition 1, since we will make use
of the arguments used in the proof of this proposition.

Proof of Proposition 1. Recall that g = ne™™"™ and r = 4/ %. Observe that

r € [0,400) is monotonically decreasing with respect to u € (0,n]. Hence, the
probability that G(X;r) is connected is also decreasing with respect to p.

Suppose first that p = ©(1). From (1) and since O(r*n) = o(1) we have that
EK; ~ u. We shall compute the factorial moments of K; and show that E[K1], ~ u*
for each fixed k. As in Lemma 4, for kK > 2, we fix an arbitrary set of indices
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J Cc{1,...,n} of size |J| = k. Denote by ¥ = [J;c; Xk the set of random points in
X with indices in J. Let £ be the event that all vertices in ) are isolated, and denote
by S the set of points in [0,1)? that are at distance at most r from some vertex in .
We have E[K1], ~ n*Pr(€). Note that in order for the event £ to happen, we must
have SN (X \ V) = 0. To compute Pr(£), we distinguish two cases:

Case 1: Let Jy be the event that Vi # j € J, d(X;, X;) > 4r, which has probability
1 —O(r?) = 1 — o(1). Note that if Jy holds then Area(S) = kr2w, and thus the
contribution to Pr(&) is

Pr(E | Jo)Pr(Jo) ~ (1 — kr2m)" =k ~ e=hram,

Case 2: Otherwise there exists 37 # j € J such that d(X;, X;) < 4r. Define J' =
{jeJ|Fieli<ydX;X;)<4r} andlet £ = |J'|. Note that 1 < /¢ < k —1.
Let j' be the smallest element of J' and let i’ < j’ be the (smallest) element of .J
with d(Xy, Xj) < 4r. Denote by Cy the circle of radius r centered at X, and
consider the halfcircle of radius r centered at X delimited by the line going through
X, perpendicular to the line connecting X; with X/, and which does not intersect
Cy (note that d(Xy,X;) > r, so this halfcircle exists). This circle and halfcircle
contribute to Area(S) by 3r%m, and thus in total Area(S) > (k— ¢+ 3)r?m. Moreover,
the probability that any j € J to belongs to J’ is at most ©(r?). Hence, if we denote
by J; the event that such a set J’ with |J/| = ¢ exists, we have for any 1 </ <k —1,

Pr(€ | J)Pr(Je) < (1— (k—£+1/2))"™0(r%)" = o(e ¥*™).

Then, the main contribution to Pr(£) comes from Case 1, and therefore EK; ~
nke—krimn — 1, so the random variable K7 is asymptotically Poisson with parameter
p (see Theorem 1.22 in [2]). By Theorem 2, a.a.s. G(X;r) consists only of isolated
vertices and a solitary component, and the second statement in the result is proven.

The first and third statements follow directly from the fact that, for any p = O(1),
Pr(G(X;r) is connected) ~ e™*, combined with the decreasing monotonicity of this

probability with respect to pu. O

Proof of Corollary 3. For any € > 0, one can find a large enough constant k = k(e)

such that e™¢" < ¢/2and 1 —e™¢ " < ¢/2. Let 1y = \/logﬂ% and 1, = \/log#“. By
Proposition 1, K is asymptotically Poisson in G(X’;ry) and G(X;r,), with parameter
u = e and p = e " respectively. Therefore, in G(X;ry) we have Pr(K; = 0) ~
e~ < ¢/2, and in G(X;r,) we have Pr(K; > 0) ~ 1 —e™¢ " < ¢/2. Moreover, by
Theorem 2, a.a.s. both G(X;rp) and G(X;r,) consist only of isolated vertices and a
giant solitary component. Hence, with probability at least 1 — €, the random process
(G(X;r)),cr+ has the following evolution: for r < ry, the graph stays disconnected;
at r = rp, there are only a few isolated vertices and a giant component; for r between
r¢ and 1y, all isolated vertices merge together or with other components; finally for
r > 1y, the graph is connected. For this particular evolution of the process, r. = 7;
unless for an r with ry < r < r, some isolated vertices merge together and create a
small component before being absorbed by the giant one. Then, it is sufficient for our
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purposes to show that a.a.s. any two isolated vertices in G(X;ry) are at a distance
bigger than r,.

Define Z to be the random variable that counts the pairs of vertices ¢ and j
which are both isolated in G(&X;7,) and such that d(X;, X;) < r,. By the same
argument as in the proof of Proposition 1, setting S to be the set of points in [0, 1)?
at distance at most 7, from either X; or X;, we obtain Area(S) > %T’%ﬂ'. Moreover,
since ry < d(X;, Xj) < ry, X; must lie in an annulus of area ©(1/n) around X;, which
occurs with probability ©(1/n). Taking a union bound over all pairs of vertices ¢ and
]7

Pr(Z >0)<n(n-—1) (1 - ;)7“%77>n_2 O(1/n) =06 (n—l/Z) .

Therefore, when gradually increasing r from 7, to r,, a.a.s. no pair of isolated ver-
tices in G(X;7) gets connected before joining the solitary component, and thus no
component of size 2 or larger (except for the solitary component) appears in this part
of the process. Hence, with probability at least 1 — €, we have that r. = r;, and the
statement follows, since € can be chosen to be arbitrarily small. O

Acknowledgment. We thank an anonymous referee for suggesting the application
of Theorem 2 to obtain Corollary 3.
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