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Abstract
We consider a problem at the intersection of distributed computing and game

theory, namely: Is it possible to achieve the “windfall of malice” even without
the actual presence of malicious players? Our answer to this question is “Yes and
No”. Our positive result is that for the virus inoculation game, it is possible to
achieve the windfall of malice by use of a mediator. Our negative result is that for
congestion games that are known to have a windfall of malice, it is not possible
to design a mediator that achieves this windfall. In proving these two results, we
develop techniques for mediator design that we believe will be helpful for creating
non-trivial mediators to improve social welfare in a large class of games.

1 Introduction

Recent results show that malicious players in a game may, counter-intuitively, improve
social welfare [16, 8, 13, 18, 14]. For example, Moscibroda, Schmidt and Wattenhofer
show that for a virus inoculation game, the existence of malicious players, who may
lie about the action they perform, will actually lead to better social welfare for the
remaining players than if such malicious players are absent [16] . This improvement
in the social welfare with malicious players has been referred to as the “windfall
of malice” [8]. The existence of the windfall of malice for some games leads to an
intriguing question: Can we achieve the windfall of malice even without the actual
presence of malicious players?

In this paper, we show that the answer to this question is sometimes “Yes”. How
do we achieve the beneficial impact of malicious players without their actual presence?
Our approach is to use a mediator. Informally, a mediator is a trusted third party
that suggests actions to each player. The players retain free will and can ignore the
mediator’s suggestions. The mediator proposes actions privately to each player, but
the algorithm the mediator uses to decide what to propose is public knowledge. The
contributions of this paper are threefold.

• We introduce a general technique for designing mediators that is inspired by
careful study of the “windfall of malice” effect. In our approach, the mediator
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makes a random choice of one of two possible configurations, where a configura-
tion is just a set of proposed actions for each player. The first configuration is
optimal: the mediator proposes a set of actions that achieves the social optimum
(or very close to it). The second configuration is “fear inducing”: the mediator
proposes a set of actions that leads to catastrophic failure for those players who
do not heed the mediators advice. The purpose of the second configuration is to
ensure that the players follow the advice of the mediator when the optimal con-
figuration is chosen. Thus, the random choice of which configuration is chosen
must be hidden from the players.

• We show the applicability of our technique by using it to design mediators for
two games. First, we design a mediator for the virus inoculation game from [16],
that achieves a social welfare that is asymptotically optimal. Second, we design
a mediator for a variant of the El Farol game [3, 12, 10, 15] that improves the
social welfare over the best Nash equilibria. Surprisingly, our technique works
for the El Farol game, even though this game does not have a windfall of malice.

• We show the limits of our technique by proving an impossibility result that
shows that for a large class of games, no mediator will improve the social welfare
over the best Nash equilibria. In particular, this impossibility result holds for
the congestion games that Babaioff, Kleinberg and Papadimitriou show have a
windfall of malice [8]. Thus, we show that some games with a windfall of malice
effect can not be improved by the use of a mediator.

1.1 Related Work
The concept of a mediator is closely related to that of a correlated equilibrium, which
was introduced by Aumann in [7]. In particular, if a mediator proposes actions to
the players such that it is in the best interest of each player to follow the mediators
proposal, then the mediator is said to implement a correlated equilibrium. There
are several recent results on correlated equilibria and mediators. Papadimitriou and
Roughgarden [17] give polynomial time algorithms that can optimize over correlated
equilbria, via a linear programming approach, for a large class of multiplayer games
that are “succinctly representable” in the sense that the set of possible strategy vectors
over all players is polynomial. Christodoulou and Koutsoupias [11] study the price of
anarchy and stability in congestion games where each edge has a linear cost function
with positive coefficients. They show that in such a setting, the price of anarchy for
pure equilibria is almost the same as the price of anarchy of correlated equilibria:
a difference of no more than 1.4%. Balcan et al. [9], describe techniques for moving
from a high cost Nash equilibrium to a low cost Nash equilibrium via a “public service
advertising campaign”. They show that in many games, even if not all players follow
instructions, it is possible to ensure such a move . While their result does not explicitly
consider mediators, it is similar in flavor to ours in the sense that an outside third
party is acting to improve social welfare.

A major motivation of our use of a mediator is recent work by Abraham et al. [1, 2].
Their work shows that it is possible to implement mediators just by having the players
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talk amongst themselves (“cheap talk”). In other words, there exists a distributed
algorithm for talking among the players that enables the simulation of a mediator.
Moreover, Abraham et al. show it is possible to achieve this in a robust manner, even
with up to linear size coalitions and up to a constant fraction of adversarial players.

Several recent results study the use of mediators that may act on behalf of a
player [4, 19, 21, 20]. In other words, these results consider the situation where if a
player decides to use the mediator, it first communicates any relevant information to
the mediator and then the mediator acts for the player, without the player having the
opportunity to change the mediators action.

Paper Organization: Section 1.2, below, gives basic definitions. Next, Section 2
describes an asymptotically optimal mediator for the virus inoculation game. Sec-
tion 3 states and proves our impossibility result. Section 4 describes our result for
the El Farol game, and shows how this game is similar to virus inoculation. Finally,
Section 5 concludes and gives open problems.

1.2 Basic definitions and notation
A correlated equilibrium is a probability distribution over strategy vectors that ensures
that no player has incentive to deviate. We define a configuration for a given game
to be a vector of pure strategies for that game, one for each player. We define a
mediator for a game to be a probability distribution D(C) over a finite set of different
configurations C. The set of configurations C and the distribution D(C) are known to
all players. However, the actual configuration chosen is unknown, and the advice the
mediator gives to a particular player based on the chosen configuration is known only
to that player. We say that a mediator is valid if all players are incentivized to follow
its advice. In this case, the mediator implements a correlated equilibrium. From a
distributed computing viewpoint, the major difference between a correlated equilibria
and a Nash equilibria is that in a correlated equilibria, players share a global coin,
but in a Nash equilibria, players only have access to private coins.

Throughout this paper, we will only consider mediators that treat all players
equally, i.e., once having decided (by a random experiment according to D(C)) which is
the configuration the mediator is choosing from, all players have the same probability
to be proposed a particular strategy. Also, throughout the paper we assume that
the number of strategic players, n, is very large (tending to infinity). Finally, we
will use the notation a(n) ∼ b(n) if a(n) = b(n)(1 ± o(1)). We also use the notation
[n] = {1, . . . , n}.

2 Virus Inoculation Game

We now describe the virus inoculation game from [16, 6]. There are n players, each
corresponding to a node in a square grid G. Each player has two choices: either to
inoculate itself (at a cost of 1) or to do nothing and risk infection (which costs L).
After the decision of the nodes to inoculate or not, one node selected uniformly at
random is infected with a virus. A node v that chooses not to inoculate gets infected
by the virus if either the virus starts at v or the virus starts at another node v′ and
there is a path of not inoculated nodes connecting v and v′.
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We define the attack graph Ga to be the graph induced on G by the set of all nodes
that do not inoculate. Aspnes et al. [5] proved that in a pure Nash equilibrium every
component of the attack graph has size n/L. The social welfare achieved in such an
equilibria is thus Θ(n). However, Moscibroda et al. [16] proved that the minimum
social cost is Θ(n2/3L1/3) for the grid, which occurs when the components in Ga are
of size (n/L)2/3. Moreover, they show that the existence of enough Byzantine players,
who can never be trusted to inoculate, ensures that the social welfare of any Nash
equilibria is slightly better than Θ(n).

Based on the result from [16], we observe that the main problem in this game is
that the individual players do not have enough fear of being infected. In particular,
they are unable to achieve the optimal social welfare because they form connected
components in Ga that are too large. Thus, we design a mediator that randomly
chooses between two configurations (see Figure 1). The first configuration is optimal:
all components in Ga are of size (n/L)2/3. The second configuration is “fear inducing”:
any node that does not inoculate in this configuration has probability about 1/2 of
being infected. The only purpose of the second configuration is to ensure that the
selfish players follow the advice of the mediator when the optimal configuration is
chosen.

Clearly, we only want to choose the fear inducing configuration with very small
probability. The critical fact that enables us to do this is the fact that for a given
player, when that player is advised to inoculate, the posterior probability that the
mediator is in the second configuration increases significantly over the prior probabil-
ity. This is the case because so many more nodes are told to inoculate in the second
configuration. Thus, players that are told to inoculate are more likely to be infected.
Finally, we also note that nodes that are told not to inoculate are more likely to be
in the first configuration and thus not to be attacked.

We now formally describe the mediator for this game.1 The mediator will choose
randomly between one of the following two configurations C1 and C2.
Configuration C1: The mediator proposes a pattern of inoculation such that 1) all
nodes that do not inoculate are in one giant component in Ga; 2) each node has equal
probability of being chosen to inoculate; and 3) the probability that a fixed node
inoculates is 1

2 − 1
2
√

n
. The mediator accomplishes this in the following manner:

1. The mediator flips a coin. If it comes up heads, it proposes that all nodes in
even columns do not inoculate. If it comes up tails, it proposes that all nodes
in odd columns do not inoculate.

2. The mediator chooses a random integer, x, uniformly between 1 and
√
n. For

each of the columns that have not already been told not to inoculate, the medi-
ator proposes that each node in that column inoculate except for the x-th node
in that column.

1For ease of analysis, we assume that both
√
n and ( n

L
)1/3 are integers. Also,

√
n should be an

integer multiple of ( n
L

)1/3 (this assumption can be removed easily without effecting our asymptotic
results)
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Figure 1: The
√
n×√n grid with two configurations C1, C2 for the virus inoculation

game

Configuration C2: The mediator proposes a pattern of inoculation that ensures that
1) each component in Ga is of size no more than ( n

L)2/3; 2) each node is chosen to
inoculate with equal probability; and 3) the probability that a fixed node inoculates
is at most 2(L/n)1/3. It does this as follows.

1. The mediator chooses integer x uniformly at random in the range 1 to (n/L)1/3.

2. For every node v in row r and column c, if one of the following two conditions
hold, the mediator proposes v to inoculate: 1) r ≡ x mod (n/L)1/3; or 2) c ≡ x
mod (n/L)1/3. Otherwise the mediator tells v not to inoculate.

For these two configurations C1 and C2 we now define the probability distribution
D({C1, C2}) with p1 = cL−2/3n−1/3 and p2 = (1− cL−2/3n−1/3), where c > 0 can be
chosen to be any small constant satisfying c > 2L/(L− 1) (in particular c = 4 always
suffices).

We can now prove the main theorem of this section which shows that D({C1, C2})
is asymptotically optimal.
Theorem 2.1. D({C1, C2}) is a mediator with social welfare Θ(n2/3L1/3).

Proof. To prove the statement, we need a few definitions. Define by Ej
I the event

that the mediator advises player j to inoculate and define by Ej
Ī

the event that the
mediator advises player j not to inoculate. Since all players are to be treated equally
by the mediator, we will omit the index j. Define also by EA the event that a not
inoculated node gets infected by the virus, and denote by CA the infection cost of a
not inoculated node. We also use the notation CI to denote the cost of inoculation
(clearly CI = 1). We first need to show that D({C1, C2}) indeed yields a mediator.
That is, we have to verify the following conditions of a correlated Nash equilibrium:

E [CA|EI ] ≥ E [CI |EI ] = 1
E [CA|EĪ ] ≤ E [CI |EĪ ] = 1,
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which is equivalent to showing that

Pr (EA|EI) ≥ 1/L (1)
Pr (EA|EĪ) ≤ 1/L, (2)

since for any event E with Pr (E) > 0, we have that E [CA|E ] = LPr (EA|E). We
denote furthermore by Ei, i = 1, 2, the event that configuration Ci, i = 1, 2 is chosen.
Note that Pr (EA|E1) = 1. To prove (1), first observe that

Pr (E1|EI) = Pr (E1, EI)/Pr (EI)

∼ p1(1/2− 1/(2
√
n))

p1(1/2− 1/(2
√
n)) + 2p2(L/n)1/3

,

and similarly for Pr (E2|EI). Now, plugging in the values of p1, p2 and using that
L ∈ o(n) we get 2

Pr (EA|EI) = Pr (EA, E1|EI) + Pr (EA, E2|EI)
= Pr (EA|E1, EI)Pr (E1|EI) + Pr (EA|E2, EI)Pr (E2|EI)

≥ Pr (E1|EI) +
1

L2/3n1/3
Pr (E2|EI)

∼ p1(1/2− 1/(2
√
n))

p1(1/2− 1/(2
√
n)) + 2p2(L/n)1/3

+ (L−2/3n−1/3)
2p2(L/n)1/3

p1(1/2− 1/(2
√
n)) + 2p2(L/n)1/3

∼ (c/2)L−2/3n−1/3 + 2L−1/3n−2/3

(c/2)L−2/3n−1/3 + 2(L/n)1/3

=
2cL2/3n2/3 + 4Ln1/3

2cL2/3n2/3 + 4L5/3n2/3

∼ c

c+ 2L
,

which is greater than 1/L for c > (2L)/(L− 1). Similarly, to prove (2), note that

Pr (E1|EĪ) = Pr (E1, EĪ)/Pr (EĪ)

∼ p1(1/2 + 1/(2
√
n))

p1(1/2 + 1/(2
√
n)) + p2(1− 2(L/n)1/3)

,

2if L = θ(n), then any pure Nash equilibria is trivially asymptoticaly optimal
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and analogously for Pr (E2|EĪ). Hence,

Pr (EA|EĪ) = Pr (EA, E1|EĪ) + Pr (EA, E2|EĪ)
= Pr (EA|E1, EĪ)Pr (E1|EĪ) + Pr (EA|E2, EĪ)Pr (E2|EĪ)

≤ Pr (E1|EĪ) +
1

L2/3n1/3
Pr (E2|EĪ)

∼ p1(1/2 + 1/(2
√
n))

p1(1/2 + 1/(2
√
n)) + p2(1− 2(L/n)1/3)

+ (L−2/3n−1/3)
p2(1− 2(L/n)1/3)

p1(1/2 + 1/(2
√
n)) + p2(1− 2(L/n)1/3)

∼ (c/2)L−2/3n−1/3 + L−2/3n−1/3

(c/2)L−2/3n−1/3 + 1

∼ c+ 2
2L2/3n1/3

,

which is smaller than 1/L since L ∈ o(n). Thus, we have shown that D({C1, C2})
indeed is a valid mediator in that players will follow its advice. We next compute
the social cost for this mediator. Let I1 (Ī1) be the set of nodes that inoculate
(respectively do not inoculate) in C1, and let I2 (Ī2) be the set of nodes that inoculate
(respectively do not inoculate) in C2. Then the social cost for the mediator can be
written as

p1(|I1|+
∑
v∈Ī1

LPr (EA|E1, EĪ)) + p2(|I2|+
∑
v∈Ī2

LPr (EA|E2, EĪ))

∼ c

L2/3n1/3
(n/2 + (n/2)L) + (2n2/3L1/3 + nL

1
L2/3n1/3

)

= (3 + (c/2))n2/3L1/3 + (c/2)(n/L)2/3 = Θ(n2/3L1/3).

3 Impossibility Result

In light of the results in the previous section, a natural question is: Is it possible
to design a mediator that will always improve the social welfare in any game for
which there is a windfall of malice? Unfortunately, the answer to this question is
“No”, as we show in this section. In particular, we show that the congestion games
which Babaioff, Kleinberg and Papadimitriou have proven have a windfall of malice
effect [8] do not admit a mediator that is able to improve the social welfare. In fact,
we prove a stronger impossibility result, showing that for any non-atomic, symmetric
congestion game where the cost of a path never decreases as a function of the flow
through that path (of which class of games, the examples in [8] are special instances),
no mediator can improve the social optimum. In the rest of this section, we first
define the congestion games we consider and then prove our impossibility result for
these games.
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Figure 2: Examples where Theorem 3.1 applies

A non-atomic, symmetric congestion game (henceforth, simply a congestion game)
is a specified by a set of n→∞ players; a set of E facilities (or edges); A ⊂ 2E actions
(or paths); and finally, for each facility e a cost function fe associated with that facility.
A pure strategy profile A = (A1, . . . , An) is a vector of actions, one for each player.
The cost of player i for action profile A is given by Fi(A) =

∑
e∈Ai

fe(xe(A)) where
xe(A) is the fraction of players using e in A. As in [8], we assume that the game is
non-atomic: since n→∞ the contribution of a single player to the flow over a facility
is negligible; and symmetric: all players have the same cost functions.

For an action a and a flow x ∈ [0, 1], let Fh(a, x) be the maximum possible cost of
following action a when the total fraction of players following this action is x, where
the maximum is taken over all ways that the remaining flow of 1−x can be distributed
over other actions. Similarly, let F`(a, x) be the minimum cost of following action a
when the total fraction of players following this action is x.

We prove the following theorem for congestion games where the cost function of
every action is always non-decreasing in the fraction of players performing that action.
The theorem says that for such games, coordination between the agents in order to
establish a correlated equilibrium will not decrease the social cost.
Theorem 3.1. Consider a non-atomic, anonymous congestion game. If for all a ∈ A
and 0 ≤ x ≤ x′ ≤ 1, Fh(a, x) ≤ F`(a, x′) then the smallest social cost achieved by
a correlated equilibrium is no less than the smallest social cost achieved by a Nash
equilibrium.

Figure 2 gives examples of congestion games for which Theorem 3.1 applies. In
these graphs, if the costs of all edges are non-decreasing in flow, then the smallest
social cost achieved by a correlated equilibria is no better than the smallest social
cost achieved by a Nash equilibria. In both examples, all players must travel from the
source node s to the sink node t, so the set of allowable actions are just the set of all
paths from s to t. The graph on the left is a specific example of a more general class
of graphs for which all paths are disjoint and edge costs are non-decreasing, for which
Theorem 3.1 applies. The graph on the right is a generalization of the congestion game
from [8], which they show has a positive windfall of malice for certain non-decreasing
cost functions. In the next section and in Figure 3 described therein, examples of
congestion games for which Theorem 3.1 does not hold are given.

We next give a high level sketch of how we prove this theorem. We will fix a
non-atomic, anonymous congestion game G with q actions, a1, . . . , aq, and n players.
We define a configuration, C, for such a game to be a partitioning of the set of
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players across the q actions. We note that the number of possible configurations is
finite; in particular, qn. We next fix a mediator, M , for this game. We assume the
mediator uses ` different configurations C1, . . . , C`; that 0 ≤ xi,j ≤ 1 is the fraction
of the players in configuration Cj assigned to action ai; and that ci,j ∈ R is the cost
in configuration Cj for action ai. We further assume that for all j ∈ [`], pj is the
probability with which the mediator M chooses Cj .

For any two actions a, a′ we define the a posteriori cost of a given a′ as the
expected cost for a player of performing action a when action a′ is suggested by
the mediator M ; formally, POST (a, a′) = E [Ca|Ea′ ], where Ca is a random variable
(over the configuration chosen by the mediator) and Ea′ is the event that action a′ is
recommended by the mediator. We define the a priori cost of action a as the cost of a
player completely ignoring what the mediator suggests and always performing action
a; formally, PRI (a) :=

∑`
j=1 pjci,j .

The sketch behind our proof for this theorem is as follows. First, we show in
Lemma 3.2 that for all actions a, if the cost of a is non-decreasing in the flow through
a, then POST (a, a) ≥ PRI (a). We show this by repeated decompositions of terms
in summations for the a priori and posterior costs. The proof is straightforward but
technical and so is included in the appendix. Next, let Y be the cost of a player
listening and following the advice of the mediator, and let X be the cost of the player
if she just ignores the advice of the mediator and always chooses the action a that
minimized PRI (a). In Lemma 3.3 we show that it must be that E(Y ) ≤ E(X). This
lemma is shown by summing up inequality constraints on the mediator. Finally, we
use these two lemmas to show the main theorem by showing that if Lemma 3.2 holds,
then E(Y ) > E(X). The main technical challenge is the fact that we must show that
E(Y ) > E(X) even though Lemma 3.2 does not necessarily give a strict inequality.
We address this problem by a subtle case analysis in the proof of the main theorem,
and by augmenting Lemma 3.2 to show that in some cases, the inequality it implies
is strict.

We now present the detailed proof of the theorem. Observe that the condition for
all a ∈ A and 0 ≤ x ≤ x′ ≤ 1, Fh(a, x) ≤ F`(a, x′) implies that for all i ∈ [m], ∀j, k ∈
[`] we have that xij ≤ xik implies cij ≤ cik, and so the conditions of the following
lemma are satisfied. We begin with Lemma 3.2, whose proof is in Appendix A.
Lemma 3.2. Given ` ≥ 2 configurations C1, . . . , C`, with corresponding probabilities
pr > 0, r ∈ [`]. If for i ∈ [m], ∀j, k ∈ [`] we have that xij ≤ xik implies cij ≤ cik,
then POST (ai, ai) ≥ PRI (ai). Moreover, if for any i ∈ [q], not all cij, j ∈ [`] are the
same, then POST (ai, ai) > PRI (ai).

Define by apri := argminaPRI (a). Given a mediator over a fixed set of con-
figurations, let X be the random variable denoting the cost of an arbitrary player
when he decides to use action apri, i.e., E [X] =

∑`
j=1 pjcaprij . Denote also by

Y the random variable of the cost when following the advice of the mediator, i.e.,
E [Y ] =

∑m
i=1 POST (ai, ai) Pr (Ei) =

∑m
i=1

∑`
j=1 pjxijcij . We have the following

relationship between Y and X.
Lemma 3.3. For any mediator we have E [Y ] ≤ E [X].
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Proof. Assume without loss of generality that action a1 is the action with apri. The
constraints for a correlated Nash equilibrium are that for all actions ai and aj ,
E [Cai |Eai ] ≤ E

[
Caj |Eai

]
. These constraints imply that

∀i:2≤i≤q :
∑̀
j=1

pjxijcij ≤
∑̀
j=1

pjxijc1j .

Summing all of these q − 1 inequalities together gives the single inequality, which we
can rearrange as follows to show our result:

q∑
i=2

∑̀
j=1

pjxijcij ≤
q∑

i=2

∑̀
j=1

pjxijc1j ⇐⇒

∑̀
j=1

m∑
i=2

pjxijcij ≤
∑̀
j=1

pjc1j

q∑
i=2

xij ⇐⇒

∑̀
j=1

q∑
i=2

pjxijcij ≤
∑̀
j=1

pjc1j(1− x1j) ⇐⇒

∑̀
j=1

q∑
i=1

pjxijcij ≤
∑̀
j=1

pjc1j ⇐⇒

E [Y ] ≤ E [X].

We are now ready to prove the main theorem.

Proof. Denote by apost := argminsPOST (s, s) the action with minimum a posteriori
cost. We will consider two cases.
Case 1: Not all actions have the same a posteriori cost. Then, we have:

E [Y ] > POST (apost, apost)
≥ PRI (apost) by Lemma 3.2
≥ PRI (apri) = E [X].

Case 2: All action have the same a posteriori cost. In this case, we make use of
the fact that there always must be some action that does not have equal costs in
each configuration. Assume not. Then the cost of each action is the same in every
configuration, and so any particular configuration must be a Nash equilibrium that
achieves social cost equal to the social cost of the correlated equilibrium. Thus, we
let ax be some action that does not have the same cost in all configurations. Then
we have:

E [Y ] = POST (ax, ax)
> PRI (ax) by Lemma 3.2
≥ PRI (apri) = E [X].
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In both cases we have E [Y ] > E [X]. This however contradicts Lemma 3.3, hence
there can not exist a correlated equilibrium achieving social cost less than the optimal
Nash equilibrium.

4 El Farol

We end this paper on a positive note, by describing a simple congestion game where
we can show that a mediator will improve the social optimum. This simple game gives
additional insight into why our mediator for the virus inoculation game works.

The game we consider is a variant of the El Farol game [3, 12, 10, 15]. El Farol
is a3 tapas bar in Santa Fe. Every Thursday night, a population of people decide
whether or not to go to the bar. If too many people go, they will have a worse time
than if they stayed home, since the bar will be too crowded. In our variant of the
problem, we also assume that if too few people go, they will have a worse time than
if they stayed home, because the bar will be too boring. We can model this as a
non-atomic, symmetric congestion game as follows. There are two facilities e1 and
e2, and two actions a1 = {e1} and a2 = {e2}. For all 0 ≤ x ≤ 1, fe1(x) = 1/2 and
fe2(x) = |1− 2x|.

We observe that the social cost in our game is minimized when the flow over both
edges is 1/2, in which case, the social cost is 1/4. This configuration, however, is not
a Nash equilibrium. Pure Nash equilibria occur when the top flow is 1/4 or the top
flow is 3/4, for a social cost of 1/2. We now describe a mediator that achieves the
social optimum for this game.
Configuration C1: The mediator advises all players to perform action a1.
Configuration C2: The mediator advises half of the players to perform action a1,
and advises the other half to perform action a2.
For these two configurations C1 and C2 consider now the probability distribution
D({C1, C2}) with p1 = 1/3 and p2 = 2/3. The proof of the following observation is
straightforward but is included in the appendix for completeness.
Observation 4.1. D({C1, C2}) is a mediator with social welfare 1/3. Moreover, 1/3
is the optimal value that can be obtained by a mediator.

Figure 3 illustrates the two games we have described for which mediation helps.
The left subfigure portrays our variant of the El Farol game, where the cost of the
top path a1 is always 1/2 and the cost of the bottom path varies as shown in the
plot below the graph. The values of F`(a2, x) and Fh(a2, x) are equal, since in this
game, when the flow through the top path is known, the cost of the bottom path
is exactly determined. The two x’s on the plot show the configurations used by the
mediator. As implied by Theorem 3.1, for mediation to be effective, one of these
x’s must be below and to the right of the other on the plot. The right subfigure in
Figure 3 portrays virus inoculation as a congestion game. The cost of the top path a1

for this game is always 1. The cost of the bottom path, a2, is any point in the polygon
shown in the plot. We now have a polygon, rather than a line, because for a fixed
number of nodes that do not inoculate, the cost of not inoculating varies depends on

3very tasty
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Figure 3: Congestion Games where mediation helps

how the inoculated nodes are positioned on the grid. F`(a2, x) is the bottom border
of this polygon and Fh(a2, x) is the top border. Again the two x’s on the plot show
the configurations used by the mediator, and again it is critical that one of these x’s
be below and to the right of the other. For the virus inoculation problem, we needed
a clever arrangement of the inoculated nodes in one of the configurations to achieve
this.

5 Conclusion

We have shown that a mediator can improve the social welfare in some strategic
games with a positive windfall of malice. Several open questions remain including
the following. First, can we determine necessary and sufficient conditions for a game
to allow a mediator that improves social welfare over the best Nash? In particular,
can we find such conditions for general congestion games? What about arbitrary
anonymous games? Second, for games where each player can choose among k actions,
can we say how many configurations are needed by any mediator? Preliminary work
in this direction shows that for 2 actions, sometimes more than 2 configurations are
needed. Finally, can we use approaches similar to those in this paper for designing
mediators for multi-round games? We have already made some preliminary progress
in this direction for multi-round games where the number of rounds is determined by
a geometric random variable.
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Appendix

A Proof of Lemma 3.2

Proof. Consider without loss of generality action a1. During this proof we use the
notation of xi for x1i and ci for c1i, i ∈ [`]. Assume also without loss of generality
that the configurations are ordered in such a way that x1 ≤ x2 ≤ . . . ≤ x` and
thus c1 ≤ c2 ≤ . . . ≤ c`. Note that POST (a1, a1) = 1P`

i=1 pixi
(
∑`

i=1 pixici) and

PRI (a1) =
∑`

i=1 pici. Thus we must show that:

∑̀
i=1

pixici ≥ (
∑̀
i=1

pici)(
∑̀
i=1

pixi).

If all xi are the same, then we clearly have equality and in this case POST (a1, a1) =
PRI (a1). Otherwise, we will show that this inequality is true by decomposing the xi

terms into x1 and εi terms, εi ≥ 0 (and there exists at least one j with εj > 0). For
any i ∈ {2, . . . , `} we write xi = x1 + ε1 + . . .+ εi−1. Consider only the summands in
the above inequality that contain the term x1. If x1 = 0 then clearly the inequality
holds for such summands. If x1 > 0, we get the following chain of inequalities for the
summands containing x1:

∑̀
i=1

pix1ci ≥ (
∑̀
i=1

pici)(
∑̀
i=1

pix1)

∑̀
i=1

pici ≥ (
∑̀
i=1

pici)(
∑̀
i=1

pi)

∑̀
i=1

pici ≥
∑̀
i=1

pici,

so this inequality holds.
Now consider the summands in the inequality containing εj for 1 ≤ j ≤ `− 1. We

get the inequality: ∑̀
i=j+1

piεjci ≥ (
∑̀
i=1

pici)(
∑̀

i=j+1

piεj).

If εj = 0, the inequality holds. If εj > 0, for that j showing the previous inequality is
equivalent to showing ∑̀

i=j+1

pici ≥ (
∑̀
i=1

pici)(
∑̀

i=j+1

pi).

To show that this inequality is true, we decompose the ci terms into c1 plus δi terms.
That is, ci = c1 + δ1 + . . . + δi−1, for i = 1, . . . , ` − 1. Consider first the c1 term. If
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c1 = 0, again the inequality holds trivially. If c1 > 0, we get the chain of inequalities

∑̀
i=j+1

pic1 ≥ (
∑̀
i=1

pic1)(
∑̀

i=j+1

pi)

∑̀
i=j+1

pi ≥ (
∑̀
i=1

pi)(
∑̀

i=j+1

pi)

∑̀
i=j+1

pi ≥
∑̀

i=j+1

pi,

which holds. Next we consider the δk terms for k ≤ j + 1. If δk = 0, the inequality
clearly holds for summands containing this term. If δk > 0, we get the inequality
chain:

∑̀
i=j+1

piδk ≥ (
∑̀

i=k+1

piδk)(
∑̀

i=j+1

pi)

∑̀
i=j+1

pi ≥ (
∑̀

i=k+1

pi)(
∑̀

i=j+1

pi)

which also holds. In particular, since p1 > 0, we have that (
∑`

i=j+1 pi) < 1, and so
if δk > 0, the inequality is strict. Finally, we consider the δk terms for k > j + 1. If
δk = 0, the inequality holds trivially. If δk > 0 we get the inequality chain:

∑̀
i=k

piδk ≥ (
∑̀
i=k

piδk)(
∑̀

i=j+1

pi)

∑̀
i=k

pi ≥ (
∑̀
i=k

pi)(
∑̀

i=j+1

pi),

which also holds.
Now, we note that if not all ci are the same for i ∈ [`], it must be the case that

there exists some j such that δj > 0, and it follows that we must also have that εj > 0.
As shown above, in such a situation, we obtain a strict inequality over the summands
containing the term δj , and so the entire inequality, POST (a1, a1) > PRI (a1) must
be strict.

B Proof of Observation 4.1

Proof. Define by Es
i , i = 1, 2, s = 1, . . . , n, the event that the mediator proposes to

player s to go on the i’th edge and define by Cs
i , i = 1, 2, s = 1, . . . , n, the cost for

player s of going on the i’th edge. Since the mediator treats all players equally, we
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will leave out the index s. Therefore, for a mediator to implement a correlated Nash
equilibrium, the following inequalities must hold:

E [C2 | E1] ≥ E [C1 | E1], (3)
E [C1 | E2] ≥ E [C2 | E2]. (4)

For the particular choice of p1 = 1/3 and p2 = 2/3, it is easy to see that both (3)
and (4) are satisfied.

Now we show that 1/3 is the optimal value that can be obtained by any mediator.
Let x1 be the flow on e1 and x2 be the flow on e2. The argument is as follows: for (3)
to be satisfied, a configuration with x1 ∈ [0, 1/4]∪[3/4, 1] has to be chosen, and among
all these the configuration C1 of the previous example is the one which has minimum
total cost and the same time allows for the highest probabilities for configurations
outside this interval. For the remaining values of x1 ∈ [1/4, 3/4], C2 minimizes the
total cost.
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