Chapter 1

Theoretical Aspects of Graph Models for
MANETSs"

Josep Diaz!, Dieter Mitsche?, and Paolo Santi’

Abstract We survey the main theoretical aspects of models for Mobile Ad Hoc
Networks (MANETSs). We present theoretical characterizations of mobile network
structural properties, different dynamic graph models of MANETS, and finally we
give detailed summaries of a few selected articles. In particular, we focus on arti-
cles dealing with connectivity of mobile networks, and on articles which show that
mobility can be used to propagate information between nodes of the network while
at the same time maintaining small transmission distances, and thus saving energy.

1.1 Introduction

In 1961 Edward Gilbert [Gil61] defined random plane networks as a model to study
the communication in networks of shortrange stations spread over a large area. In
his model, vertices represent the stations, and edges represent a two-way commu-
nication channel between stations. All stations have the same range power, so there
is a direct communication between two stations iff the corresponding vertices are
connected by an edge. Gilbert distributed the vertices in an infinite plane, by us-
ing a Poisson point process in the plane and then connecting two vertices if they
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are separated by at most a distance r. He went to study the asymptotic value of
the probability that a vertex belongs to a connected component with all the other
vertices.

Nowdays, Gilbert’s model is better known as Random Geometric graphs (RGG).
A random geometric graph can be equivalently defined by distributing » points uni-
formly on a given surface; thus, a RGG is a graph resulting from placing a set of n
vertices independently and uniformly at random on the unit square [0, 1], and by
connecting two vertices if and only if their distance is at most the given radius r, the
distance depending on the type of metric being used. For convenience, when using
a Poisson point process to distribute the vertices, sometimes it is better to scatter
the vertices on [y/n,/n]?, where n is the expected number of points distributed by
the Poisson process. It is well known that the results in this model are just rescaled
versions of the results on [0, 1]?. Some authors consider the torus [0,1)? to avoid
the effects of boundaries, which we will mention in Section 1.3 in more detail. For
many properties the boundary effects change the results, see for example [WY06].
We refer to an instance of a RGG with n vertices and radius r as ¥ (n,r).

The deterministic counterparts of random geometric graphs are called Unit Disk
graphs (UDG). A graph G is a Unit Disk graph for a radius distance r, if its vertices
can be put in one-to-one correspondence with the centers of circles of radius r in
the plane, in such a way that two vertices in G are connected by an edge if and only
if their corresponding circles intersect [Gol80, CCJ90]. The recognition problem is
to decide whether a given graph G is a UDG. The problem is known to be NP-hard
[BK98]. Since the vertices of a UDG are points in the real plane, the problem is not
known to be in NP.

Random geometric graphs and unit disk graphs have received quite a bit of at-
tention in the last years both as a particular mathematical structure different from
other types of known graphs [Pen03, vL09], and also because of their applications
as models for wireless networks, in particular as simplified topological models for
wireless sensor networks (see for example [SH97], where UDG was also denoted as
point graph model and [ASSCO02, AB02, ZG03, TAGHO02, SW06, DPS03]). Further
applications of unit discs and random geometric graphs as models for more general
ad hoc networks are discussed in the references [Hek06, dMCAO06, Li04, GYO07,
YMGO8] and in Chapter 1 of [vL09].

Wireless networks consist of a set of simple nodes, each one with a wireless
transceiver to communicate with their near neighbors, where near is understood as
the closest in terms of Euclidean distance, and the ability of communication depends
on the transmitting power of the transceivers. The goal of a network is to spread in-
formation through the network, which is done in a multi-hop fashion. In many ad
hoc networks, like sensor networks, due to the simplicity of the nodes, energy con-
sumption is an issue. Therefore, one of the most important questions when modeling
a network is to minimize power consumption. That is, the transmission range should
be made as small as possible but at the same time large enough to make sure that a
packet of information transmitted from a node will arrive to the other nodes in the
network. As we mention in the next section, when modeling wireless networks by
graph topology, one of the main problems is the trade-off between range of trans-
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mission and network connectivity. In Section 1.5.3 we will give examples where
mobility boosts message distribution in a network while at the same time maintain-
ing a small range of transmission.

The choice of whether to use a deterministic model, such as UDG, or a random-
ized model, such as RGG, depends on the application. For example, when using
sensors networks, it is usual that the sensors are scattered from some type of vehi-
cle, and hence in this case the random model is the appropriate one. For other kinds
of wireless networks, the randomized model also could be interesting to obtain the
average behaviour of the network. In the next section, we also briefly mention the
case where the transmitting power of each node is different, introducing the range
assignment problem: the problem of assigning different transmission powers to each
node in such a way that the power used is minimized, while maintaining the network
connected.

The aim of the present work is to survey the recent theoretical results for Mobile
Ad Hoc Networks (MANETSs), with an emphasis of topological models. It is orga-
nized as follows: in Section 1.2 we review a few known results about static RGG,
mainly those related to connectivity; in Section 1.3 we discuss issues that play a role
in dynamic models and present different random mobility models; in Section 1.4
we survey theoretical results concerning a very popular mobility model (the random
waypoint model), showing in particular how mathematical tools have been used to
identify problems in wireless mobile network simulation, and to solve them; in Sec-
tion 1.5, we present a few selected recent papers on dynamic MANETS, focusing
on papers which present a formal analysis of mobility model properties, and use the
analysis to characterize fundamental network properties such as connectivity and
information propagation speed. Throughout this paper, “a.a.s.” denotes asymptoti-
cally almost surely, that is, with probability tending to 1, as n goes to o. For other
concepts in probability, the reader is advised to look into any of the basic references,
for ex. [GSO1, Pit99].

1.2 Static Properties

In this section, we point out some of the known results about static RGG, which
will be helpful for the mobility survey. In this line, we skip many of the very inter-
esting recent results on RGG that are of combinatorial nature, such as results about
the chromatic number, for example. The main reference on RGG is the book by
Mathew Penrose [Pen03]. Moreover, the reader should be aware that since 2002 a
lot of work has been done on the topic of static RGG. When considering a RGG
as topological model for a wireless network, one of the important issues is to keep
the network connected using the minimal amount of energy consumption, i.e., using
the smallest transmitting distance. This is called the critical power among the net-
working community [Li04], and the connectivity threshold among the mathematical
community [Pen03]. In the book of Penrose, the results are exposed in full general-
ity, for any distance norm, and any dimension. To make the basic ideas as clear as
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possible, in the present survey we stick to the case of dimension 2 and Euclidean
distance norm.

Let ¢ (n,r) be the graph representing a wireless ad-hoc network with n nodes,
where r denotes the transmitting distance. We assume the ideal case where the area
covered by a node is exactly a circle. Topology control is a technique that uses the
tuning of certain parameters, usually the transmitting range » or the maximum de-
gree of the graph, to change/form the topology of the graph representing the network
in order to maintain the connectivity while optimizing the energy (or minimizing
the interference). There are very good recent surveys on the topic of topology con-
trol, see for instance [San05b, Li04]. One of the important problems in topology
control is the critical transmitting range for connectivity: what is the smallest ra-
dius, denoted by r., that keeps G connected? If G is a deterministic instance, i.e. a
UDG, it is well known that the value of r, is the length of the longest edge in the
minimum spanning tree (MST) of G. The case where G is a RGG is more inter-
esting. In this case, Penrose [Pen97] computed the expected length of the longest
edge of a MST in a RGG on |0, 1}2, yielding the well known connectivity threshold
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cally almost surely, i.e., with probability 1 —o(1) as n — oo. Independently, [GK98]
gave the same bounds for r,, also for the ¢,-norm but considering the unit circle as
underlying surface. Both proofs are quite different.

Notice that real wireless networks cannot be too dense, because a transmitting
node interferes with all the nodes within its interference range. In [SBVO1, SB03]
the authors have characterized the critical transmission range in the more general
model in which the side ¢ of the deployment region is a further parameter, and n and
r can be arbitrary functions of ¢. Note that under this model, the asymptotic behavior
of node density (number of nodes per unit area) depends on how n changes with /.
In particular, n can be chosen in such a way that the node density asymptotically
converges to 0, or to an arbitrary constant greater than 0, or diverges. Under this
respect, Santi et al.’s model is more general than the standard RGG model, in which
the node density grows to infinity with n. The main finding of [SBVO01, SB03] is

Te a.a.s., where as usual the abbreviation a.a.s. stands for asymptoti-

a proof that, as £ — oo, if r ~ /¢ c% for some constant ¢ > 0, then the graph is
connected a.a.s.

Going back to the classical model of RGG on [0, 1]%, we now try to convey the
flavor and intuition behind the value r. for which a RGG becomes connected a.a.s.
Given a set V of n nodes and a positive real r = r(n), each node is placed at some
random position in [0, 1]? selected uniformly at random. We define &(n,r) as the
random graph having V as the vertex set, and with an edge connecting each pair
of vertices u and v at distance d(u,v) < r, where d(-,-) denotes the Euclidean dis-
tance. We assume that r = o(1), else ¥(n,r) is trivially connected a.a.s. Let X be
the random variable counting the number of isolated vertices in ¢ (n,r). Then, by
multiplying the probability that one vertex is isolated by the number of vertices we
obtain,

E(X) = n(1 —zr2)"~! = pe~ 7 n=00"),
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Define u = ne~™""_ Observe that this parameter {1 is closely related to E(X). In
fact, u = o(1) iff E(X) = o(1), and if u = Q(1) then E (X) ~ u.

Moreover, the asymptotic behavior of 1t characterizes the connectivity of ¢ (n, r).
In fact, if g4 — 0, then a.a.s. 4(n,r) is connected, if 4 = @(1), then a.a.s. ¥(n,r)
consists of one giant component of size > n/2 and a number of isolated vertices
which follows a Poisson distribution with parameter u; if 4 — oo, then a.a.s. 4(n, r)
is disconnected. Therefore, from the definition of u we have that p = ©(1) iff r, =

A/ % (see [Pen03]).

Extensions to k-connectivity appear in [Pen99], where the author proves that
when the minimum degree of a RGG is k the graph becomes k-connected. Notice
that k-connectivity is important in networking as a measure of fault-tolerance of
the network. Chapter 13 of [Pen03] presents an extensive treatment of connectiv-
ity for RGG, taking into account different norms, higher dimensions and different
underlying probability distributions.

Recall that a graph property is monotone if it is preserved when edges are added
to the graph. A graph property is said to have a sharp threshold if the window be-
tween having and not having the property can be made arbitrarily small. In [GRKO0S5]
the authors prove that every monotone property on a RGG has a sharp threshold. As
connectivity is a monotone property, we conclude that the property of connectivity

Inn
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As mentioned before, for a radius r slightly below the connectivity threshold 7,
% (n,r) consists a.a.s. of a giant component and some isolated vertices. It is also
known that in this situation the probability of having a component of size i at 7, is
O(1/1og'n), and if there exists one, it forms a clique [DMPO9b]. A straightforward
computation yields that when we consider the connectivity regime with r = r., the
expected degree of a vertex is asymptotically @ (logn) (plug r. in the expected num-
ber of neighbors of a vertex, which is 7z72(n — 1)). For values of r > r., 4(n,r) is
said to be in the superconnectivity regime, and the graph is dense?, while for values
of r <r., 4(n,r) is said to be in the subconnectivity regime, and the graph is sparse.
As we mention in Section 1.5.3, in the subconnectivity regime mobility can help to
spread information.

The behavior of RGG for values of r in the subconnectivity regime has been quite
thoroughly studied, see Chapter 10 in [Pen03]. It is known that there exists a value
ry = ﬁ where a giant component of size ® (n) appears in ¢ (n, r) a.a.s., with ¢ being
a constant that experimentally is conjectured to have a value around 2.35 (recall that
we focus on the /;-norm in two dimensions). In the regime where r < r;, each vertex
has expected degree O(1). The r; is denoted as the thermodynamical threshold.

The cover time C of ¢ (n,r) is the expected time taken by a simple random walk
of ¢ (n,r) to visit all the nodes in the graph. In [AE07] the authors prove that a.a.s.

in ¢4 (n, r) exhibits a sharp threshold at r, =

C = O(nlogn) if r > /2" with ¢ > 8. If r < /2" the cover time is oo with

n b
positive probability, bounded away from zero.

2 Note that a usual graph with n vertices is said to be dense if it has @ (n?) edges.
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When dealing specifically with wireless sensor networks, an important issue is
to assure that sensors properly cover the entire region being monitored, which is
known as the coverage of the network. Similarly to connectivity, coverage can be
modeled using the RGG model, where each vertex represents a sensor, and r is the
sensing range of the sensors. Given an integer k, a point is said to be k-covered if
it falls into the sensing range of at least k sensors. If all the points of a region are
k-covered, then the region is k-covered. If ‘ﬁrﬁr denotes the event that every point

of [0,1] is (k4 1)-covered by a network with n sensors of range r, the k-covering
problem consists in giving asymptotic bounds to Pr [‘5,{‘,] ,as n — oo, In [Hal88], the
case k = 1 is studied, however the author uses a toroidal metric to avoid problems
with nodes very near the boundary of the region where the nodes are scattered. Sev-
eral authors have been working on this problem [MKPSO01, WY 04, ZH04, KLBO08].
In [WYO06] the authors give bounds on Pr [%f,] for the unit square, taking into
consideration the boundary effect of the unit square, which complicates quite a bit
the analytical proof. Sometimes, coverage and connectivity of a wireless sensor net-
work are jointly studied, with the objective of forming a network which not only
k-covers the entire monitored region, but it is also connected. It is easy to see that
k-coverage implies k-connectivity of the network whenever r, > 2r;, where r; is the
transmission range and ry is the sensing range of nodes [XXZ*03].

Up to now we have considered that all nodes broadcast at the same transmitting
range r, but the efficiency of energy management in a network could be achieved by
tuning every node to a different transmitting range. The range assignment problem
is the following: given a graph with n nodes, each one knowing their position, the
goal is to assign a transmitting range r; to each node i in such a way that the net-
work is connected with minimum energy cost, where the energy e; used by node i
is proportional to 7, i.e., the goal is to minimize ¥, e;. The problem was first stud-
ied in [KKKPOO]. Since then, several authors have proposed and studied different
variants of the basic model, see Section 5.2 in [San05b].

Another important issue is the design of efficient protocols for disseminating and
broadcasting information in wireless ad hoc networks. We refer the reader to one
of the multiple surveys treating the topic: [RT99, Raj02, HMKRO04, San05b, Li04,
YMGOS].

1.3 Mobility models for MANETSs

After giving a very concise introduction to the results on static random geometric
graphs, let us focus our attention on mobility issues. When talking about mobility
in MANETSs, we mean mobility of the nodes, i.e., the nodes physically move in a
region. There is an alternative version of dynamical wireless networks, where the
dynamicity is caused by the addition and removal of edges between nodes, due to
the temporal evolution of the transmitting range r;, for each node i. This kind of mo-
bility has been thoroughly studied by the computational geometry community, see
for example [AGET02, GHSZ01]. The main focus of their research is the design and
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analysis of sophisticated algorithms and data structures that easily allow deletion or
addition of very few edges or nodes at each time. In the case of highly dynamic
MANETs, due to the large number of changes in each step, the direct evaluation of
the performance of the network is very time-consuming (see for example Section 2
in [BB04]). One way to get an idea of the performance is to use simplified models
of the network. Moreover, due to the fact that real MANETS are mostly deployed in
environments where it is difficult to control the quality of transmission, simulation
could furnish better scenarios to control the experiments. In particular, when design-
ing new protocols for communication, sometimes it is better to start simulating on
a simplified topology than a direct implementation on the real network. However,
some researchers reason, that low scale simulations are not conclusive and that the
final validation of the viability and efficiency of the new proposed protocol must be
experimented directly on the network (see for example [KMO7]).

In the remainder of this survey, we are going to look at the recent preliminary re-
search done on analytical studies of different mobility models proposed. The goals
of the simplified models is to extract the topological properties of mobile networks,
which might help both in improving simulation accuracy (see Section 1.4), and
in designing new protocols where mobility is used to reduce energy consumption
and/or information propagation speed (see Section 1.5). Clearly, this survey does not
cover every property where mobility helps. For example, for the k-covering problem,
in [WSCO7] the authors recently proved both analytically and experimentally that,
if a fraction of the nodes is mobile with very limited range of mobility, k-coverage
can be achieved with less sensors than in the static case.

In the last decade, quite a few models for MANETS have been proposed, see the
surveys [BetOla, CBD02, BB04, Zha(06]. Section 2.1.5 of [BB04] gives a detailed
taxonomy of the mobility models used in the literature. According to the degree of
mobility, there are three types of mobility:

e The deterministic model, where nodes move through predetermined paths in a
deterministic manner. The model needs to trace the mobility of nodes, which can
be cumbersome [THB102].

e The hybrid random model where the model guides the nodes through a predeter-
mined graph, which represents streets, roads, etc. On this graph, however, nodes
move randomly. For example, in [JBRASO0S5] the authors consider a region with
obstacles, and force the mobility to take place along the Voronoi tessellation of
the obstacles. The city selection mobility and the Graph based mobility models
described in [BB04], are examples of hybrid random models.

e The pure random model where the nodes move in a random way in the region.
Most of the models, described in the literature, belong to this class. The two
most representative models in this class are the random direction model and the
random waypoint model.

The most frequently used mobility models are the following two and their varia-
tions:

e the Random WayPoint model (RWP) was first described in [JM96]. In this model,
as usual, nodes are initially distributed uniformly at random on the region; then,
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each node chooses independently and uniformly at random a destination within
the region, as well as a travel speed. The node then starts traveling towards the
destination with the selected speed along a linear trajectory. When it reaches the
destination (waypoint), it might optionally pause for a certain time, then chooses
another waypoint in the region, and continues according to the same pattern.
Structural properties of RWP model have been deeply investigated in the litera-
ture, and are discussed in detail in Section 1.4.

the Random Direction model (RD): the seed of the RD model is the paper [Gue87],
in which each node i in the region under consideration, selects uniformly at ran-
dom a direction 6; € [0,27), and chooses a speed that is kept constant during a
certain amount of time. After a randomly chosen period of time, each node se-
lects a new direction and speed, and continues moving. As the process evolves
over time, some of the nodes might arrive at the boundary of the region, and a
border rule has to be defined to determine how nodes behave when they hit the
border. An easy way to deal with the boundary effect is to consider the toroidal
version [(1,/)?, instead of the unit square [¢1,¢]?. In fact, when modelling ap-
plications like sensor networks on large terrain, the toroidal model is a fair ap-
proximation to reality. For smaller areas, when the boundary effect is significant,
an alternative option is to consider the so called bouncing boundary rule, where
the nodes arriving at a boundary bounce back to the region. When a node hits the
boundary, this bouncing could be done either by choosing a random new angle
0’, or by following the mirror reflection rule, i.e. the node returns to the region
at an angle 8’ =  — 0, where 0 is the incidence angle at which the node hits the
boundary. There have been several modifications of the basic RD model, some
of them specifically designed to deal with the border effect [HPO1] (see below
for a definition of border effect). The RD model has been criticized because of
the unrealistic behavior caused by uncorrelated changes in direction and speed
(see for ex. [HGPC99]). In [BetO1b], the author proposed a variation of the RD
model, with two correlated processes, one to define the speed and another one
to define the changes of direction (no correlation between different nodes). The
authors denoted this variation the smooth random mobility model.

Note that the fact that moves in a bounded region gives rise to the so-called

border effect, which in general can be understood as a modification of the probability
density fucntion (pdf) describing mobile node positions with respect to the initial
pdf (typically, uniform), due to the presence of a border. The border effect arises not
only in models (such as RD) in which nodes can hit the border and border rules are
used to define node behavior in such situation, but also in models (such as RWP) in
which nodes can never reach the border of the movement region. Further detailed
explanation of the border effect in RWP mobile networks is reported in the next
section.

Two further models different to the previous ones are the following:

e The Brownian motion model: each of the x- and the y-coordinates describing

the current position of each node undergoes a continuous-time stochastic pro-
cess (these processes are independent for both coordinates, and independent
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for all nodes), which is almost surely continuous and the changes in the posi-
tions between any two times ¢1, t, with 0 <#; <, follow a normal distribution
N(0,7, — t1). Moreover, the changes between f; < t, are independent from the
changes in #3 < 14, if #; < #3. Brownian motion can be considered as the /imit
case of the Random Direction model, where the period of time after which a new
angle is chosen tends to 0 (see for example [CCO7]).

e An approach orthogonal to the previous ones was undertaken in [DSWO06] in or-
der to accomplish group communication tasks between a set of processors. The
model is the following: given n processors executing programs, the communica-
tion between the processors is established with the help of an agent who visits
the processors. If there are more than one agent and two agents collide at one
processor, they merge into one, and if there is no agent, after some time an agent
is automatically generated by a processor. The agent performs a random walk on
the processors (the next processor could be chosen from some suitably defined
neighborhood of the current processor or it could be chosen from the whole set
of processors), and whenever it arrives at a processor, the processor stops its cur-
rent program and replaces it by a new program using the information the agent
is carrying. The agent’s goal is to broadcast the information in such a way that
each processor is visited by the agent at least every M steps, where M depends
on n, and that each processor executes a step infinitely often. The authors design
agents satisfying these conditions for different group communication tasks and
they prove that starting from any arbitrarily chosen node, these agents have an
expected cover time of at most O(n?).

1.4 Structural properties of Random WayPoint mobile networks

In this section, we present theoretical characterizations of structural properties of
networks whose nodes move according to a very popular mobility model: the Ran-
dom WayPoint mobility model (RWP). We show how these characterizations have
been used to considerably improve accuracy of wireless network simulation. Some
of these characterizations (e..g., node spatial distribution) have been used also
to study fundamental mobile network properties, such as connectivity (see Sec-
tion 1.5).

RWP is by far the most commonly used mobility model used in wireless mobile
network simulation. Given its popularity, the structural properties of RWP mobile
networks have been deeply investigated in the literature, as well as their effects on
simulation accuracy.

In the remainder of this section, we focus our attention on two such structural
properties, namely node spatial distribution and instantaneous average nodal speed,
and discuss their impact on accuracy of RWP mobile network simulation. We then
show how theoretical characterizations of the above properties have been used to
define a “perfect” simulation methodology, which completely removes the accuracy
issues previously identified.
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1.4.1 RWP node spatial distribution

The first structural property of RWP mobile networks that has been formally studied
is the asymptotic node spatial distribution, which can be formally defined as follows.
Let f; be the pdf describing node position within the movement region at time ¢ of the
mobility process. The asymptotic node spatial distribution is a pdf formally defined
as

fuo = lim £,
t—o0

whenever the limit on the right hand side exists, i.e., that the mobility model has a
stationary node spatial distribution. In the literature, it has been proven that most
mobility models described in the previous section (e.g., RWP, RD, Brownian, etc.)
indeed have a stationary node spatial distribution.

In the following, we present a formal characterization of f.. in the presence of
RWP node mobility, which we denote by frwp. In particular, we will survey results
that show that frwp # fu (fu is the uniform pdf on the movement region), unless
the expected pause time at the waypoints tends to infinity3. Thus, we are in presence
of the border effect, which can cause considerable inaccuracies in wireless network
simulation. In fact, if simulation results are gathered after a relatively short time after
network setup, the node spatial distribution of RWP mobile nodes might not have
reached the stationary condition, implying that, from a topological point of view,
network conditions are different from those reached at stationary state. To make this
point clearer, assume that results of a network simulation are averaged over a time
interval starting after 100secs since the beginning of simulation, and ending after
900secs (these are quite standard simulation intervals in the networking literature).
Furthermore, assume that RWP node spatial distribution takes 1000secs to stabilize
(this is also a reasonable stabilization time, see [BRS03]). Then the outcome of the
simulation experiment might be highly inaccurate, since results are gathered before
the network has reached its stationary state.

Another pitfall of the border effect is on networking protocol performance op-
timization: typically, networking protocols (e.g., routing protocols) are optimized
under the assumption that nodes are uniformly distributed in a certain region. How-
ever, if nodes move according to RWP mobility, this assumption is no longer true at
stationary state, implying that protocol performance can indeed be highly subopti-
mal in presence of mobility.

The first analytical study of node spatial distribution under RWP mobility is re-
ported in [BRSO03], for the case of nodes moving in the unit square. In that paper,
RWP mobility is described as a stochastic process {D;, Tp7i,\/i}, where D; is a ran-
dom variable denoting the two-dimensional coordinates of trip i destination, 7, ; is a
random variable denoting the pause time at D;, and V; is a random variable denoting
the node velocity during trip i. The actual value of D; will be represented by d;. First,
the authors prove a result concerning ergodicity of the sequence of random variables

3 Note that the fact that the expected pause time at waypoints tends to infinity implies that nodes
are asymptotically static, i.e., RWP model under this condition degenerates to a static network.
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random trajectory

Fig. 1.1 The pdf of a RWP mobile node can be characterized by computing the expected length of
the segment L, 5 representing the intersection between a random trajectory and square Qs of side
0 centered at (x,y) (shaded area).

{L;}, where L; = ||d; — d;_1||, that is, L; denotes the length of the i-th trip. In par-
ticular, the authors show that repeatedly sampling from a single random variable in
the sequence is statistically equivalent to successively sampling from the sequence
{L;}. This first result allows reducing the problem of characterizing fzwpo when the
pause time at waypoint is 0 to one of computing the intersection between a random
trajectory and an arbitrarily small square of side 0 > 0 centered at a certain coordi-
nate (x,y) (see Figure 1.1). This stems from the fact that fgwp can be considered as
constant within Qg as 8§ — 0, implying that

. P(x,y,0)
Srwro(x,y) =§%T7 (1.1)

where P(x,y,0) is the probability that an RWP mobile node is located within a
square of side & centered at (x,y). Thus, frwpo can be characterized by evaluating
P(x,y,8). Since ergodicity of {L;} implies for a successively large sample size that

P(x,y,8) =

and E[L] (the expected distance between two random uniform points in a square) is
well-known from geometric probability, characterizing frwpo boils down to com-
puting E[L,,s], i.e., the expected length of the intersection between a random trajec-
tory and a square of side  centered at (x,y). The value of E[L,,s] is closely approx-
imated in [BRSO3] through computing a set of two-dimensional integrals, yielding
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the following expression for fryp in the region (0 < x < 0.5)U (0 <y < x)*:

2

3 y y
= S(1-2x+23) | —=—
frwro(x,y) 6y+4( x+2x7) <y—1 +x(x_1>> +

+ %y {(Zx— D)(y+1)In <1xx> +(1=2x+2x¢" +y)In <1yy>} :

The density function frwp is drawn in Figure 1.2. As seen from the figure, frwp
is bell-shaped with a higher concentration in the center of the movement region,
reflecting the fact that a random trajectory is relatively more likely to cross the
center than the boundary of the region.

1
0.8
7 ":':.0 RN .
/ 1055300 0NN SRR
AT ORI 0.4
(7 "' ’ “X‘ N
LS 0:2
\\!.\.‘;’ ° 0 0.2 0.4 0.6 0.8

Fig. 1.2 Density function of a RWP mobile network with pause time set to 0: 3D plot (left), and
contour lines (right).

After deriving the pdf under the assumption of zero pause time, the authors of
[BRSO03] consider the more general case of pause times chosen according to an ar-
bitrary probability distribution, and show that the resulting node spatial distribution
has the following shape:

frewe =ppfu+(1—pp) frwro,

where p), = lim;_.., p(t), and p,(t) is the probability that an RWP mobile node is
pausing at time ¢. Thus, fgwp is the sum of two components: a uniform component,
accounting for the fact that when nodes are resting at a waypoint they are uniformly
distributed, and a non-uniform component, reflecting the fact that when nodes are
moving they are more likely located near the center of the movement region. The

4 Values of frwpo in the other regions of the unit square are obtained by symmetry.
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derivation of p, is quite straightforward, and yields:

L _EIL)

P E[L]’

E[T,]+ 5
under the hypothesis that the node velocity is fixed to v > 0.

In a more recent paper [HLV06], Hyytid et al. provide the exact characterization

of frwpo, and generalize the previously described results to arbitrary convex shapes

of the movement region and arbitrary waypoint distribution.

1.4.2 RWP average nodal speed

A second property of RWP mobile networks that has been extensively studied is the
average nodal speed, which is formally defined as follows. Assume n nodes move
independently within a region according to the RWP mobility model, and denote by
vi(t) the instantaneous speed of the i-th node at time ¢. The asymptotical average
nodal speed vgwp is defined as

VRWP = lim 72?:1 Vi(t) .
1—00 n

The first paper that formally investigates the average nodal speed in RWP mo-
bile networks is [YLNO3a], where the authors prove that vgyp # vg as long as the
trip velocity is randomly chosen in a non-degenerate interval, and v is the average
nodal speed at time 0. Before giving some details of the derivation, we observe that
the fact that vgwp # vo gives rise to the so-called speed decay phenomenon, which
displays many similarities with the border effect described in the previous section.
In fact, similarly to border effect, speed decay affects both simulation accuracy and
optimization of network protocols, for the very same reasons the border effect did,
i.e., i) stationary conditions for what concerns node velocity are different from ini-
tial ones, and ii) they are reached only after a relatively long stabilization period.

The authors of [YLNO3a] derive vgwp under the following three assumptions:

1. nodes move in an unlimited, arbitrarily large area; given the current node location
(x,y), the next waypoint is chosen uniformly at random in a circle of radius Ry
centered at (x,y).

2. the pause time is 0.

3. the node velocity is chosen uniformly at random from [vin, Vimax]-

While the second and third assumption are standard, the first assumption, which
is done to simplify analysis, apparently perturbs quite a bit the properties of the
mobility model. In the paper it is shown that this assumption has no effect on the
value of vgwp, which remain the same as in the case of standard, bounded RWP
mobility.
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Similarly to [BRSO03], the authors of [YLNO3a] describe the RWP mobility
model as a stochastic process {V;,R;,S;}, where V; is the random variable denot-
ing the velocity during trip i, R; is the random variable denoting travel distance
during trip Z, and S; is the random variable denoting travel time during trip i. Setting
Y2 vi(t)/n=V(t), then vgwp can be expressed as follows

. 1 . Yi=1,..k(1)"k E[R}]
=1limV(t) = lim — V(t)dt =1 . =
VRwp = lm (1) T T 0,7] © T Yiet,.xmsk  E[Si]’

where K(T) is the total number of trips undertaken within time 7', including the last
one (possibly incomplete), and where ry (resp., s) is the travel distance (resp., time)
of trip k.

Thus, the computation of vgwp is reduced to the problem of computing the ex-
pectation of the random variables. R; and S;. In [YLNO3a], the authors show that

2 2R
E[Ri) = SRy and E[S}] = 7 =" .In (vmax> 7

3(Vmax - Vmin) Vmin

yielding

— Vmax = Vmin
VRWP = )
i ()
min

Furthermore, several interesting implications of the discussed characterization
for vgwp are presented in [YLNO3a]. First, it is observed that vgwp < v, and that
vrwp = Vg if and only if v, = Vg, This implies that the only way of avoiding
speed decay is to avoid randomness in speed selection, imposing the same speed
to a node during the entire simulation time. While having constant node velocity
may be acceptable in some situations, the range of possible reference application
scenarios for simulation is considerably reduced with this assumption. For instance,
think about a scenario in which mobile nodes represent vehicles moving in a city:
clearly, allowing vehicles to change speed during the travel (e.g., to reflect different
speed limits) considerably increase simulation representativeness with respect to a
situation in which the vehicle speed is fixed throughout the entire simulation time.

The authors of [YLNO3a] observe that vgy p becomes relatively closer to v (thus
reducing speed decay intensity, and the time needed to reach stationary node ve-
locity) as the speed range interval becomes smaller. A general recommendation to
lessen speed decay is to shrink the allowed node speed interval, which comes at the
price, however, of reducing the range of possible application scenarios for simula-
tion.

A final and very interesting implication of the vgyp characterization is that the
pdf of the random variable S; becomes heavy tailed when v,,;,, — 0, implying that
E|[S;] becomes infinite, and vgwp — 0. Thus, if v, is set to 0, the stationary regime
of an RW P mobile network actually coincides with a static network (vgwp = 0), and
is reached only after infinite time. It is clear then that setting v,,;, = 0, as it is actually
very common in wireless network simulation, severely impacts simulation accuracy,
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since simulation results cannot be gathered before the node velocities have reached
the stationary state.

1.4.3 The “perfect” simulation

In the previous sections, we have shown how theoretical characterization of RWP
mobile network properties can disclose sources of inaccuracy in wireless network
simulation. Possible countermeasures have also been discussed, which essentially
amounts to:

(a)simulation “warm-up”: run the simulation for a relatively long time interval be-
fore starting collecting simulation results;
(b)reducing speed range: choose velocity from a smaller speed interval.

Unfortunately, both approaches for improving wireless network simulation ap-
proaches have considerable drawbacks, which discourage their usage in simulation
practice. In particular, (a) causes considerable wastage of computational resources.
Furthermore, estimating the time needed for the network to reach stationary con-
ditions is difficult, and in some situations the time needed to reach stationarity can
actually be infinite, for instance when vy,;;=0. Moreover, the approach (b) also has
considerable drawbacks, as it considerably reduces the range of possible reference
application scenarios for simulation. Furthermore, () has effect only on the speed
decay phenomenon, but cannot be used to mitigate the border effect.

Motivated by the above observations, researchers have made efforts to design a
“perfect” simulation methodology, in which issues with simulation accuracy can be
solved without incurring the drawbacks of approaches (a) and (). A first notewor-
thy contribution in this direction is [YLNO3b], where the authors present a method-
ology to remove the speed decay effect without reducing the speed range interval,
with the only constraint that v,,;;, > 0. The authors’ goal is to initialize the system
directly in the stationary state, without the need of a “warm-up” period. The authors
start deriving the pdf of the stationary average node velocity Yzwp, and show that
Yrwp cannot be directly used to initialize the system: if Yzwp is used instead of a
uniform distribution in [V, > 0, vy to select initial node velocities, the pdf of the
resulting stationary average node velocity changes, and it is no longer #zwp. Then,
the authors show that a possible way of avoiding this problem is using a compos-
ite mobility model, where the pdf used to select initial node speed is different from
that used to select the speed of next trips. In particular, the authors of [YLNO3Db]
formally prove that the following methodology completely removes speed decay:

1. use Ygwp to select speed of the first trip;
2. use default speed distribution (uniform in [V, > 0,Vimay]) to select speed of next
trips.

In [LVO06], the authors generalize the results of [YLNO3Db] to a wide class of mo-
bility models (including RWP model, RD model, etc.), and show that the “perfect”
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simulation methodology defined in [YLNO3b] can be used not only for average node
speed, but also for any structural network property admitting a stationary distribu-
tion. With respect to this, the authors of [LV06] show that a necessary and sufficient
condition for a mobility model to admit stationary structural distributions is that the
expected trip duration is finite. Thus, for models such as RWP, the “perfect” simu-
lation methodology of [YLNO3b] can be used not only to remove speed decay, but
also the border effect.

1.5 Formal studies of connectivity on MANETSs’ models

1.5.1 Connectivity threshold for mobility models

As described in the previous section, the border effect may considerably impact sim-
ulation accuracy. In this section, we analyze the consequence of the border effect on
the formal analysis of properties for MANETS, in particular referring to the critical
transmission range for connectivity.
e Connectivity threshold for mobile models. Using the previous result, Santi [San05a]
studies the connectivity threshold for mobile networks. His model is the following:
There are n vertices deployed uniformly at random in the unit square [0, 1]2. The
nodes move randomly, but the mobility model is not fixed, it only must meet two
conditions: it must be bounded and obstacle-free. A mobility model .# is said to
be bounded if the support of the probability density function pdf of the long-term
distribution of the nodes is contained in [0, 1]2. Similarly, ./ is said to be obstacle-
free if the support of the pdf contains [0,1]%\ 9]0, 1]?, where 9[0, 1] denotes the
boundary. In other words, every subregion with non-zero measure has to have posi-
tive probability to contain at least one node at a given time. Notice that the random
direction model, the random waypoint model and Brownian motion are all bounded
and obstacle-free. Moreover, not necessarily all nodes have to move at the same
speed, each one can choose its speed from an interval [Viin, Vmax]. Also, the nodes
can pause for a predefined amount of time 7, after having reached their destination.
In particular, due to border effects and due to different node velocities, the long-
term spatial distribution of the nodes might be different from the starting distribu-
tion, even if they start with the uniform distribution. Define the mobile threshold
for connectivity r 4 as the minimum value of the radius r, such that when taking a
snapshot of the graph chosen from the long-term spatial distribution of the nodes,
the graph is connected. Notice r_, might be different from the threshold of the static

case ro = 4/ %. In fact, the first result of the paper states that if the pdf of the mo-

bility model f 4 is continuous on d[0, 1]?> and min f , > 0, then a.a.s. 7,4 = ¢4/ %

with ¢ > 1. The proof uses the fact that in the static case, a.a.s. the threshold of con-
nectivity equals the longest edge of the Euclidean minimum spanning tree built on
the n points (see [Pen97]).
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The second result the paper states that in the random waypoint model with pause
time 7, and v = Vijn = Vmax, a.a.s. the connectivity threshold of the long-term spa-
ip+ 2248 flogn logn

i = > for £, >0, and ro > =
itively the results says that when nodes stop at the waypoint for a positive amount
of time before choosing the next waypoint, the connectivity threshold of the long-
term distribution differs from the static case by only a constant factor. In the case
when ¢, — oo, r;; — 1., and the long-term spatial distribution becomes the uniform
distribution. On the other hand, if the nodes start travelling towards the next way-
point immediately after touching the current waypoint, the connectivity threshold
is asymptotically larger than in the static case. The intuition behind this result is as
follows: the formula for the pdf contains two components; one for the time a node
is resting at a waypoint, which is uniform since the waypoint is chosen uniformly
at random, and a mobility component responsible for border effects. If the uniform
component of the pdfis not 0, it asymptotically dominates over the mobility compo-
nent, and the connectivity threshold is asymptotically the same as in the static case.
On the contrary, if the uniform component is 0, the pdf coincides with the mobil-
ity component, which has a different asymptotic behavior than uniform, implying a
larger connectivity threshold.

tial distribution r}”; = for 1, = 0. Intu-

1.5.2 Connectivity periods on mobile models

o The walkers’ model on the grid. The authors in [DPSWO08] present a model of
establishment and maintenance of communication between mobile nodes, denoted
walkers in the paper, where the nodes move in a fixed environment modeled by a
toroidal grid T. Therefore, the authors present a hybrid random model. The model
is defined as follows: given a toroidal square grid in the plane T = (V, E) with |V| =
N =n?, aset W of walkers with [W| = w, and a “transmitting distance” d (the same
for all the walkers), the w walkers are sprinkled randomly and independently on the
N vertices of T (a vertex may contain more than one walker). Two walkers w; and
wy can communicate in one hop if the Euclidean distance between the position of
the walkers is at most d. Two walkers can communicate if they can reach each other
by a sequence of such hops.

Then, in a synchronized way, each walker performs an independent standard ran-
dom walk on the nodes of 7. That is, each walker moves at each time step to one
of the four neighboring vertices, all chosen with equal probability 1/4. Hence, for
any time 7 € N, one can define the random graph of walkers #;(T,w,d): the vertices
of this graph are the w walkers together with their position they are occupying on
T at time ¢, and there is an edge between two walkers if their Euclidean distance
is at most d (if more than one walker occupies a vertex of the grid, the authors do
not consider the corresponding multigraph and consider that position of the grid as
if there was only one walker). The authors then study the behavior (as N — o) of
the connectivity and disconnectivity of #;(T,w,d) for any ¢ € N, where #4(T,w,d)
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is formed by the initial distribution of the walkers on T (see Figure 1.3 for a toy
example of one step).

The paper first examines the initial static case #4(T,w,d), which is a snapshot of
the process at one point in time: in particular, the paper studies the distribution of the
number of isolated vertices of #4(T,w,d), as well as some other information which
helps to answer the dynamic questions. Define 4 to be the number of grid points
within distance d of any fixed point in T. Clearly, i = @(d?). If d = Q(n), then
#o(T,w,d) is connected a.a.s., so the interesting case is d = o(n), i.e., h = o(N).
Furthermore denote by p = w/N be the expected number of walkers at a vertex and
define the parameter 4 = N (1 — e P)e~"P. The authors first prove that in the static
initial case at time t = 0, Pr [#o(T,w,d) is connected] = e * 4+ o(1).

.

t=1,d=3

¥ ¢!

Fig. 1.3 A step of the walkers’ problem on the grid. The solid line represents direct communica-
tions of the ad-hoc network, the dashed line represents communication between nodes that are at
distance more than d.

Using the information from the static case, in the dynamic setting, the crux of
the paper is the study, as ¢ evolves, of the birth and death of isolated vertices, and
the sudden connection and disconnection of #;(T,w,d). Let LD, be the random
variable counting the length of the disconnected period (similarly, a random variable
LC; counting the length of the connected period is considered) starting at time step
t provided that it really starts to be disconnected at 7. Define the average length
of a disconnected period starting at time ¢ to be LD,y := E (LD, | LD, > 0), which
is independent of 7, and is a function of N, d and w. The authors show that the
following hold about LD, :

21 ifdp —0,

ufp
LD, ~ f_;ﬁ ifdp — c,
et ifdp — oo,

where b = ©(d) is a function related to the boundary of the ball of radius r in T,
and A = (1 —e*”p) u with 0 < A < u for dp — c. Furthermore, LD; converges
in probability for t — o (N fixed) to a random variable LD, where LD ~ LD,,
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a.a.s. Similar results can be given for the average length of connected periods. For
the proof, the authors calculate joint factorial moments of variables accounting for
births, deaths and survivals of isolated vertices, and they show that the connectivity
(disconnectivity, respectively) of the graph is asymptotically equivalent to the non-
existence (existence, respectively) of isolated vertices.

The results in the paper are proved in full generality, under any norm and for
T =1[0,1)" for m = ©(1). Also, the paper proves results on the connectivity and
disconnectivity periods for the case when the the underlying graph of fixed paths is
acycle.
o The DRGG model with radii r.. The paper [DMP09a] studies the connectivity of a
Random Direction type model for MANETS. The model is a RGG at the connectiv-
ity threshold r., where all vertices move at the same speed. This dynamic model is
denoted by the authors as the Dynamic Random Geometric Graph. More formally,
the model is the following: at the starting of the process (¢ = 0), n nodes are scat-
tered independently and uniformly at random in the unit torus [0,1)2. At any time
t €40,1,2,3,...}, two nodes are connected if their Euclidean distance is at most
r. The authors fix the value of r to be the value at the connectivity threshold for

static RGG, ie., r=r, = %

two positive reals s = s(n) and m = m(n), at any time step ¢, each node i jumps a
distance s in some direction @;, € [0,27). The initial angle o o is chosen indepen-
dently and uniformly at random for each node 7, and then at each time step each node
changes its angle independently with probability 1/m. Thus, the number of steps a
node has to wait before changing its direction follows a geometric distribution with
expectation m. New angles are also selected independently and uniformly at random
in [0,27) (see Figure 1.4 for a toy example of the changes of the graph in a single

step).

. The dynamic model is the following: given

\ s

. (
Fig. 1.4 A step in the DRGG. Starting at a given ad-hoc graph (left picture), every node chooses a
new direction chosen at random (center picture), creating a new ad-hoc graph (right picture).

The goal of the paper is to analyze the expected length of (dis)connectivity pe-
riods of the underlying graph. To state the main result more formally, denote by
%; the event that the random graph is connected at time ¢, and similarly denote by
9, the event that the graph is disconnected at time ¢. Furthermore, define by L, (%)
to be the random variable counting the number of consecutive steps that ¢ holds
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starting from time 7 (possibly e and also 0 if %; does not hold). L,(2) is defined
analogously by interchanging 4" with Z. It can be shown that the distribution of
L;(%) and L;(2) is independent of ¢. Define also

Ag =E(L(C)| Z1-1AG) and Ay =E(L(D)|C-1AN%),

that is, Ay (Ag, respectively) count the expected number of steps that the graph
stays connected (disconnected, respectively) starting at time ¢ conditional upon the
fact that it becomes connected (disconnected) precisely at time 7. The main result of
the paper is the following: if srn = ©(1), then

1 et —1
and Ag ~ .
1 7€_u(1_e—4.vm/7t> 9 1 78—[1(1—6_4‘""/”)

Ag ~

Otherwise, it is

MN{‘W’ZY” if srn=o(1), and Agw{n‘(‘i“m]) if srn = o(1),

ﬁ if srn=o(1), et if srn = o(1).

One can observe that for srn = 0(1) and srn = w(1) the results of Ay and Ay cor-
respond to the respective limits in the case when srn = @(1). These results have
various consequences; on the one hand the expected number of steps in a period
of connectivity (disconnectivity) does not depend on m, that is, it does not depend
on how often the nodes change their direction. On the other hand, A and Ay are
non-decreasing in s. The intuition behind this is as follows: if the distances between
two time steps are big, the correlations between two consecutive steps are smaller,
and connectivity/disconnectivity changes more frequently. For a very large s (case
srn = (1)), Ax and Ay do not depend on s anymore, since for such a value of s
two consecutive steps are roughly independent. Finally, one can observe that in the
case srn = o(1) models the underlying continuous-time model very well: denote by
Ty = shy (Tg = sAg, respectively) the distance covered by each vertex during a
connectivity (disconnectivity) period. Then,

T Ve wlet—1) rmym(et—1)
4prn 4uv/nlnn’ 7 durn 4puv/ninn -’

which asymptotically do not depend on s. Since these results also hold if s tends to
0 arbitrarily fast, the related continuous-time model has a similar behavior: in that
model the traveled distance during periods of connectivity (disconnectivity) also
does not depend on the average distance sm between changes of angle.

The main ingredient of the proof is the fact that the probabilities needed to
compute Ay and Ag can be expressed in terms of the probabilities of events in-
volving only two consecutive steps. This is surprising, since in this case (in con-
trast to the article [DPSWO08]) the sequence of connected/disconnected states is
not Markovian - staying connected for a long period of time makes it more likely
to remain connected for one more step. As in the article [DPSWO08], it turns out

Ty
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that the existence/non-existence of isolated vertices is asymptotically equivalent to
the disconnectivity/connectivity of the graph, both in the static case and for two
consecutive steps. Although the proof is technically very different from the one
in [DPSWO08], it is similar in spirit: the characterization of the changes of the num-
ber of isolated vertices between two consecutive steps is based on the computa-
tion of the joint factorial moments of the variables accounting for these changes
(births/deaths/survivals of isolated vertices). As in [DPSWO0S], it is not obvious that
the probability of existence of components of larger sizes in the dynamic model is
negligible compared to the probability of sudden appearance of isolated vertices,
but in the paper it is shown to be the case.

1.5.3 The effect of mobility to speed up message dissemination in
sparse networks

In this section we survey in chronological order three results which show that high
mobility of nodes helps in disseminating information.

o The source-destination pairs-model. The work [GTO02] can be considered as the
first attempt to formally analyze a model of mobility. The model is the following:
there are n nodes (n — o) all lying in the disk of unit area. The location of the i-th
node at time 7 is given by the random variable X;(¢). Each of the n nodes is a source
node for one session and a destination node for another session, and each node i has
an infinite stream of packets to send to its destination d(i). The source-destination
(S-D) association is established initially and does not change over time. The nodes
are mobile, but the mobility model described by the authors is non-constructive: the
process {X;(+)} is stationary and ergodic with stationary distribution uniform on the
disk, and trajectories of different nodes are independent and identically distributed.
It is a drawback of the paper, that the exact movement of the nodes is not explained:
in particular, it is not clear what happens when a node touches the boundary of the
disk. Recall that as mentioned before, boundary effects can change the distribution.
The information exchange is not restricted to nodes within a certain distance, but it
is the following: at slotted time 7, node i has transmission power P;(¢). Denote by
%:j(t) the channel gain from node i to node j, such that the received power at node
Jj is Pi()7:j(t). Formally, %;(¢) is defined as W, where @ is a parameter
greater than 2. Node i can transmit to node j if

P(t)y(t)
No+ 7 Xt Pe(1) 15 (2)

> B, (1.2)

where [ is the signal-to-interference ratio requirement for successful communica-
tion, Ny is the background noise power, and L is the processing gain of the system,
it can be taken to be 1. Intuitively speaking, on the one hand, the closer j to i at
time 7, the bigger %;(¢), and the more likely it is that node i can transmit a packet
to node j. On the other hand, relative distances between nodes also play a role: if
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a node i is close to neighbour j, but j has many other neighbors very close, and at
the same time i is further away from another node j’, whose neighbors are all fur-
ther away than i, it might happen that i is able to transmit to j' and not to j. In the
following it is assumed that all nodes transmit at the same power P. Whether or not
a node transmits to another one is decided by an external scheduler. Every node is
assumed to have an infinite buffer to store packets, and when packets are transmitted
from source to destination, they can go through one or more other nodes serving as
relays. The goal is to find a scheduling policy with high long-term throughput. To
make this concept more precise, define by M7 (r) the number of source node i pack-
ets that d(i) receives at time ¢ under the scheduling policy 7. A throughput A (n) is
feasible, if there exists a policy & such that for every S-D pair i we have

T
Jim inf )" MF (1) > A(n),

and the goal is to maximize A (n).

The authors first prove a lower bound in a dynamic model where relay nodes
are forbidden. More precisely, they show that there exists a constant ¢ > 0 such
that the probability of having a throughput of at least en~(1/(142/2)) tends to 0 for n
sufficiently large. The theorem is stronger if « is closer to 2: if o — 2, the probability
of a throughput of ¢/+/n tends to 0. This is the same lower bound as in the static
model [GKOO]. The intuition behind this result is the following: if long distances
are allowed, then interference limits the number of concurrent transmissions. If a
scheduling policy allows only short transmissions, then only a small fraction of S-D
pairs is sufficiently close to transmit a packet.

Next, as a main result of their paper, the authors show that mobility helps if inter-
mediate relay nodes are permitted. If for every S-D pair every other node can serve
as intermediate relay (that is, at different time slots different nodes may contain part
of the packet stream between i and d(i)), an asymptotically optimal throughput of
A(n) = ¢ for some ¢ > 0 can be attained. To prove this the authors consider the fol-
lowing scheduling policy: every packet is relayed at most once. For every time slot ¢,
the set of nodes is randomly partitioned into a set of potential senders (of size sn for
some constant s > 0) and potential receivers. Each sender node may transmit pack-
ets to its nearest neighbor among all receiver nodes, and the sender indeed transmits
if the interference generated by other senders is sufficiently small (according to the
formula given in (1.2)). The algorithm runs in two interleaved phases: in phase 1 (in
odd time slots, say) packets are sent only from source nodes to relays (or directly to
the destination node), in phase 2 (in even time slots, say) packets are sent only from
relays to destination nodes. The proof of the result uses the fact that at any particular
moment in time the distribution of the points is uniform on the disk, together with
some results on the asymptotic distribution of extrema of i.i.d. random variables.
We recall once again, that is not clear how the nodes move and what happens when
touching the boundary.

o The DRGG model below r;. In the work [JMRO09] the authors study a very general
Random Direction type model with a radius below the threshold of the existence of
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a giant component. More precisely, the authors consider the following model: at the
beginning n nodes (n — o) are distributed uniformly at random in a square &/ =
Z x %L, where L = c/n for some large constant ¢ > 0. Two nodes can exchange
information if they are within Euclidean distance 1. It is assumed that information
exchange takes zero time, once two nodes are at distance < 1. By the choice of L,
n/< tends to a small constant (n/.</ < 1/m), which in the static case corresponds
to a random geometric graph below the thermodynamical limit r, = ¢/+/n. Recall in
Section 2 we already pointed that for a radius r below the thermodynamical limit r;,
the RGG is disconnected and it does not have yet a giant component. The mobility
model is the following: the nodes follow random trajectories with Poisson rate T,
keeping uniform speed between direction changes. When a node hits the boundary
at an incidence angle 0, it follows the mirror reflection policy, i.e., the node bounces
back at angle = — 6. Therefore, the probability density for a node to travel a time ¢
in a certain direction before changing the direction is

1
72" exp(—1t),
where 7 is a parameter controlling the speed of change. Notice that if T — o then
the mobility represents Brownian motion, while if 7 — 0 the mobility represents
a random waypoint model with the mirror reflection policy, where the nodes only
change direction when touching the boundary of the square. The factor % comes
from the fact that every angle has the same probability to be chosen.

The authors give an upper bound on the speed at which information can be prop-
agated between any pair of nodes. Recall that in the static case information between
most pairs of nodes cannot be propagated since the largest connected component for
the value of v :=n/< to be considered has size O(logn). The authors show that
mobility helps to propagate information. In order to state the result more precisely,
consider a node that starts at coordinate zo = (xg,yo) at time ¢t = 0 that wants to
propagate information to a destination node starting at coordinate z; = (x,y;). The
authors show that the destination node can be assumed to be fixed without changing
the asymptotic results of the analysis. Denote by ¢y (zo0,z1,¢) the probability that the
destination receives the information before time ¢ (n is assumed to be large, but the
density Vv is a constant). A scalar sp > 0 is called an upper bound for the propagation
speed, if for all s > sp, limgy(zo,z1, @) = 0 whenever |z; — z9| — oe. Using this
definition, the authors show that an upper bound on the information propagation
speed is

2
€] LAnvi
min { — with @ = , | p2v2 + T+%L20(p> —T 5, (1.3)
p0>0 | p 1—Zn5h(p)

where v is the maximum node speed, Iy() and I; () are modified Bessel functions de-

fined by Ip(x) = Zkzo(%)y{ﬁ7 and I (x) = Lyso(3) %! m To get some intu-

ition about this bound and its involved parameters, note that the quantities Iy(x) and
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%I 1 (x) are both larger than 1, and therefore the expression has meaning if % < %, as

above the thermodynamical limit there is a giant component, and therefore the infor-
mation propagation speed is infinity. Observe also that the obtained value is larger if
7T is larger. Such a behavior is expected, since changing directions more frequently
may result in faster information propagation, and therefore the propagation speed
might be higher. Finally, p and ® are parameters that correspond to the Laplace
transform of the sequence of nodes such that a piece of information is visiting on its
way from source to destination (see below for a rough explanation).

To prove the result (1.3), the authors decompose the journey (which is the se-
quence of nodes a piece of information undergoes from the source to the destina-
tion) into different segments. These segments either correspond to node movements
through which the information is propagated or to direct propagations between two
nodes, when a node immediately, without movement, propagates the information
to another one due to the fact that the two nodes are at distance < 1. The authors
consider the segments as independent, which is not true, since for example two con-
secutive nodes in the sequence are more likely to move in opposite directions or
node speeds are different, and a faster moving node meets more nodes, but they
show that in this way they prove an upper bound on the propagation speed for the
real model, and hence the assumption is justified.

On the technical side, the authors compute the Laplace transform of the proba-
bility density of a fixed journey of length k, defined as a journey where k+ 1 nodes
participate in the process of information propagation from the source node to the
destination node. Since the segments are considered to be independent, the Laplace
transform of the journey is the product of the Laplace transform of the segments.
In particular, the Laplace transform of such a journey does not depend on the par-
ticular nodes participating, but only on the length of the journey. As the journey,
however, is not known in advance, the authors consider the Poisson generating func-
tion G(Z,(p,®)) whose n-th coefficient is the Laplace transform of all journeys in
a network with n nodes in a square of size <. They show that this generating func-
tion is equivalent to an ordinary generating function whose k-th coefficient is the
Laplace transform of the probability density of a fixed journey of length k. Hence,
for n — oo an upper bound for the asymptotic behavior of g,(z0,z1,#) can be cal-
culated from simpler expressions for journeys composed of independent segments.
The asymptotic growth of the Laplace transform of ¢y (z9,z1,7) is then obtained by
those values of (p,®) for which the denominator corresponding to the n-th coeffi-
cient of the Poisson generating function G(v, (p,®)) vanishes. The final expression
for gy (z0,z1,7) is then obtained using the inverse Laplace transform.

One has to point out that the conference version of the article, although sounding
very plausible, is not easy to read. In particular, the probability spaces are not clearly
defined.

o The hybrid grid model approximating DRGG, for r > r;. In the Chapter: Informa-
tion Spreading in Dynamic Networks: An Analytical Approach, Andrea Clementi
and Francesco Pasquale give an extensive presentation of this model and other pre-
vious related models in the specific framework of information spreading in dy-
namic networks. However, for completeness of our survey, we also briefly sketch
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the model. We refer the reader to the mentioned chapter in the present book. In the
model used by [CPS09] a RGG is approximated by a very fine grid on which the
nodes are restricted to move. Hence, it is a discretized version (with respect to both
time and space) of the models used in [JMRO09]: there are n nodes (n — o) moving
on the corner points of a grid inside a square of size y/n. In more detail, for some
given € > 0, at any time ¢ the nodes occupy one position of L(n, €), where
L(n,e) = {(is,je) li,jeNALj< \f}

The position at time t+ = 0 is chosen uniformly at random, independently for all
nodes, and at any fixed time slot # two nodes are connected by an edge if their Eu-
clidean distance is less than ». Here r > r(, where ry is a sufficiently large constant.
Therefore, the graph contains a giant component, but is not necessarily connected

a.a.s., which would happen only for » > clogn. The mobility model is the following:
for a given move radius p, define the move graph M, p ¢ = (Ln’g,En’p’g), where

Enpe={(p,9) | P.q €Lne, (p,q) <p},

and d(-,-) is the Euclidean distance. Furthermore, for any position p in the square,
define by I'(p) = {q | (p,q) € Enp¢}. A node at position p at time ¢ chooses uni-
formly at random its position at time ¢ + 1 among all elements of I"(p). In other
words, it chooses a random node in a p-vicinity of the original position (see Fig-
ure 1.5 for toy example of one step in the present model). Initially, at time ¢ = 0,

r p

_  mmme -

Fig. 1.5 Two consecutive time steps in the model of [CPS09]. On the left the graphs at some fixed
time ¢, where a node connected with all the other nodes at distance < r. Right picture: the resulting
graph after a movement of each vertex of a distance < p. The trajectory of movement is indicated
by the light dotted arrows.

one node, the source node, contains a message that should be broadcast to every
other node of the network. Whenever at a certain time slot ¢ one node u contains
the message and there is another node v within distance r that does not yet contain
it, the message is broadcast from u to v. It is assumed that transmission takes zero
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time. Recall that the flooding time is the number of time steps required to broadcast
the message to all nodes in the network.

The authors prove the following: if p > clogn for some constant ¢ > 0, then the
flooding is a.a.s. completed after

0(? +logn)

time steps, which is asymptotically almost tight since the expected flooding time
is Q(y/n/p). That is, if the move radius is sufficiently large (i.e., the node veloc-
ity is sufficiently high), the flooding time is independent of r (as long as r > r).
This is especially interesting for r below the connectivity threshold: flooding can be
completed although at every time step the graph is disconnected.

The proof of the result uses a tessellation argument; the square is subdivided into
supercells of side length @ (p). The proof proceeds in the following three steps: first,
it is shown that after O(logn) time steps there is a.a.s. at least one supercell which
contains @ (p?) informed nodes (the supercell is called quasi-informed). Next, in a
second phase, it is shown that, with high-probability, any quasi-informed supercell
at time ¢ makes all its adjacent supercells quasi-informed at time ¢ + 1. Since any
supercell set D has a boundary of size at least ©(+/|D]), after O(\/n/p) time steps
all supercells are quasi-informed a.a.s. Finally, in a last phase, it is shown that in
O(logn) time steps a.a.s., any quasi-informed cell becomes completely informed.
That is, all nodes of that cell contain the message that should be broadcast.

1.6 Conclusions

We surveyed the main theoretical issues when studying models for MANETs. We
described some of the models, where properties have been investigated with a cer-
tain degree of formal rigor.

In particular, in Section 4 we have presented theoretical characterizations of fun-
damental properties such as node spatial distribution and average velocity, under
the assumption that nodes move according to the RWP mobility model. In the same
section, we have shown how such characterizations have been used to disclose ac-
curacy issues with wireless network simulation practice, and to design a “perfect”
simulation methodology solving these issues.

In section 1.5 we presented recent papers dealing with connectivity issues of dy-
namical models, where nodes move synchronously on [0, 1)2. The goal in [San05a]
is to study how mobility affects the threshold of connectivity. The author gives the
threshold under certain conditions affecting mobility parameters. The papers [DPSWO08]
and [DMP09a] compute the expected lengths of connectivity and disconnectivity pe-
riods of vertices that are moving on a predetermined grid (in the case of [DPSWO08]),
and of vertices of a dynamic geometric graph whose radius is at the threshold
of connectivity (in the case of [DMP09a]). The remaining three papers deal with
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the issue of how mobility can be used to maintain the transmission range small
while at the same time allowing for connectivity properties. The papers of [JMR09]
and [CPS09] are complementary: whereas the authors in [JMRO09] study random
geometric graphs with a radius below the thermodynamical threshold, the pa-
per [CPS09] considers the case of radii between the thermodynamical threshold
and the threshold of connectivity. The third paper studied here, the work of [GT02]
is orthogonal to these two since there is no absolute bound on the radius of trans-
mission, but it also supports the hypothesis that mobility can help in propagating
information.
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