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Abstract

In this paper we introduce a model of depth-weighted random recursive trees (DRRT),
created by recursively joining a new leaf to an existing vertex v. In this model, the
probability of choosing v depends on its depth in the tree. In particular, we assume
that there is a function f such that if v has depth k then its probability of being chosen
is proportional to f(k). We consider the expected value of the diameter of this model
as determined by f , and for various increasing f we find expectations that range from
polylogarithmic to linear.

1 Introduction

Recently there has been an explosion of models of randomly growing networks. One
of the most interesting parameters of these networks, from the applications point of
view, is the diameter. In preferential attachment models, new vertices are attached to
randomly chosen vertices, but with some preference for attaching to vertices of high
degree. In this paper, we study similar models, with the difference that the preference
is based on the distance from a single vertex.

In order to understand networks where attachment preferences are based on dis-
tance, it is natural to begin with the simplest case of randomly growing trees. Moreover,
Mehrabian [9] recently developed a general approach to giving bounds on the diameter
of randomly generated networks, based on coupling with the random recursive tree,
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whose diameter is well understood. Thus, understanding the tree case can lead to re-
sults for more general graphs. In [9] there is also a comprehensive survey of known
results for the diameter of randomly generated networks. Open problem 2 in that pa-
per asks for the diameter of a randomly growing tree when each new vertex is attached
according to some specified probability distribution, and finishes with some discussion
including cases where the probability depends on the distance from the root. Thus we
are led to the following question: for some prescribed non-negative function f , build a
tree randomly as follows. Start with the root vertex, and repeatedly add new leaves,
at each step attaching the new leaf to a vertex v chosen randomly but non-uniformly,
with weight proportional to f(k) where k is the distance from v to the root. In this
paper, we determine the expected height of such a tree for various classes of functions
f .

In Section 2 we introduce the model of random trees precisely, and state our main
results. We discuss an embedding of the random tree into a continuous-time process in
Section 3. Section 4 considers functions f for which the expected height of the trees is
polylogarithmic in the number of vertices, and Section 5 considers weight functions for
which the expected height is almost linear. Open problems, some pertaining to gaps in
the spectrum of our results, are in the final section.

2 Model and results

Model. Let R+ denote the set of all positive real numbers and let f : N0 → R+ be an
arbitrary function. A depth-weighted random recursive tree (DRRT) with n vertices and
weight function f is a rooted tree Tn(f) generated according to the following recursive
procedure:

• The tree T1(f) consists of an isolated root vertex labelled 1;

• If Tj(f) is already constructed, assign a weight wj(v) to each vertex via

wj(v) = f(Dv),

where Dv is the distance of v to the root.

• Choose a vertex U among all existing vertices at random according to their
weights, i.e. choose v with probability wj(v)/

∑
xwj(x).

• Define Tj+1(f) to be the tree obtained from Tj(f) by adding a new vertex labelled
j + 1 and a new edge between j + 1 and U .

The vertex set of Tn(f) is then {1, . . . , n}.

Definition 2.1. Let Tn(f) be a DRRT with n vertices and some weight function f . Let
Dv be the distance of v from the root. Then

Hn(f) := max
v∈{1,...,n}

Dv.

The parameter Hn(f) is called the height of Tn(f), and Dv is called the depth of v.
We also use level i to denote the set of vertices at depth i.
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Notation. We use the standard Bachmann-Landau notation for the asymptotic be-
haviour of sequences: For sequences (an)n≥0, (bn)n≥0, an = O(bn) denotes the existence
of a constant C > 0 such that there exists n0 ∈ N so that for all n ≥ n0, |an| ≤ C|bn|.
Moreover, we write an = Ω(bn) if bn = O(an), and an = Θ(bn) if both an = O(bn)
and an = Ω(bn). Furthermore, we use the abbreviation [n] = {1, . . . , n}. Finally, x ∧ y
denotes the minimum of two real numbers x, y.

Remark 2.2. If f ≡ c for some constant c, we use Tn(c) to denote the DRRT with con-
stant weight function f . Note that Tn(1) (and also Tn(c) for arbitrary c > 0) coincides
with the usual model for a random recursive tree. The height of such a tree has been
studied quite thoroughly; see, e.g., [1, 3]. In particular, it is known [1, Corollary 1.3]
that E[Hn(1)] = e log n− 1.5 log log n+ O(1).

A Hoppe tree is a slight variation of a random recursive tree. It was introduced
and studied in [7]. Note that a Hoppe tree is a DRRT with a weight function given by
f(0) = ϑ for some ϑ > 0 and f(k) = 1 for k ≥ 1. It is shown in [7, Theorem 2.2]
that the height of a Hoppe tree is sharply concentrated around the mean of a random
recursive tree. In particular the difference between the expected heights in both models
remains bounded as the number of vertices tends to infinity.

The main objective of this article is to link the growth rate of f to the asymptotic
behaviour of Hn(f). More precisely, we derive bounds on E[Hn(f)] by different ap-
proaches depending on the type of weight function. Our main results are summarised
in the following theorem.

Theorem 2.3. Let f be a weight function.

(a) If supk f(k) <∞ and infk f(k) > 0, then E[Hn(f)] = Θ(log n).

(b) If f(k) = (k + 1)α for some α ≥ 0, then E[Hn(f)] = Θ(log n).

(c) If f(k) = exp(kβ) for some β ∈ (0, 1), then E[Hn(f)] = O
(

(log n)1/(1−β)
)

.

(d) If f(k) = ck for some c > 2, then E[Hn(f)] = Ω(n/ log n).

(e) If f(k) = exp(ak log k) with a > 1, then E[Hn(f)] = Θ(n).

It is apparent that the theorem only covers some particular functions f(k) repre-
sentative of various growth rates. Our main goal is to obtain a sense of where the
growth of height has significant changes in its behaviour and to illustrate several dif-
ferent methods of argument. Note that the choice in (b) of f(k) = (k + 1)α instead of
the more natural function f(k) = kα is somewhat arbitrary, to avoid weight 0 for the
root vertex in the first step of the algorithm. A close inspection of the proof shows that
other choices such as for example f(k) = kα + 1 or f(k) = max{kα, 1} would — with
very minor modifications of the proof — work as well.

The bounds provided by our methods are not sharp at all. In particular, bounded
weight functions (as in (a)) will most probably lead to trees which do not differ much
from random recursive trees in terms of height (cf. Remark 2.2 for the case of Hoppe
trees). For instance, we believe that the restriction c > 2 and the extra log n denomi-
nator in (d) can be removed. In summary, we state the following conjecture.
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Conjecture 2.4. The results (a) and (d) in Theorem 2.3 can be replaced with:

(a′) If supk f(k) <∞ and infk f(k) > 0, then E[Hn(f)] = E[Hn(1)] + O(1).

(d′) If f(k) = ck for some c > 1, then E[Hn(f)] = Θ(n).

We also conjecture the following coupling possibility to retrieve information on (in-
creasing) weight functions that are not covered by Theorem 2.3.

Conjecture 2.5. Let f and g be weight functions. Suppose f is increasing and satisfies

f(k + 1)

f(k)
≥ g(k + 1)

g(k)
, k ≥ 0.

Then P(Hn(f) ≥ x) ≥ P(Hn(g) ≥ x) for all n ≥ 2 and x ≥ 0. In particular, E[Hn(f)] ≥
E[Hn(g)].

Note that it would not be sufficient to replace the condition on ratios by the simple
condition f(k) ≥ g(k), since if g agreed with f everywhere except for g(0) < f(0), then
Tn(g) would tend to have slightly greater height than Tn(f).

Remark 2.6. Note that if f is increasing then P(Hn+1(f) = Hn(f) + 1) ≥ 1
n , since

there is at least one vertex on the last non-empty level of the tree and the weight of this
vertex is at least as large as the weight of the other vertices in the tree. This yields a
lower bound E[Hn(f)] ≥ log n+ O(1) for increasing f without using the conjecture.

As a special case of Conjecture 2.5, we have the following.

Proposition 2.7. If f is an increasing function, then Hn(f) stochastically dominates
Hn(1). In particular, E[Hn(f)] ≥ E[Hn(1)]. Similarly, if g is a decreasing function,
then Hn(1) stochastically dominates Hn(g), and E[Hn(g)] ≤ E[Hn(1)].

Proof. We only show the first part, i.e. that Hn(f) stochastically dominates Hn(1), the
second part being analogous. It is easy to couple the process building Tn(f) and that
for Tn(1), such that, the vertex i added to Tn(f) at step i is at least as deep as i in
Tn(1). Indeed, inductively for any d there are at least as many vertices of depth at least
d in Tn(f) as in Tn(1), so their relative weight is at least as large, and the coupling is
easy. Denoting by N(n, `) the number of vertices of Tn(f) at level ` ≥ 0, and denoting
by N ′(n, `) the number of vertices of Tn(1) at level ` ≥ 0, we have for every ` ≥ 0, that∑

i≥`N(n, i) ≥
∑

i≥`N
′(n, i). In particular, this implies E[Hn(f)] ≥ E[Hn(1)].

Note that this proposition improves the bound in Remark 2.6 since E[Hn(1)] ∼ e log n.
(See Remark 2.2.)

3 Continuous-time embedding

As a preparation for the proof of Theorem 2.3(a), we discuss a continuous-time embed-
ding of a DRRT. This embedding is a straightforward generalisation of a well known
approach for random recursive trees (cf., e.g., [1]). Note that it would be sufficient to
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only keep track of the profile (i.e. the number of vertices in each level of the tree) to
derive the height of the tree. However, we embed the entire tree structure for easier
comparison with previous work on random recursive trees.

The Ulam-Harris tree. The Ulam-Harris tree T UH is a rooted tree with vertex set

VUH = {∅} ∪
⋃
n≥1

Nn

and edges between (v1, . . . , vk) and (v1, . . . , vk+1) for every k ≥ 0 and (v1, . . . , vk+1) ∈ Nk+1

(here and subsequently, (v1, . . . , vk) := ∅ for k = 0).
Similarly to the corresponding embedding of random recursive trees [1], we now

assign a birth time to each vertex in VUH . Afterwards, the random tree T CT
t will be

the subtree of T UH consisting of all vertices born until time t ≥ 0.

Birth times. Fix a weight function f . Moreover, let

{Xv = (Ev1 , E
v
1 + Ev2 , E

v
1 + Ev2 + Ev3 , . . .) : v ∈ VUH}

be a family of independent copies of a sequence X = (E1, E1 + E2, . . .) built from
i.i.d. exponentially distributed random variables E1, E2, . . . with rate 1. Finally, let

Xv(f) = Xv/f(k) =

(
Ev1
f(k)

,
Ev1 + Ev2
f(k)

, . . .

)
, k ≥ 0, v ∈ Nk, (1)

and note that (Evi /f(k))i≥1 is a sequence of i.i.d. exponentially distributed random
variables with rate f(k). The birth time Bv(f) of a vertex v ∈ VUH is defined recursively
as follows. The root of the tree is born at time zero, i.e. B∅(f) = 0. Additionally, the
time difference Bv(f)−B(v1,...,vk−1)(f) between the birth of a vertex (v1, . . . , vk−1) and
its child v = (v1, . . . , vk) is determined by

Bv(f) = B(v1,...,vk−1)(f) +X
(v1,...,vk−1)
vk (f), k ≥ 1, v ∈ Nk,

where Xw
m(f) =

∑m
i=1E

w
i /f(k).

The continuous-time embedding. For t ∈ R+ let V CT
t (f) = {v ∈ VUH : Bv(f) ≤ t}.

We define T CT
t (f) to be the subtree of T UH induced by the vertex set V CT

t (f). Note
that T CT

t (f) is indeed a tree (i.e. connected) by construction of the birth times.
The sequence (T CT

t (f))t∈R+ is called continuous-time embedding of (Tn(f))n≥1 (and
is a special instance of the Crump-Mode-Jagers process, see [5] for details). This name
is justified by the next lemma. In preparation, let

tn(f) = min{t ≥ 0 : |{v ∈ VUH : Bv(f) ≤ t}| = n}. (2)

Lemma 3.1. The sequences (Tn(f))n∈N and (T CT
tn(f)

(f))n∈N of rooted trees are equal in

distribution. In particular, if HCT
t (f) denotes the height of T CT

t (f), t ∈ R+
0 , then

HCT
tn(f)

(f)
d
= Hn(f).
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Proof. By the memorylessness of the exponential distribution, after n− 1 vertices have
been born, the waiting time before the birth of the next child to a given vertex v ∈
T CT
tn−1(f)

(f) is an exponentially distributed variable with rate f(Dv), where Dv denotes

the unique integer k with v ∈ Nk. These variables are independent for different vertices
v. It is a well known fact that for independent, exponentially distributed random
variables Y1, . . . , Yn with rates λ1, . . . , λn

P
(
Yi = min

j∈[n]
Yj

)
=

λi
λ1 + . . .+ λn

.

Hence the probability of the newborn vertex being a child of any given vertex v is
proportional to f(Dv). Thus, both tree sequences follow the same growth rule.

For a random recursive tree (i.e. f ≡ 1) it is easy to check that (ti(1)− ti−1(1))i≥2
is a sequence of independent, exponentially distributed random variables such that
E[ti+1(1)−ti(1)] = 1/i. In this special case Addario-Berry and Ford use the continuous-
time embedding to derive the following result [1, Corollary 1.3]:

Theorem 3.2. The height Hn(1) of a random recursive tree on n vertices satisfies
E[Hn(1)] = e log n− 3

2 log log n+ O(1). Moreover, for all c′ < 1/(2e) there is a constant
C = C(c′) > 0 such that for all n ≥ 1 and k ≥ 1

P(|Hn(1)− E[Hn(1)]| ≥ k) ≤ C exp(−c′k).

These tail bounds will be useful for the proof of Theorem 2.3(a) in the next section.
We also use the continuous-time embedding to obtain the following coupling of different
weight functions:

Lemma 3.3. Let f, g1, g2 be weight functions with g1 ≤ f ≤ g2. Then, for any
n,m1,m2 ∈ N and x > 0,

P(Hn(f) ≥ x) ≤ P(Hm2(g2) ≥ x) + P(tn(g1) ≥ tm2(g2)),

P(Hn(f) ≤ x) ≤ P(Hm1(g1) ≤ x) + P(tn(g2) ≤ tm1(g1)),

with birth-times tn(g1) and tn(g2) given in (2).

Proof. By construction of T CT
t and g1 ≤ f ≤ g2 we have that T CT

t (g1) is a subgraph
of T CT

t (f) and T CT
t (f) is a subgraph of T CT

t (g2) at any time t ∈ R+
0 . Hence, we also

have tn(g2) ≤ tn(f) ≤ tn(g1) and HCT
t (g1) ≤ HCT

t (f) ≤ HCT
t (g2). Therefore,

P(Hn(f) ≥ x) ≤ P(HCT
tn(f)

(g2) ≥ x) ≤ P(Hm2(g2) ≥ x) + P(tn(f) ≥ tm2(g2)).

Thus, the first bound in the lemma follows from tn(f) ≤ tn(g1). The second bound
holds by similar arguments.

4 Functions giving polylogarithmic height

This section contains (poly)logarithmic bounds on the height of DRRTs with subex-
ponential weight functions, i.e. parts (a)-(c) in Theorem 2.3. We start with bounded
weight functions. In this case we use concentration results and the continuous-time em-
bedding to bound the difference between such DRRTs and classical random recursive
trees.
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4.1 Bounded weight functions

If f is a bounded function, a combination of Lemma 3.3 and Theorem 3.2 yields the
following tail bounds, which are sufficient to obtain Theorem 2.3(a) (cf. Corollary 4.2).

Lemma 4.1. Let f be a weight function such that

c ≤ f(k) ≤ dc, k ≥ 0,

for some constants c > 0 and d > 1. Furthermore, let µ(n) be the expected height of a
random recursive tree, i.e.

µ(n) = E[Hn(1)] = e log n− 3

2
log logn+ O(1).

Then, for all c′ < 1/(2e) and M > 0 there are constants C,D > 0 (with C being the
same constant as in Theorem 3.2, and independent of M) such that for all a ≥ 1

P
(
Hn(f) ≥ µ

(⌈
nd+M

⌉)
+ a
)
≤ Ce−c′a +Dn−M/(2(d−1)), (3)

P
(
Hn(f) ≤ µ

(⌊
n1/(d+M)

⌋)
− a
)
≤ Ce−c′a +Dn−M/(2(d−1)(d+M)). (4)

Since Hn(1) ≤ n, the following is immediate.

Corollary 4.2. If supk f(k) <∞ and infk f(k) > 0 then

E[Hn(f)] = Θ(log n).

As preparation for the proof of Lemma 4.1 we start with a simple concentration
result to bound the birth times in the continuous-time embedding. These concentration
results lead to a bound in Corollary 4.4 which will be useful for the proof of Lemma 4.1.
The proofs of Lemma 4.3 and Corollary 4.4 are deferred to the end of the section.

Lemma 4.3. Let (Yi)i≥1 be a sequence of independent, exponentially distributed random
variables with E[Yi] = 1/i. For 1 ≤ ` ≤ n let S`,n =

∑n
i=` Yi. Then, for x ≥ 0,

P(S`,n ≥ x) ≤
(
n

`

)
e−`x,

P(S`,n ≤ x) ≤
(

n

`− 1

)
exp (−(n− `+ 1) exp(−x)) .

Corollary 4.4. Let (S`,n)`≤n be as in Lemma 4.3. Then, for all α > 1 and M > 0
there is a constant β = β(α,M) > 0 such that for all integers j, k ∈ N with k ≥ djα+Me

P((α− 1)S1,j ≥ Sj+1,k) ≤ βj−M/(2(α−1)).

Proof of Lemma 4.1. We start with (3): Let m2 = dnd+Me. Lemma 3.3 yields

P (Hn(f) ≥ µ (m2) + a) ≤ P (Hm2(dc) ≥ µ (m2) + a) + P (tn(c) ≥ tm2(dc)) . (5)

Note that Hm2(dc) has the same distribution as the height of a random recursive tree
(since constant factors in the weight function have no influence) and therefore, the
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first probability in (5) can be bounded by Theorem 3.2. For the second probability
recall that, in a random recursive tree, (ti(1)− ti−1(1))i≥2 is a sequence of independent,
exponentially distributed random variables with E[ti+1(1) − ti(1)] = 1/i. Also recall
that ti(λ) = ti(1)/λ for any λ > 0 by construction. After rewriting

P(tn(c) ≥ tm2(dc)) = P ((d− 1)tn(1) ≥ tm2(1)− tn(1)) , (6)

it is easy to apply the concentration inequalities stated in Lemma 4.3 above (the ex-
plicit bound is given in Corollary 4.4). More precisely, note that tn(1) has the same
distribution as S1,n−1 in Corollary 4.4, since ti+1(1) − ti(1) ∼ Exp(i) by construction,
where Exp(i) denotes an exponentially distributed random variable with rate i. Hence,
tm2(1)− tn(1) is distributed as Sn,m2−1 and Corollary 4.4 yields for every M > 0

P ((d− 1)tn(1) ≥ tm2(1)− tn(1)) ≤ βd,Mn−M/(2(d−1)),

in which βd,M is a constant depending only on d and M . Thus (5) yields (3).
The other bound (4) holds by essentially the same arguments. The main difference

is that the roles of n and m1 =
⌊
n1/(d+M)

⌋
in (6) are exchanged and therefore, (6) is

replaced by

P(tn(dc) ≤ tm1(c)) = P (tn(1)− tm1(1) ≤ (d− 1)tm1(1)) . (7)

Thus Corollary 4.4 yields

P(tn(dc) ≤ tm1(c)) ≤ βd,Mm
−M/(2(d−1))
1 ,

and the assertion follows by definition of m1.

Proof of Lemma 4.3. The proof is a straightforward generalisation of the bounds (1.1)-
(1.2) in [1, Proof of Corollary 1.3], based on the following observation: If (Ei)i≥1 denotes
a sequence of i.i.d. exponentially distributed random variables with rate 1 then, by the

memorylessness of the exponential distribution and the fact that Yn
d
= min{E1, . . . , En},

S`,n has the same distribution as the `-th largest element among E1, . . . , En. Thus,

P(S`,n ≥ x) = P

 ⋃
I⊂[n],|I|=`

{
min
j∈I

Ej ≥ x
} ≤ (n

`

)
exp(−`x)

by the union bound, which yields the first part of the claim. Similarly, S`,n also has the
same distribution as the (n− `+ 1)-th smallest element among E1, . . . , En, and hence

P(S`,n ≤ x) = P

 ⋃
I⊂[n],|I|=n−`+1

{
max
j∈I

Ej ≤ x
} ≤ ( n

`− 1

)(
1− e−x

)n−`+1

which, combined with 1− y ≤ exp(−y), finishes the proof.
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Proof of Corollary 4.4. Since P((α−1)S1,j ≥ Sj+1,k) is decreasing in k, we may assume
w.l.o.g. that k = djα+Me. Note that for any x > 0

P((α− 1)S1,j ≥ Sj+1,k) ≤ P(S1,j ≥ x/(α− 1)) + P(Sj+1,k ≤ x). (8)

Now let x = (α− 1 +M/2) log j. Then Lemma 4.3 and the choice for k yield

P(Sj+1,k ≤ x) ≤
(
k

j

)
exp

(
−(k − j + 1)j−(α−1+M/2)

)
≤
(
k

j

)j
exp

(
−j1+M/2 + j

)
≤ exp(−β1j1+M/2)

for a suitable constant β1 = β1(α,M) > 0. Lemma 4.3 also yields

P(S1,j ≥ x/(α− 1)) ≤ j exp(−x/(α− 1)) = exp

(
− M

2(α− 1)
log j

)
.

Finally note that exp(−β1j1+M/2) ≤ β2 exp
(
− M

2(α−1) log j
)

for a suitable constant

β2 = β2(α,M) > 0. Therefore, (8) and the previous bounds imply the assertion.

4.2 Polynomial weight functions

We continue with the proof of Theorem 2.3(b); i.e. we prove the following result.

Theorem 4.5. Let α ≥ 0 and f(k) = (k + 1)α, k ≥ 0. Then,

E[Hn(f)] = Θ(log n).

Proof. The lower bound follows from Remark 2.6. For the upper bound define approx-
imating functions fh, h ∈ N, as

fh(k) = f(k ∧ h), k ≥ 0.

Note that we can couple (Tn(fh))n≥1 and (Tn(f))n≥1 in such a way that they coincide
for all n with Hn(f) ≤ h, since the weights of the vertices coincide up to height h. In
particular, Hn(fh) ≤ h implies Hn(fh) = Hn(f) in that coupling and therefore

P(Hn(fh) > h) = P(Hn(f) > h) for every h ∈ N. (9)

Now let h = bC log nc and ` = dc log ne for some constants 0 < c < C chosen later
in the proof. The main idea of the proof is to show P(Hn(fh) > h) = O(n−1) for
suitable C by bounding the height of each subtree of Tn(fh) on level `. To this end,
let {v1, . . . , vK} ⊂ [n] be the set of all vertices in Tn(fh) that are at distance ` from
the root and let J1, . . . , JK be the subtree sizes (total progeny) of the subtrees rooted
at v1, . . . , vK . Note that, conditioned on (K,J1, . . . , JK), the heights of the subtrees
are distributed as the heights of K independent depth-weighted random recursive trees
with sizes J1, . . . , JK and weight functions

gh(k) = fh(k + `), k ≥ 0.
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However, since Hn(gh) and Hn(g̃h) have the same distribution for g̃h = gh/fh(`), we
obtain

P(Hn(fh) > h) =
∑

k,j1,...,jk

P ((K,J1, . . . , JK) = (k, j1, . . . , jk))P

(
k⋃
i=1

{Hji(g̃h) > h− `}

)
.

Note that
P (Hji(g̃h) > h− `) ≤ P (Hn(g̃h) > h− `) .

Now choose C = 2c. Since 1 ≤ g̃h ≤ (C/c)α, we may apply Lemma 4.1 with d = 2α,
M = 4(2α − 1), c′ = 1/(3e), a = 6e log n, and note that µ(dnd+Me) ≤ e(d+M) log n+
O(1). Therefore, by choosing c = e(d+M + 6), by Lemma 4.1,

P (Hn(g̃h) > h− `) ≤ P
(
Hn(g̃h) > µ(dnd+Me) + a+O(1)

)
= O(n−2).

Hence, by the union bound and since the other probabilities in the above summation
sum to 1, we get that P(Hn(fh) > h) = O(1/n). It follows that P(Hn(f) > h) = O(1/n).
Therefore, since clearly Hn(f) ≤ n, we have E[Hn(f)] = O(log n) and the assertion
follows.

4.3 Subexponential weight functions

A simple adaptation of the previous proof strategy yields Theorem 2.3(c). Thus we
continue with the proof of the following result.

Theorem 4.6. Let β ∈ (0, 1) and f(k) = exp(kβ), k ≥ 0. Then,

E[Hn(f)] = O
(

(log n)1/(1−β)
)
.

Proof. The proof is very similar to the one for polynomial weight functions. Consider
the levels ` = dc logγ ne and h = ` + bC log nc for γ = 1/(1 − β) and some constants
C, c > 0 chosen later in the proof. Once again, let fh(k) = f(k ∧ h) and consider the
function

g̃h(k) = fh(k + `)/fh(`), k ≥ 0.

Note that 1 ≤ g̃h(k) ≤ fh(h)/fh(`) and that fh(h)/fh(`) = O(1), which can be seen as
follows: Since by the generalised Bernoulli inequality, (1 + x)β ≤ 1 + βx for x ≥ 0 and
β ∈ (0, 1), we have

(h/`)β ≤
(

1 + C/c (log n)1−γ
)β
≤ 1 +

Cβ

c
(log n)1−γ .

Hence

fh(h)/fh(`) = exp
(
`β
(

(h/`)β − 1
))
≤ exp

(
βCcβ−1 (log n)βγ+1−γ (1 + o(1))

)
.

The choice for γ yields βγ+1−γ = 0. Thus fh(h)/fh(`) ≤ exp(β+o(1)) when choosing
C = c1−β. Hence, the same arguments as in Theorem 4.5 yield that P(Hn(f) > h) =
O(n−1). Therefore, E[Hn(f)] ≤ h+ O(1) and the assertion follows.
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Remark 4.7. Recall that Proposition 2.7 yields E[Hn(f)] = Ω(log n) for every increas-
ing f . Thus, for f as in Theorem 4.6, we only obtain

E[Hn(f)] = Ω (log n) , E[Hn(f)] = O
(

(log n)1/(1−β)
)
,

and it remains an open problem to determine the asymptotic order of E[Hn(f)].

5 Functions giving quasilinear height

This section contains the missing proofs for parts (d) and (e) of Theorem 2.3.

5.1 Exponential weight functions

Theorem 5.1. Let c > 2 and let f(k) = ck. Then

E[Hn(f)] = Ω(n/ log n).

Proof. Let (N(n, `))`=1,...,n denote the profile of Tn(f), that isN(n, `) equals the number
of vertices in Tn(f) with depth `. We will prove the stronger statement that with high
probability N(n, `) ≤ C log n for all 1 ≤ ` ≤ n and a sufficiently large constant C. More
formally, for a constant C > 0 chosen later in the proof, let

An =
n⋂
`=1

{N(n, `) ≤ C log n}.

Note that An implies Hn(f) ≥ n/(C log n). Thus it is sufficient to show P(An)→ 1 as
n→∞, or equivalently P(Acn)→ 0.

Let s = dC log ne, and r < s (where r will be chosen later), and define the event
In(i, j, `) = I(i, j, `) to be

(N(i, `) = r) ∧ (N(j, `) = s) ∧ (N(j, `− 1) < s) ∧ (N(j, `+ 1) < s).

First note that if none of the I(i, j, `) hold for 1 ≤ i < j ≤ n and ` = 1, . . . , n, then
the event An holds: If An does not hold, then there is a first time j such that there
exists ` with N(j, `) = s. Then N(j, ` − 1) < s and N(j, ` + 1) < s, and choosing any
i so that N(i, `) = r, we have that I(i, j, `) holds. Thus, we can show P(An) → 1 by
showing that, with probability tending to 1, none of the events I(i, j, `) holds. By the
union bound it is therefore sufficient to show that

P(I(i, j, `)) = o(n−3) uniformly in 1 ≤ i < j ≤ n and ` = 1, . . . , n.

To bound the probability of a fixed event I(i, j, `), first note that a new vertex t can
be added to a DRRT according to the following two-stage procedure. First decide,
with the correct probability, whether or not the vertex selected for attachment of the
new leaf has depth in the set {` − 1, `}, and then decide which level to choose in the
appropriate set ({`−1, `}, or [n]\{`−1, `}, as the case may be). Of course, deciding to
attach to a node whose depth is in {`− 1, `} is equivalent to deciding to insert the new
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node such that its depth, i.e. distance from the root, is in the set {`, ` + 1}. We next
re-describe this two-stage procedure in terms of i.i.d. uniformly distributed random
variables, in order to define a coupling later in the proof. Since only the evolution of
the tree Tj(f) for j ≥ i will be relevant for our further analysis, suppose that the tree
Ti(f) is already constructed. Let Dt denote the depth of vertex t, that is its distance
to the root. The sequence (Tj(f))j>i is constructed as follows. Let {Uj ,Wj : j ≥ 1} be
a family of i.i.d. random variables uniformly distributed on [0, 1]. For t > i, suppose
the tree Tt−1(f) is already constructed. To attach a new vertex t, first decide whether
Dt ∈ {`, `+ 1} or not by using Wt−i; that is, define a Bernoulli random variable It via

It = 1 ⇐⇒ Wt−i ≤
c`−1N(t− 1, `− 1) + c`N(t− 1, `)∑∞

x=0 c
xN(t− 1, x)

.

Note that the fraction of weights in the above expression is just the proportion of the
total weight of vertices contained in levels `− 1 and `. If It = 1, then Dt will be chosen
equal to either ` or `+ 1, and the next Uj not used so far is used to decide which one,
in the following way. Let K = K(t) =

∑t−1
j=i+1 Ij + 1 and define a Bernoulli random

variable ZK via

ZK = 1 ⇐⇒ UK ≤
N(t− 1, `− 1)

N(t− 1, `− 1) + cN(t− 1, `)
. (10)

If ZK = 1, insert the new vertex into level ` (by choosing a parent uniformly at random
among vertices on level `−1). Otherwise, i.e. when ZK = 0, insert the vertex into level
`+ 1.

On the other hand, if It = 0, deduce the level for vertex t by splitting the unit
interval according to the weights of levels in [n] \ {` − 1, `}, in a similar fashion using
an additional set of independent uniform random variables.

Now let J = {t > i : It = 1} and let t1 < t2 < · · · be the (random) elements of J
in increasing order.

To bound the probability of I(i, j, `), we let τs(`− 1) = min{m : N(m, `− 1) = s},
and first establish that

I(i, j, `) implies 1{N(i,`)=r} ·
2s−r∑
k=1

Zk1{tk<τs(`−1)} ≥ s− r. (11)

To show this, we may assume that N(i, `) = r. We consider two cases: (a) t2s−r ≥
τs(` − 1) and (b) t2s−r < τs(` − 1). In case (a), the above inequality states that the
number of vertices added to the initial r vertices in level `, up to the time τs(`− 1), is
at least s− r. This is implied by I(i, j, `), in particular (N(j, `) = s)∧ (N(j, `−1) < s).
In case (b), the summation now counts vertices added to the initial r in level `, up to
the time when 2s − r have been added to levels in {`, ` + 1}. If the inequality in (11)
is violated, then level ` + 1 receives s vertices before level ` receives s − r additional
vertices, which violates (N(j, `) = s) ∧ (N(j, ` + 1) < s) from event I(i, j, `), for all j.
Therefore we have (11).

To bound the upper tail of the sum in (11), let pk = s/(s+ c(r+k)) for k ≥ 0. Note
that for all integers t ∈ [i+ 1, τs(`− 1)] and conditioned on N(i, `) = r, the right hand
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side of (10) can be bounded by

N(t− 1, `− 1)

N(t− 1, `− 1) + cN(t− 1, `)
≤ s

s+ cN(t− 1, `)
= pLt with Lt =

∑
k:tk<t

Zk. (12)

We now introduce a new sequence (Rj)j≥1 of Bernoulli random variables based on the
random variables (Uj)j≥1 in (10) via

Rj = 1 ⇐⇒ Uj ≤ pR+
j−1
, where R+

0 := 0 and R+
m :=

m∑
q=1

Rq for m ≥ 1.

Using induction on m, we can show

1{N(i,`)=r} ·
m∑
j=1

Zj1{tj<τs(`−1)} ≤
m∑
j=1

Rj = R+
m for all m ∈ N (13)

as follows. First, if (13) is a strict inequality for m then the inequality trivially holds
for m + 1 since both sums have Bernoulli increments. On the other hand, if the sums
in (13) are equal for m, then, conditioned on N(i, `) = r, it holds that Rm+1 ≥
Zm+11{tm+1<τs(`−1)} by definition and by applying (12) to every t ∈ [tm, τs(`− 1)].

Now, using (11) and (13), it follows that

P(I(i, j, `)) ≤ P(R+
2s−r ≥ s− r). (14)

We first point out how to finish the proof if c > 4. Note that for all k, we have
pk ≤ p0 = s/(s+cr), so R+

2s−r is stochastically dominated by a sum of 2s−r i.i.d. copies
of R1. Choosing r ∼ s/2 and c > 4, we have for some ε > 0 that p0 < 1/3− ε, and also
2s−r ∼ 3s/2. Since s ∼ C log n, a standard Chernoff bound, e.g. Hoeffding’s inequality
[2, Theorem 2.8], implies that for large enough C, we have P(R+

2s−r ≥ s− r) = o(n−3).
Hence, using the union bound, with probability tending to 1, none of the events I(i, j, `)
holds, as required.

For c > 2 we require a little more work. Write Yk = r + R+
k (with R+

0 = 0 by
convention) and observe that

E[Yk+1 − Yk | Yk] = pR+
k

= g(Yk) :=
s

s+ cYk
.

The aim is to transform (Yk)k≥0 into a supermartingale and apply an Azuma-type
supermartingale bound to prove P(R+

2s−r ≥ s − r) = o(n−3). This can be done by the
differential equation method as in [12, Section 5.2].

The differential equation essentially models Yk by a continuous function y(x) and
suggests for us to choose a function h with h′(y)g(y) = 1 for all y ≥ 0. Setting h(y) =
y+ cy2/(2s), we get h′(y)y′(x) = h′(y)g(y) = 1. Then, noting that |Yk+1− Yk| ≤ 1 and
h′′(y) = c/s, a Taylor expansion yields

h(Yk+1)− h(Yk) = h′(Yk)(Yk+1 − Yk) + Ek, |Ek| ≤ c/s.
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Since c/s → 0 as n → ∞, E[Yk+1 − Yk|Yk] = g(Yk) and h′(y)g(y) = 1, it follows that,
for any fixed ε > 0,

E[h(Yk+1)− h(Yk) | Y0, . . . , Yk] = E[h(Yk+1)− h(Yk) | Yk] < 1 + ε

for n sufficiently large. Therefore, the sequence (Vk)k≥0 :=
(
h(Yk) − k(1 + ε)

)
k≥0 is a

supermartingale with respect to Y0, Y1, . . . if n is sufficiently large. Since |Yk+1−Yk| ≤ 1,
it follows that uniformly for k < 2s−r we have |Vk+1−Vk| = O(c(1+ ε)). Hence by the
standard Azuma-type supermartingale bound (e.g. [12, Lemma 4.2]) we have for α > 0

P(V2s−r ≥ V0 + α) ≤ exp(−Θ(α2/s)),

where the bound in Θ depends on c and ε. Choosing α = εs, and C = C(ε, c) in
s = dC log ne sufficiently large, makes this probability o(n−3). (The values of C and ε
will be fixed below.) The likely event V2s−r ≤ V0 + εs implies that

h(Y2s−r)− h(Y0) ≤ 2s− r + ε(3s− r),

and we are at liberty to choose r ∼ εs, which then gives h(Y2s−r) ≤ 2s+O(εs). For any
c > 2, we may choose ε sufficiently small that this implies Y2s−r < s. Since Y2s−r =
r+R+

2s−r by definition, such a choice for ε therefore yields P(R+
2s−r ≥ s− r) = o(n−3).

The bound in (14) yields P(I(i, j, `)) = o(n−3) and the assertion follows.

5.2 Path-like trees

The result stated in Theorem 2.3(e) is an immediate consequence of a more general
observation for rapidly growing weight functions. Note that if f is growing sufficiently
fast then there is non-vanishing chance of Tn(f) being a path. More precisely, note that
the probability for Tn(f) being a path of n vertices (i.e. Hn = n− 1) is given by

n−2∏
k=1

f(k)∑k
j=0 f(j)

= exp

n−2∑
k=1

log

1−

(
1 +

f(k)∑k−1
j=0 f(j)

)−1 . (15)

This leads to the following result.

Lemma 5.2. Let f be a weight function such that

∞∑
k=1

(
1 +

f(k)∑k−1
j=0 f(j)

)−1
<∞.

Then,

lim inf
n→∞

P(Hn = n− 1) > 0.

In particular, E[Hn] = Θ(n).
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Proof. The probability P(Hn = n − 1) is stated in (15). By assumption and the fact
that log(1−x) ∼ −x as x→ 0 (for explicit bounds use, e.g., −x−x2 ≤ log(1−x) ≤ −x
for x ∈ [0, 1/2]) we obtain

P(Hn = n− 1) ≥ exp

 ∞∑
k=1

log

1−

(
1 +

f(k)∑k−1
j=0 f(j)

)−1 > 0,

which yields the first part of the assertion. The second part obviously follows from
E[Hn] ≥ (n− 1)P(Hn = n− 1).

Corollary 5.3. Let a > 1, f(0) = 1 and f(k) = exp(ak log k) for k ≥ 1. Then

lim inf
n→∞

P(Hn = n− 1) > 0

and, in particular, E[Hn] = Θ(n).

Proof. We have

k−1∑
j=0

f(j) ≤ f(k)(k−a + k−2a + · · ·+ k−ka) < 2f(k)k−a

and hence the condition in Lemma 5.2 holds, and the assertion follows.

Remark 5.4. Note that P(Hn = n − 1) is decreasing in n since {Hn = n − 1} ⊂
{Hn−1 = n − 2} for any n. Therefore, (P(Hn = n − 1))n≥1 is a convergent sequence
and lim inf in Lemma 5.2 can be replaced by a limit.

Remark 5.5. It should also be possible to show linear height for slower growing weight
functions if we, instead on focusing on the probability of being a path, consider the
probability of resulting in something ‘path-like’ (e.g. Hn ∼ n as n → ∞ with positive
probability by showing that An = {Hn+1 = Hn} occurs only a sublinear number of
times).

We believe that f(k) = exp(ak log k) should lead to a ‘path-like’ tree for every a > 0
and thus E[Hn(f)] = Θ(n) for these weight functions.

6 More open problems

The introduction of DRRTs raises a lot of questions that remain unanswered in this
paper. Our main objective in this paper is to find relationships between increasing
functions f and the rate of growth of the height of Tn(f). Our results concern poly-
logarithmic or quasilinear height. There is a gap in between that we have not touched
upon: if 0 < α < 1, for what f is the expected roughly nα? One could also ask what
kind of ‘penalty’ (i.e. decreasing f) it takes to obtain a tree with E[Hn(f)] = o(log n).
The results in Theorem 2.3 have several other obvious gaps that would be interesting
to fill. For a more difficult problem, one can also ask for the variance or limit law of
the heights of these trees.

There are also a variety of other tree parameters to consider based on results for
random recursive trees:
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• What is the asymptotic behaviour of the depth Dn of vertex n, i.e. the distance of
the n-th inserted vertex to the root (cf. [4] for random recursive trees)? A study of
the depth could potentially be an easy way to obtain lower bounds on the height
of tree.

• What is the total number of leaves in the tree Tn(f) (cf. [11] and [10] for random
recursive trees)?

It is not hard to check that, on average, half of the vertices in a random re-
cursive tree are leaves. On the other hand, for rapidly increasing f (such as in
Theorem 2.3(e)), one expects a ‘path-like’ tree and thus only very few leaves.

• One could also study the total path length
∑n

j=1Dj of the tree (cf. [8] for random
recursive trees). A natural parameter to study would also be the total weight∑n

j=1 f(Dj) of all vertices in Tn(f).
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