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Abstract

The localization game is a two player combinatorial game played on a graph G = (V, E). The cops
choose a set of vertices S; C V with |S1| = k. The robber then chooses a vertex v € V' whose location is
hidden from the cops, but the cops learn the graph distance between the current position of the robber
and the vertices in S7. If this information is sufficient to locate the robber, the cops win immediately;
otherwise the cops choose another set of vertices Sy C V with |Sa| = k, and the robber may move
to a neighbouring vertex. The new distances are presented to the robber, and if the cops can deduce
the new location of the robber based on all information they accumulated thus far, then they win;
otherwise, a new round begins. If the robber has a strategy to avoid being captured, then she wins.
The localization number is defined to be the smallest integer k£ so that the cops win the game. In this
paper we determine the localization number (up to poly-logarithmic factors) of the random geometric
graph G € G(n,r) slightly above the connectivity threshold.
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1 Introduction

1.1 Localization game

Graph searching focuses on the analysis of games and graph processes that model some form of intrusion
in a network and efforts to eliminate or contain that intrusion. One of the best known examples of graph
searching is the game of Cops and Robbers, wherein a robber is loose on the network and a set of cops
attempts to capture the robber. For a book on graph searching see [4].

In this paper we consider the Localization Game that is related to the well studied Cops and Robbers
game. For a fixed integer k > 1, the localization game with k sensors is a two player combinatorial game
played on a graph G which is known to both players. To initialize the game, the cops first choose a set
S1 C V(G) with |S1| = k. The robber then chooses a vertex v € V(G) to start at, whose location on
the graph is hidden from the cops. The cops then learn the graph distance between the current position
of the robber and the vertices of Sy. If this information is sufficient to locate the robber, then the cops
win immediately. Otherwise, a new round begins, and the cops now choose another subset Sy C V(G)
of size k, based on all the past information available to them. At this point, the robber is allowed to
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move to any vertex of distance one from its current location, based on S7 and Ss. The distances of the
robber’s new location to the vertices of S5 are then presented to the cops, at which point the cops win if
these new distance values in conjunction with the previous ones are sufficient to locate the robber. If the
cops’ information is still insufficient to win the game, then another round begins. These rounds continue
until the cops are able to locate the robber, in which case we say that the cops win, or the game proceeds
indefinitely, in which case we say that the robber wins. Hence, to summarize, each round consists of the
following steps:

a) the cops place k sensors on some vertices of G,

b) the robber moves to a neighbor of the vertex she currently occupies or stays put (if this is the first
round, then she simply chooses any vertex of G to start with),

c¢) the cops obtain the information about the distances between the sensors and the robber,

d) the cops combine the information from all rounds so far and the game ends if this is enough to detect
the position of the robber.

We provide more details in Subsection 2.1l to show that the localization game is a combinatorial game.
This motivates the following definition. Given a graph G, its localization number, denoted by ((G), is the
minimum k& such that the cops can eventually locate the robber using exactly k sensors in each round. The
localization game was introduced for one sensor (k = 1) in [19] 20] and was further studied in [3} 5] [6] 8 [13].

Let us emphasize that the cops only win provided their strategy beats all robber’s strategies, and thus
is a worst-case win condition. An alternative “robber first” definition of the localization game involves
the robber moving first in each round, in particular choosing their move prior to the initial placement of
the cops’ sensors. Since both games require a worst case guarantee for the cops to win, these games are
equivalent.

1.2 Random geometric graphs

In this paper we investigate geometric graphs in the plane. Given a positive integer n and a threshold
distance r > 0, we consider the random geometric graph G € G(n,r) on vertex set V = {v1,v9,...,v,}
obtained by starting with n random points xi, s, ..., 2z, in R? sampled independently and uniformly
in the square [0, \/ﬁ]2 For any ¢ # j, the vertices v; and v; are adjacent when the Euclidean distance
dg(xi, x;) is at most r. Note that, with probability 1, no point in [0, \/ﬁ]z is chosen more than once, so we
may identify each vertex v; € V' with its corresponding geometric position x;. In fact, in order to simplify
some of the proofs, we will work with the random geometric graph G € T (n,r) equipped with the torus
metric dp(-,-) instead of dg(-,-). For more details about these models see, for example, [1§].

Our results are asymptotic in nature. In other words, we will assume that n — oo and r = r(n)
may (and usually does) tend to infinity as n — oo. We are interested in events that hold asymptotically
almost surely (a.a.s.), that is, events that hold with probability tending to 1 as n — oo. It is known

that r. = re(n) = 4/ 10% is a sharp threshold function for connectivity for G € G(n,r) (see, for example,

[12, 17]). This means that for every ¢ > 0, if » < (1 — e)r,, then G is disconnected a.a.s., whilst if
r > (14 €)rc, then G is connected a.a.s. The same property holds for G € T(n, 7).
1.3 Asymptotic notation

Given two functions f = f(n) and g = g(n), we will write:

o f(n) =0(g(n)) if there exists an absolute constant ¢ € R such that |f(n)| < ¢|g(n)]| for all n,

o f(n)=Q(g(n)) if g(n) = O(f(n)),



o f(n) =0©(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)),
o f(n) =o(g(n)) or f(n) < g(n) if limy e f(n)/g(n) = 0, and
o f(n)>g(n)if g(n) = o(f(n)).

1.4 Our main result

Here and below, we fix rg = ro(n) = 70y/log n.

Theorem 1.1. Fiz r =r(n) € [ro,v/n/4) and let G € T(n,r). Then, a.a.s. the following bounds hold:
1. Iflog®?n < r < \/n/4, then Q(r*/3/(logn)'/3) = ¢(G) = O(r*/3).
2. Iflogn < r <log®?n, then Q(r*/3/(logn)'/3) = ¢(G) = O(log? n).

3. If (loglogn)i(;glr:)gloglogn <r <logn, then Q(r?log(elogn/r)/logn) = ((G) = O(r?).

4. Ifro <r< (loglogn)}(;gﬁ)gloglogn’ then Q(logn/log(r?/logn)) = ¢(G) = O(r?).

Let us point out that we restrict ourselves to r < y/n/4. This is done for a technical reason. For
extremely dense graphs, the behaviour of T (n, r) changes drastically. In the extreme case, when r > \/n /2,
T (n,r) is simply the complete graph on n vertices and ((7 (n,r)) = n — 1. Such dense graphs are not so
interesting as they do not represent the typical nature of random geometric graphs and for that reason are
rarely studied. Indeed, for such dense graphs the effect of wrapping around the torus has to be considered,
and the results for T (n,r) typically differ from the ones for G(n,r), the random geometric graph in the
square.

1.5 Main ideas behind the proofs

The proof of Theorem [I.1] in divided into a proof of the upper bounds and a proof of the lower bounds
in the four regimes. For the upper bounds, we first show that by using only four sensors the cops may
locate the position of the robber throughout several rounds within a square S of side length 10°r. Then,
the cops need one last round to win. Roughly speaking, they divide their set of sensors into two parts
of comparable sizes. Then, they distribute the first part of their sensors uniformly at random among all
vertices of G in the square S. Finally, the cops take care of the vertices in the square, which cannot be
uniquely distinguished by the sensors already used, and put one sensor on any such vertex.

For the lower bounds, we show that it is sufficient for the robber to choose any ball By of radius /3
before even knowing the random graph G € T (n,r). Once having done that, we prove that a.a.s. the
number of sensors, given by Theorem [[.1] is not sufficient to distinguish the position of the robber even if
she decides to stay in Bg forever.

1.6 Related results

The metric dimension of a graph G, written 5(G), is the minimum number of sensors needed in the
localization game so that the cops can win in one round. The localization number is related to the metric
dimension of a graph in a way that is analogous to how the cop number is related to the domination
number. In particular, it follows that ((G) < 5(G), but in many cases this inequality is far from tight.
Although the game has not yet been studied for random geometric graphs, there are some known
results for the classical binomial random graph G(n,p). The localization number for dense random graphs
(in particular, in the regime in which G(n,p) has diameter two a.a.s.) was studied in [11]. The bounds for
dense graphs were consecutively improved in [10], and the arguments were extended to sparse graphs.
The metric dimension was also studied for the G(n, p) model. The statements of the bounds for 5(G)
with G € G(n,p) obtained in [2] are slightly technical, but the following observations can be made: for



sparser graphs (that is, graphs of diameter at least three a.a.s., which corresponds to ¢ > 2 in the discussion

below), it follows from [2] and [I0] that ((G) < B(G). In fact, if np = n*T°0) for some z € (2%, b,
i € N\ {1}, then a.as. i + o(1) < 8(G)/((G) < 1/x +0o(1) < i+ 1, and so these two graph parameters
are a multiplicative constant away from each other (the ratio being roughly equal to the diameter of the
graph). Moreover, for very sparse graphs, say for example np = log®n, a.a.s. ((G) = ©(nloglogn/(np)?)

whereas 3(G) = O(nlogn/(np)?), implying that for such value of np, ((G) = o(B(G)).

2 Preliminaries

2.1 Reformulation of the game with perfect information for the cops

In this section we show that the game we study is a combinatorial, perfect information game despite
the fact that the robber is invisible for the cops. Let G = (V, E) be a connected graph. Given a set
S CV of size k, S = {s1,892,...,5k}, and a vertex v € V, the S-signature of v is defined as the vector
d =d(S,v) = (di,da,...,dg) where for every i € {1,2,...,k}, d; = dg(si,v) is the graph distance from
s; tov. Given a set V/ CV, let

N[V'] = Ng[V'] :=={v € V : d(v,u) <1 for some u € R},

that is, N[V'] is the closed neighborhood of the set of vertices V' in G.

The localization game with k sensors is a game played by two players, the cops and the invisible robber.
While playing the game, both the cops and the robber are aware of the underlying graph and each of the
previous moves of the cops. However, the cops are not aware of the exact location of the robber while the
robber is aware of every move they have made. Thus, the robber has perfect information in the localization
game, but the cops do not, which at first sight contradicts our claim. Therefore, we propose the following
reformulation of the game, which is based on a purely information theoretical perspective. When the cops
put their sensors on the vertices of the set S, we partition the vertex set V into R% U R% U...u Rél where
the sets (le-)lgjggl are the equivalence classes of vertices in V' that have the same Si-signature. Then,
instead of choosing a specific location, the robber can choose some equivalence class le'1' Once the cops
choose Sy, we partition the set N [Ryli] into equivalence classes R% U R% Uu...u R%z so that every vertex in
Rjz- has the same S3-signature. Then, the robber chooses a set among (R?2
i, once the cops choose S;, this gives the partition NV [Rj-i_}l] =RIUR,U...U RZ with every vertex in

J1<jo<t,- Iteratively, in round

R; having the same S;-signature; then the robber chooses some R;z In this version of the game, the
cops win in round i if the robber is forced to choose a set R;l with only one vertex, that is, \Rzl] = 1.
In this reformulation, both players have perfect information. In particular, the localization game is a
combinatorial game and so one of the players must have a winning strategy, that is, a strategy which
wins against all of the other player’s strategies simultaneously. We direct the reader to [I0] for a longer
discussion.

2.2 Notation

Let ~ be the equivalence relation on R? defined by (0,7) ~ (y/n,x) and (z,0) ~ (x,/n) for every = € R.
The torus Ty, is defined as T, = R?/ ~ and is equipped with the natural metric dr,, inherited from
the Euclidean metric dg on R?. To simplify notation, we write dr instead of dr, below. The following
definitions are used for both the Euclidean distance as well as the distance on the torus. For a given
x € [0,4/n)? (vespectively, z € T,,)) and r > 0, let B(z,r) be the (closed) ball with center x and radius r,
that is, B(z,7) = {y € [0,v/n]? : dg(z,y) < r} (on T}, we have B(z,7) = {y € T}, : dp(z,y) < r}). Let
C(x,r) be the circle with center x and radius r, that is, C(x,r) = {y € [0,/n]? : dg(z,y) = r} (again, on
T,, we have C(z,r) = {y € T), : dr(z,y) = r}). Finally, for 0 < ry < ro, let D(z,71,7r2) = B(z,72) \ B(2,71)
be the crown with center x and radii v1 and ro. For any d > 0, we also use the term strip of width d to



denote the intersection of two half-spaces in R?, whose boundaries are parallel lines at distance d from
each other.

As typical in the field of random graphs, we will use logx to denote the natural logarithm of z.
Finally, for expressions that clearly have to be integer valued, we systematically round up or down without
specifying which since the choice does not affect our arguments.

2.3 De-Poissonization

In order to simplify some of our proofs, we will make use of a technique known as de-Poissonization, which
has many applications in geometric probability (see [I8] for a detailed account of the subject). Here we
only roughly sketch the idea behind it.

Consider the following related models of random geometric graphs. Let V' = V', where V' is a set
given by a homogeneous Poisson point process of intensity 1 in [0, \/n]?, respectively in T},. In other words,
V' consists of N points in the square [0, 1/n]?, or in the torus T},, chosen independently and uniformly at
random, where N is a Poisson random variable with expectation equal to n. By analogy to the models
G(n,r) and T (n,r), almost surely no two vertices are located at the same position, and we are therefore
allowed to identify any vertex v; with its geometric position x; in [0,+/n]?, respectively in T},. Fix a
parameter 7 > 0 and, for any pair of vertices v and v in V', connect v and v if dg(u,v) < r, when working
with G(N,r), and if dr(u,v) < r, when working with 7 (N, r). We denote these new models by Gp,(n, )
and Tpo(n,r).

Since our main result deals with the 7 (n,r) model, we concentrate on the connection between the
models T (n,r) and Tpy(n,r). The same relationship holds for G(n,r) and Gp,(n,r). The main advantage
of defining V' via a Poisson point process is motivated by the following two properties: first, the number
of vertices of V'’ that lie in any measurable set A C T}, of Lebesgue measure a has a Poisson distribution
with expectation a, and second, the number of vertices of V' in disjoint subsets of T}, are independently
distributed. Moreover, by conditioning Tp,(n, ) upon the event N = n, we recover the original distribution
of T(n,r). Therefore, since P(N = n) = ©(1/4/n), any event holding in Tp,(n,r) with probability at least
1 — o(f,) must hold in T (n,r) with probability at least 1 — o( f,/n).

We may also transfer results that hold in 7 (n,r) to Tp(n,r). For example, suppose that for some
random variable X = X (G), there exist non-decreasing functions f(n) and g(n) such that a.a.s. f(n) <
X < g(n) for G € T(n,r). Then, since a.a.s. (1 —&)n < N < (1 + ¢&)n for some € = g(n) = o(1), we get
that a.a.s. f((1 —e)n) <X <g((1+¢e)n) for G € Tpo(n,r). In particular, our main result, Theorem [I.T]
holds for G € Tpo(n,r) as well.

2.4 Concentration inequalities

Let us first state a few specific instances of Chernoff’s bound that we will find useful. Let X ~ Bin(n, p)
be a random variable distributed according to a Binomial distribution with parameters n and p. Then, a
consequence of Chernoff’s bound (see e.g. [14, Corollary 2.3|) is that for any ¢t > 0 we have

2
2
P(X <EX —t) < exp <_mta—x> . 2)

Moreover, let us mention that the bound holds in a more general setting as well, that is, for X =
>, X where (X;)1<i<p are independent variables and for every i € {1,2,...,n} we have X; ~ Bernoulli(p;)
with (possibly) different p;-s (again, see e.g. [14] for more details).

We will also need the following generalization of the previous bound due to Bentkus [1], stated in
a simplified form here. For two random variables X and Y defined on the same probability space, we



write X < Y if Y stochastically dominates X, that is, P(X > z) < P(Y > z) for all z € R. Let £(X)
denote the distribution of the random variable X. For a positive random variable Y and for m > 0 we
define the random variable Y™ so that EY[™ = m, YI"™ < Y and so that for some b > 0 we have
PO < Y[ < b) =0 and P(Y[I™ > z) = P(Y > 2) for all z > b (in other words, one may roughly think of
Y™ as the random variable “shifting mass that is close to 0 to 0 itself”).

Lemma 2.1 ([I]). Let S = X3 + ...+ Xy be a sum of ¢ positive independent random variables. Assume
that for every k € {1,2,...,0} we have X}, < Y™ and EX;, < m for some positive random variable Y

and some non-negative real number m. Let T'=¢e1 + ...+ ¢¢ be a sum of £ independent random variables
ex s0 that L(e) = LY ™). Then, for all z € R,

P(S > z) < inf e "Ee"T.
h<zx

In particular, if ES > 1/c for some constant ¢ > 0,

P(S > cES) < e “E5ReT.

2.5 Euclidean vs. graph distances

Let us start with the following result from [9].

Theorem 2.2 ([9], Theorem 1.1). Fiz r = r(n) > ro and let G € G(n,r). Then, a.a.s. the following
property holds for all pairs of vertices u,v € V(G).

dg(u,v) 1
1. ]de‘('LL,'U) 2 20r lOgTL, then dG('LL,'U) 2 T <1 + W)

dE(“? U)
T

2. dg(u,v) < [ (1 +’y7’_4/3)w, where

2rlogn 213 70 log?n 9
= 31 300%/% | . 3
vy max ( <T‘+dE(U,U)> ) 7"8/3 ) ( )

As we plan to investigate 7 (n,r) instead of G(n,r), we need to adjust Part 2l of the above theorem to
the torus metric. Fortunately, the adjustment is straightforward.

Corollary 2.3. Fizr =r(n) > rg and let G € T (n,r). Then, a.a.s. the following property holds for all
pairs of vertices u,v € V(G):

dotu o) < | T (140705,

where vy is defined in (3.

Proof. We generate T (n,r) and nine copies of G(n,r) that will be coupled in the following way. Start
with n random points x1, z9, ..., 2, in the square [0, \/ﬁ]2 sampled independently and uniformly. We use
these points to generate G € T (n,r). We stay with these n points on the torus, and then translate our
vn x y/n-window by the vector (i/n/2,j+/n/2) for some i,j € {—1,0,1}; in other words, we consider
the square [i/n/2,v/n +iy/n/2] X [jv/n/2,/n+ j/n/2]. In fact, for example, the squares corresponding
to (i,7) = (=1,—1) and to (i,5) = (1,1) coincide but it will be convenient to keep 9 squares instead
of 4. Indeed, for any two points u, v in the original square, the toroidal distance between u and v is the
minimum distance between u (taken in the original square) and all 9 images of the vertex v under the
above translations. Each of these 9 choices yields one copy of G;; € G(n,r).

Since we aim for a statement that holds a.a.s., we may assume that each Gj; satisfies Part 2 of
Theorem Since we have 10 graphs and 9 squares (one graph for each of the images of the square [0, /7]?



under the above translations, and the graph on 7},), we will use superscripts to indicate which graph /square
we consider. Consider any pair of vertices u,v € V(G). Clearly, for some G;; we have dr(u,v) = dgij (u,v).
Indeed, the shortest segment wv in 7T;, is contained in some square of side length y/n/2, and any such square
is contained in some of the nine squares ([iv/n/2,v/n +iv/n/2] X [jv/1/2,/n + j\/1/2]); jef-1,01} Also,
since Gj; is a subgraph of G, d%(u,v) < dg” (u,v). Combining these observations together we get that

dg” (u,v) dr(u,v)
dg(u,fu) < dg”(u,v) < %(1 +’Y7‘_4/3)w _ [ T T, (1 +,Y7,—4/3)w .

The proof of the corollary is finished. O

We will also need the following simple but useful observation.

Observation 2.4. Let G € T(n,r). Then, a.a.s. for any point x € T,, there exists a vertex v; € V(G)
such that dr(x,v;) < 2+/logn.

Proof. Fix k = |y/n/logn/1.1]. Tessellate T}, into k% small squares, each of side length /n/k = (1.1 +
o(1))v/logn. The probability that a given small square contains no vertex is equal to
k)2\"
<1 - m) < exp ( - (\/ﬁ/k)2> = exp ( —(1.21 +0(1)) log n> =o(n1).
n
Since there are k% = o(n) small squares, it follows from the union bound over all small squares that a.a.s.
each small square contains a vertex. Since we aim for a statement that holds a.a.s., we may assume that
this property holds and then the conclusion follows deterministically. Indeed, since 1.1v/2 < 2, for any
point x € T,, the ball B(z,2+/logn) contains at least one square, which implies the result. O

3 Upper bound
This section is devoted to the proof of the upper bounds stated in Theorem [I.11

Let us start by showing that four cops are able to localize the robber within a square of side length
20000 7. We prepare the ground with the following lemma.

Lemma 3.1. Fizr =r(n) > ro and let G € T (n,r). Suppose that T (n,r) satisfies the properties stated
in Corollary 2.3 and Observation[27) Let s = s(n) be such that 200007 < s < \/n/9. Suppose that at the
beginning of some round the robber occupies a vertex inside a square S of side length s and at distance at
least v from the border of S. Then, the cops may place four sensors so that at the end of the current round
the robber is localized within a square S” of side length s/4 and at distance at least r from the border of S”.

Proof. Consider four points A, B,C,D € T, that are the four vertices of the square S’ of side length
3s, with sides parallel to the sides of S, and containing the square S in its center. By our assumption,
max, yes’ dr(u,v) < 3v2s < v/2n/3 < \/n/2 (note that S is not necessarily axis-parallel); in particular,
the geodesic between any two points in S’ is included in S’, that is, S’ is small enough so that the metric
dr on T,, coincides with the Euclidean metric on the square S’. Place sensors at the vertices v4,vp,vc, vp
that are the closest to A, B, C, D, respectively. By Observation 2.4l we may find a vertex within Euclidean
distance 2v/logn for any choice of points A, B,C,D. Let da,dp,dc,dp be the graph distances from
Sensors v4, vg, vc, Vp, respectively, to the robber R once she makes her move (that is, after step b) of the
current round). By our assumption, she is still inside the square S.

Now, by Corollary 23] and the fact that for all i € {A, B,C, D} we have rdg(v;, R) > dp(v;, R) =
dg(vi, R), the robber is in the crown

D<' r(di — 1)

RS

) = Blrd) \ B (s )

YL 43

7



Note that the Euclidean distance between any point ¢ € {A, B,C, D} and the position of the robber after
she moves is at least dg(i,S) = v/2s (see Figure ). Hence, since 7 > 7o and s > 200007, we get that for
every i € {A,B,C, D},

25 — 24/1
d; > {M“ > 20000.
r
Moreover, yr~4/3 < 1/50: indeed, we have
2rlogn 2/3 _4 2rlogn 28 _ 31 1
1( =" /3 < 4/31 2/3,, _ L
3 (r—l—dE(u,v)) " = g0000r ) 0 Tles TR = Taemai < 5o
70log®n 43 70log?n _ 70 1
T T TR
1
3002/3;—4/3 -
T

< rd; /51 + 50r /51 < (3/50 + 1/20000)s < s/6 — 41/log n.

has width
T‘(dl — 1)

T‘di - 1 +’7’,"_4/3

The first and the third inequalities follow from a direct computation, while the second inequality uses the
fact that

1 1 1 1
rd; < 5—dE(v,~,R) +7r< 5—(dE(i,R) +24/logn) +r < 5—(2\/53 +r)+r< ol - 3s.
50 50 50 50
Since for every i € {A, B,C, D} we have dg(i,v;) < 2y/logn, we get that for any radius p > 0 we have

D(vi, p+ 2/logn, p+ 5/6 — 2/logn) € D(i, p, p + 5/6),

so the robber must be hiding inside

ﬂ D(U27pl+2 10gn7p2+s/6_2 logn) C ﬂ D(27p27p2+8/6)7

1€{A,B,C,D} 1€{A,B,C,D}
where @ - 1)
ria; —
pi = m—Q\/logn. (4)

It remains to show that the four crowns with centers at the vertices of the square ABCD intersect in
a region, which is contained in a square of side at most s/4 — 2r. The next purely geometric claim is the
key to our proof of this fact.

Claim 3.2. Let pp,pp > 0 be such that
D(B, pp,ps +5/6) ND(D, pp, pp +5/6) NS # 0.

Then, D(B, pg,pp + $/6) N D(D, pp, pp + s/6) is included in a strip, parallel to the diagonal AC and of
width at most s/4 — 2r.



Q//

R/

Figure 1: Ilustration for the proof of Claim B.2]

Proof. If pp + pp + s/6 < |BD]|, then one may easily conclude that
D(B, pi3,p13 + /6) N DD, p, p> + 5/6)

is included in a strip between two lines, parallel to AC and at distance at most s/6 < s/4 — 2r.

Otherwise, let C(B,pp) N C(D,pp + s/6) = {Q',Q"} with @', A on the same side with respect to
BD, C(B,pp + s/6) NC(D, pp + s/6) = {P', P"} with P’; A on the same side with respect to BD, and
C(B,pp +s/6)NC(D,pp) = {R',R"} with R’, A on the same side with respect to BD. We know that
Q'Q" || P'P" || R'R", and the three of them are parallel to AC. Also, define P, @), and R as the intersection
points of BD with the segments P'P”,Q'Q" and R'R”, respectively. See Figure [l for an illustration. By
the Pythagorean theorem

|DP|?> — |PB|?> = |DP"|? — |P"B|? = (pp + 5/6)* — (pp + 5/6),
and
IDQ|* — |QB* = [DQ"|* — |Q"B* = (pp + 5/6)* — pB.
We conclude that
s°/36 + pps/3 = (IDQ —|QBJ*) — (IDP|> — |PB|*)
= (IDQ| - 1QB|)|DB| - (|DP| - |PB|)|DB|
= 2.|PQ| - |DB|=6v2s-|PQ|.

Since pp < (2v/2 4 1/6)s (recall that D(B, pg, pp + 5/6) NS # 0), we have that

1 (2v2 1 1
PQ| < — 0.121 - s.
|Q|_6\/§<3 +6-3+36>s< S
A similar argument implies that
1 (2v2 1 1
R| < — 0.121 - s.

Thus, the strip between the lines Q'Q"” and R'R” contains D(B, pg, pp + $/6) N D(D, pp, pp + s/6), and
the distance between these two lines is given by |RQ| < |[RP|+|PQ| < 2-0.121 -5 =0.242 -5 < s/4 — 2r.
The proof of the claim is finished. O



Applying Claim to the intersection

D(AHOAva+8/6)QD(07PC7IOC+S/6)7

and to the intersection

D(BaPBaPB+3/6)QID(D7PD7PD+3/6)7

we get that the intersection of all these four crowns is contained in a square of side s/4 — 2r. This square
is situated in the center of a larger square S” with sides parallel to the sides of the smaller square, and of
length s/4. The proof of the lemma is finished. O

Now, we put all observations together and show that, throughout several rounds, four cops are able to
localize the robber within a square of side length 20000 7.

Corollary 3.3. Using only four sensors, a.a.s. the robber can be localized on T (n,r) within a square of

side length 20000 r.

Proof. If r > /n/20000, then there is nothing to prove. Hence, suppose that r < 4/n/20000. Since
we aim for a statement that holds a.a.s., we may assume that 7 (n,r) satisfies the properties stated in
Corollary 23] and Observation 2.4

Let B be the set of the 400 vertices of the 20 x 20 square grid of mesh size \/n/20, covering T,,.
Construct a set C' by adding, for every vertex h of B, a vertex of G at distance at most 2v/logn from
h (the existence of such vertex is guaranteed by Observation 2.4} if there are more choices for a given h,
then we may choose arbitrarily). Let the cops put sensors at the vertices of C in groups of 4, one group
after another, so that all vertices are tested in 100 rounds. Trivially, from the first test to the last one,
the robber changes her position by at most 1007.

Let u € C be a vertex that detected the closest graph distance to the robber (if there are many such
vertices in C, then we select one of them arbitrarily). Our goal is to estimate the Euclidean distance
(coinciding with the distance on the torus 7)) from wu to the robber once testing is finished (that is, after
100 initial rounds). Note that the robber had to be initially at distance at most v/2n/40 from some point
in B and so at distance at most v/2n,/40 +2v/logn = (v/2/40+ 0o(1))/n from some vertex w in C. Hence,
she is certainly at distance at most (v/2/40 +o(1))y/n + 100r < \/n/24 from w when w was probed. More
importantly, by Corollary 23] (and the computations done in the proof of Lemma B]), we know that at
that point of the game the graph distance from w to the robber was at most

51va 1,

50 24 r
As a result, since u is the sensor that returned the smallest graph distance, the graph distance from u to
the position she was when u was probed is at most

51 n 1

i |
50 24 r+’

and so the Euclidean distance between u and the position of the robber at the end of round 100 is at most

51 n

B 1 20.
=5 g T 100 < Vn/20

Hence, the cops have a strategy to find a square of side length 1/n/10 in which the robber is located at the
end of round 100. By making the square slightly larger (that is, of side length \/n/9), we are guaranteed
that she is at distance at least r from the border. Finally, we may consecutively apply Lemma B.1] to get
the desired property and finish the proof. O
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At this point of the game, we may assume that the robber occupies a vertex in a region R that is
inside a square of side length 20000 7. For a region R, we define N[R] C V(G) as the subset of the vertices
of G contained in the union of all balls of radius r, centered at the vertices in V(G) N R. The cops aim
to finish the game in the very next round by choosing a set W of vertices to put sensors on such that,
regardless where the robber moves, she is going to be localized. In other words, their goal is to partition
N|R] into equivalence classes with the same TW-signature such that each class consists of a single vertex
(see Subsection 2] for a convenient reformulation of the game that explains this line of thinking). In this
case, we also say that the set of sensors W distinguishes the vertices in the set N[R] C V(G). Trivially,
N|[R] is contained in a square S of side length 20002 r. Of course, the robber plays the game optimally so
she can try to “get trapped” in a region R that is placed in some convenient (for her) part of the square
[0, /1]%. Hence, we need to show that, regardless what she does, she will suffer the same fate and lose the
game in the very next round.

Let F be a family of squares of side length 10° r, with sides parallel to the axes, and with left-bottom
vertices at points (10* 7, 10% r 5) for some i, j € NU{0} such that 10* 74 < \/n and 10*r j < \/n. Clearly,
|F| = O(n/r?) < n. For a given square S € F, let I(S) be defined as the square of side length 10°r — 2r
inside S, centered at the same point as S and with sides, parallel to the sides of S. We call I(S) the
internal square of S. Clearly, N[R] C I(S) C S for some S € F. Hence, in order to finish the proof of the
upper bound, it remains to show the following lemma.

Lemma 3.4. Fizr =r(n) € [ro,v/n/4) and let G € T (n,r). Let

1015 74/3 ifr > log?’/2 n,
w=mw(n)=143-100log?n if 100logn < r < log*/?n,
2101072 if r < 1001og n.

Then, a.a.s. the following property holds: for any square S € F, there exists a set of vertices W = W(S) C
SNV(QG) of cardinality at most w such that placing sensors on W distinguishes all vertices in the internal
square 1(S), that is, all vertices in I(S) have a unique W -signature.

Before proving the lemma we need a few observations. Let us fix 6 = d(n) = o(1) (to be chosen
appropriately later on). For every square S € F, the set W = W(S) is constructed as follows: we
investigate all vertices in .S and independently put them into a set X with probability d. This set partitions
the vertices in the internal square I(S) into equivalence classes with the same X-signature. We do not
expect each class to contain only one vertex so we investigate all equivalence classes. If some class contains
at least two vertices, then we put all vertices from that class into a set Y. (In fact, we may put all but one
of them into Y but, for simplicity, we include all of them as it would not improve the asymptotic order of
the bound.) By construction, the set W = X UY achieves the desired goal of identifying the robber since
each non-sensor vertex in I(S) has a unique X-signature (otherwise, it would be put into Y') and so also
a unique W-signature, and each sensor vertex in I(S) has a unique W-signature as it is the only vertex at
distance 0 from itself. Note that, roughly speaking, if X is small, then Y has to be large and vice versa.
Hence, at some point we will have to optimize § as a function of r since we aim to find a set W, which is
as small as possible.

In the next observation we investigate B(A,r)AB(B,r), the symmetric difference of two discs centered
in A and B. We show a lower bound for the area of this symmetric difference which is a non-decreasing
function of the distance between A and B.

Observation 3.5. Fiz r = r(n) < \/n/4 and let A, B be any two points in T, at distance € from each
other. If € < ey :=2r, then

2
|B(A,7)AB(B,r)| = (2r — 4arccos(e/2r))r? 4 2er(/ 1 — % > 2er.

11



D

Figure 2: An illustration from the computation in (5.

In particular, if e < r, then
|IB(A,r)AB(B,r)| = (44 o(1))er.

On the other hand, if € > g, then trivially
IB(A,7)AB(B,r)| = |B(A,r)| + |[B(B,r)| = 2m1? > 2¢0r.

Proof. Since r < /n/4 we have that B(A,r) N B(B,r) is a (possibly empty) connected subset of T;,. Let
C(A,r)NnC(B,r)={C,D}, ZCBA = ZABD = 6, and let ¢ be the distance between A and B. Suppose
that e < 2r since the statement for larger values of ¢ is trivial. (An illustration of the configuration
may be found on Figure 2l) The area of B(A,r)AB(B,r) (the grey region in Figure ) is by a simple
inclusion-exclusion formula equal to

21 — 260 20 ersin 6 € / g2
2 7T27T 7T7‘2—2%7T7‘2—|—2'2 rs21n :<27T—4arccos<§))r2—|—2€r 1—E.

The desired bound holds since arccos(e/2r) < 7/2 —¢/2r.
If we additionally suppose that e < r, then sin(f) = 1 — o(1) and the above equality can be simplified
as follows:

2

5T = 2 5" + 4+ 0(1))3 = (2 — 40)r° 4+ (24 o(1))er. (5)

Moreover, cos(f) = ¢/2r = o(1) and thus

T € 3 T €
6 = arccos(e/2r) = 5 o @) <8?> =5 (1+ 0(1))5,
and so
IB(A,r)AB(B,r)| = (21 — 40)r* + (2 + o(1))er = (4 + o(1))er.
The proof of the observation is finished. O

Observation is enough to show that, for any two points A and B on the torus T),, with high
probability there are many vertices of G € T (n,r) in the symmetric difference of B(A,r) and B(B,r)
provided that A and B are “sufficiently far from each other”.

12



Lemma 3.6. Fizr =r(n) € [ro,v/n/4) and let G € T (n,r). Let
Ec =

B {12 P13, ifr > log?’/2 n, and

12logn/r,  otherwise.

Then a.a.s. the following property holds: for any pair of vertices of G with positions A, B such that
dr(A, B) =€ > ¢, the number of vertices in B(A,r)AB(B,r) is at least min(e, 2r)r.

Proof. Consider the positions A, B of any two vertices of G at distance £ > ¢, from each other. By
Observation B0 |B(A,r)AB(B,r)| > a := 2min(e, 2r)r. Hence, the number of vertices in the symmetric
difference can be stochastically bounded from below by a random variable X ~ Bin(n — 2,a/n) with
EX = (n—2)a/n = (1+ o(1))a. Note that if 7 > log®/? n, then a > 2e.r = 24r%/3 > 241log n; otherwise,
since e, < 12logn/rg < 2rg < 2r, it is also true that a > 2e.r = 24logn. In either case, it follows from
the Chernoff’s bound (2)), applied with ¢t = EX — a/2 = (1 + o(1))a/2, that

P(X <a/2) = P(X<EX —¢#)<exp (-ﬁ}) — exp <— (% 4 0(1)> a>

1
< exp(—(3+o(1))logn)=o0 (ﬁ) .
The lemma holds by a union bound over all pairs of vertices. O

The next lemma controls the number of pairs of vertices at a given distance from each other.

Lemma 3.7. Fiz r = r(n) € [ro,/n/4) and let G € T(n,r). Then, a.a.s. the following properties hold
for all squares S € F.

(a) The number of vertices in S is at most 2 - 101072,

(b) Let e = 127713, If r > log®?n, then for any given k = k(n) € NU {0} satisfying ¢ = e(k) =
ke, < r~ 0L the number of pairs of vertices in I(S) that are at distance at most € from each other
is at most 2 - 1012722,

(¢) Let e, = 12 logn/r. Iflog®*n < r < log®?n, then for any given k = k(n) € NU {0} satisfying

e =¢e(k) := 2%, <r7 O the number of pairs of vertices in I(S) that are at distance at most € from

each other is at most 2 - 1012922,

(d) Lete. =12 logn/r. If 100logn < r < log®*n, then the number of pairs of vertices in 1(S) that are
at distance at most e, from each other is at most 10*® log? n.

Proof. We prove part (a) first. Let us concentrate on any square S € F. Recall that the area of S is
(1057)2 = 10'%2. Hence, the number of vertices in S is equal to X ~ Bin(n,10%72/n) with EX =
10972 > 49 - 1012 log n. It follows immediately from Chernoff’s bound () that

P(X >2-10'%%) = P(X>EX +EX) <exp <_2(IE)(;E+—)(;)E2)(/ZS)>

3
= exp <_§ IEX) < exp (—10"logn) = o(1/n).

Since the number of squares in F is less than n, the desired conclusion holds by a union bound over all
squares.

In order to simplify the argument for part (b), we will use the de-Poissonization technique mentioned
in Section 23l As before, let us concentrate on any square S € F. Without loss of generality, we may
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assume that the left-bottom vertex of S is the point (0,0) and the right-top vertex of S is the point
(10%7,10°7). Let us also fix k = k(n) € NU {0} satisfying ¢ = e(k) := 2Fe, < r~0L.

For a given a,b € {0,1}, let £, be a family of small squares of side length 2¢, with sides parallel to
the axes, and with left-bottom vertices at points ((a + 2i)e, (b + 2j)e) for some i,5 € NU {0} such that
(a+ 2i)e < 10°r and (b + 2j)e < 10°r. Clearly, |E.5] = (1 4+ 0(1))10'972 /462 = O((r/e.)?) = O(r¥/3) =
O(n*/3). Moreover, any pair of vertices in I(S) that are at distance at most € from each other has to be
included in some small square in some of the four families &, ;. Hence it is enough to bound from above
the number of pairs of vertices contained in a small square in any of the four families &, .

Let us concentrate on one family &, for a given a,b € {0,1}. For any small square s € &, the
number of vertices in s is equal to Po()\) with A = (2¢)? = 4¢2. For £ > 2, let ZZ be the random variable
counting the number of vertices in s if this number is at least ¢, and 0 otherwise. For k > £, we have

> Ak
P (23! = k) = P(Po()) = k) = 25 exp(—A),

whereas for 0 < k < £ the probability is 0 by definition. Since ¢ < 7~%! = o(1) (and so also A = o(1)),

. ¢ 20
B72' =3 k- Zrexp(-X) = (1 +o(1) (@ - 11 SP(=A) = (L+ (1) =
k>t ' ’

For every fixed ¢ > 2, since the random variables (ZZ¢) se€,, are independent, we may apply Lemma 2.1]
with X, = ZZ2¢ and S = S2¢ = D osc,, ZZ¢. In other words, SZ¢ counts the number of vertices in small

squares containing at least £ vertices. Thus, for every fixed £ > 2 we have EZZ¢ = O(¢2?*) = o(1) and

10107.2 (462)6_1

ES= = (1+0(1))[Eus|(42%)/(¢ = ! = (1+ o(1) = 57— o

Since for every s € &,; we have EZZ% < 1, we may fix m = 1. Note also that ZZ* attains no value
between 0 and 1. Thus, we may simply choose (using the notation introduced right before Lemma [2T])

L(ZZ5 = £(Yl") and T = 3 ce . ZZ% in particular, Ee? = EeS™". Since the random variables
s a,b
(Zsze)sega’b are independent, we have
‘ga b|
{—1 ’ |ga b‘
>0 >e\ |€a,b] _ _ 4ec?)t ’
RS — (Eezs ) = | ST Ne R+ > (en)be N k! < <1—|—(1—|—0(1))( ﬂ )>
k=0 k>t
4 2\¢
< exp ((1+0(1))( ~ ) \@Lby).

By Lemma 2.1 applied with S = S=Z¢, we have

(4e2)%¢
/!

IN

S 2\/
P (525 > eeESﬂ) e ESZ BT — exp <—ef(1 +o(1)) Eanl + (1 + o(1)) ) \&Lby)

2!
_ B C—1 o> 2 >0
= exp|—(1+0(1)) 7 ¢ ES < exp (e“/2+0o(1))ES=").
Hence, as long as ESZ¢ > logn,
P (SZZ > eZESZZ> = o(1/n?). (7)

Recall that by (@) for every £ > 2 we have ESZ! = O(r2¢2~2). In particular, ESZ? = O(r2e?) =
Q(r2e2) = Q(r*3) = Q(log?n). Since e, < & < r~01, there exists some integer ¢y € [3,11] such that
ESZ7 > logn for every integer j € [2,£y — 1], whereas ESZ% < logn. Therefore, it follows from ()
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that for every integer j € [2,£y — 1], with probability 1 — o(1/n?) the value of S2J is at most a constant
multiplicative factor away from its expectation. Observe that if the number of vertices in one small square
is 7, where 2 < j < £y, then trivially each vertex belongs to exactly j — 1 pairs of vertices from this square.
We get that with probability 1 — o(1/n?) the number of pairs involving such vertices is at most

lo—1
D> (G —1)8% = (140(1))572 < (4e? - 10" + o(1))r%e”. (8)
j=2

On the other hand, one may couple the variables ZSZZ0 with variables 28250 in such a way that ZSZZ0 <
ZSZZO, and such that ESZ% = log n, where $=% := Zseé’a ) ZSZZO. More precisely, we set up the coupling
such that for all £ > ¢; we have ’

P(ZSZ@O :k) AN

where \ = 4¢2 for some carefully tuned value of € > ¢ such that ES>f = logn. (Similarly to the original
random variable ZZ%, ZZ% attains no value smaller than /g other than 0.) Clearly, S=% < §2% and
EeS%° < EeS7°. We may apply Lemma 2.1 again, this time with 7' = § = 2. Arguing as in @), we
get that

P (52&) > efo logn) <P (5’250 > eZOESZZO) < exp ( —(e%/2 + 0(1))E§240) = o(1/n?).

We deduce that with probability 1 — o(1/n?) there are at most (eeo 12°g ") < (611 12°g ") < 10'%1og? n pairs of
vertices such that each pair belongs to some small square containing at least ¢y vertices. Combining this
observation with (8) we get that with probability 1 — o(1/n?), the number of pairs of vertices that are
both contained in one square in the family &, is at most

(4€* - 101 + 0(1))r%e? + 10" log® n < 5 - 10122

(Note that (4e?-10'0 +0(1))r2e? > 4320- 10" log? n and so the second term is much smaller than the first
one.)

Taking a union bound over all four families &, 3, all O(n) squares S, and all O(logn) values of k, we
get that the desired bound holds for the Poisson model with probability 1 —o(1/4/n), and so it holds a.a.s.
for T(n,r).

Parts (c) and (d) are similar to part (b) so we only sketch the proof highlighting a few minor adjustments
to the argument. In fact, part (c) follows ezactly the same argument, since ¢ < r~%! = o(1) as before. The
only thing that is worth pointing out is that the new definition of €., namely, . = 12 logn/r guarantees
that ES=2 = ©(r2¢2) = Q(r%e2) = Q(log?n), as needed.

Part (d) requires slightly more careful adjustments since . might not tend to zero as n — oo. As
before, the number of vertices in s € &, is equal to Po()), but this time A = (2¢.)? = 4¢2 < 1/10 since
r > 100log n. We keep the same notation: for £ > 2, let Z SZZ be the random variable counting the number
of vertices in s, if this number is at least ¢, and 0 otherwise. This time we get

Ne=f(g —1)!
(k—1)!

EZZf = Zk‘ —eXp A) = ((l; i\) exp(—A), where Cy := Z
k>t k>t

Note that Cy is an explicit constant between 1 and 2 as each term in the sum is at most half of the previous
term. It follows that

X 1010C, r2(4e2)=

B = Gl = e =
8-10"0(re.)? 144 -10" log®n
< <
s o) —g—pr =~ -
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In particular, ES=2? = @(log2 n). Hence, there exists ¢y such that j];.lej ES=2J > 3logn for every integer
j € [2,€p — 1], whereas Zog—gle&) ESZ% < 3logn. Arguing as before (including the coupling that is needed
for the claim for £p), we get that with probability 1 — o(¢g/n?) =1 — o(logn/n?), we have S < /ES=J
for j < £y, and S=Z% < RS0 < ZOZ—SI -3logn < 6logn. With probability 1 — o(log n/n?), the number
of pairs of vertices that are both contained in one of the small squares in the family &, is at most

Lo—1 >/ Lo—1 11,5 1no2
. S=fo 144 - 104’ 1
Y (i —-1)8% + < 9 ) <> G Z)'Og " 4 181log2n < 2-10% log? .
- - J— 4):

J=2 Jj=2

The claim may now be deduced after the union bound over the four families (£4)a,5e{0,1}- O
Now, we are ready to prove Lemma [3.4] and finish the proof of the upper bounds.

Proof of Lemma[3.4) Since we aim for a statement that holds a.a.s., we may assume that the properties
stated in Lemma and Lemma [B.7] hold. In order words, we do not generate a random graph from
T (n,r) but instead consider a deterministic graph G that satisfies the desired properties. Let S € F. We
will use a non-constructive argument to show that there exists a set W = X UY C § such that all vertices
in I(S) have a unique W-signature.

Let us first concentrate on dense graphs and assume that r > log?’/ 2 n. We construct a random set X
by independently selecting vertices from S to be put into X with probability § = r—2/3. (Note that this is
the only source of randomness at this point as G is a deterministic graph.) By Lemma [3.7(a), the number
of vertices in S is at most 2 - 10'°72, and so E[X| < 2 - 1010 74/3,

By Lemma B77(b), there are at most 2 - 1012122 = 288 - 1012 +4/3 pairs of vertices in I(S) at distance
at most ¢, from each other. The number of these is small enough so we do not need to worry about
them; all vertices involved in such pairs may simply be put into S. Fix any k& = k(n) € N such that
2ke. < r~01 = o(1). Concentrate now on any pair of vertices u, v from I(S) that are at distance ¢ from each
other for some 2F~1¢, < ¢ < 2*¢.. By LemmaB7(b), there are at most 2-10127r2(2F¢,)? = 288-10'2 r4/3 . 4%
such pairs. By Lemma [3.6] there are at least er vertices in B(u, r)AB(v, 7). Since this symmetric difference
is included in S, each of these vertices independently ends up in X with probability . If at least one of
them actually ends up in X, then the vertices u,v are distinguished by the sensors. Hence, u,v are not
distinguished with probability at most

(1—6)" <exp(—der) < exp (—2k_15€cr> = exp (—6 : 2k) .

Similarly, by Lemma B.7 (a), there are trivially at most O((r?)?) = O(r%) pairs of vertices in I(S) at
distance at least ¢ := 770! from each other. By Lemma [3.6] there are at least er = r%° vertices in
B(u,r)AB(v,r) for any such pair of vertices u,v, and so they are not distinguished with probability at
most

(1- 5)7’0'9 < exp(—6r??) < exp(—r"?).

Combining all of these observations together we get that the expected number of pairs of vertices with the
same X-signature is at most

288 - 102743 137288 - 10'214/% . 4 - exp (—6 : 2’“) + 0@ - exp(—r02)
E>1

< 288102743 1 0.01 - 288 - 10" 743 (1) < 300 - 10'2 #4/3.

As promised, we put all vertices that occur in at least one such pair into the set Y.

Clearly, by construction each vertex in I(S) has a unique W-signature. Moreover, we get that E|W| =
E|X|+E|Y] <2-100743 4 6-10 %3 < 10'° r*/3. Finally, the probabilistic method implies that there
exists a set W of size at most 10'® #4/3 and the proof for the dense graphs is finished.
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Let us now deal with sparser graphs and assume that 100logn < r < log?’/ 2 n. The proof only requires
small adjustments so we only sketch it. We construct a random set X by independently selecting vertices
from S to be put into X with probability § = log?n/r? and so, by Lemma B.7(a), E|X| < 2-10' log?n.

Suppose first that 10g5/4n <r< 10g3/2 n. By Lemma B.7(c), there are at most 2 - 102922 =
288 - 10'2log? n pairs of vertices in I(S) at distance at most . = 12logn/r from each other. Fix any
k = k(n) € N such that 2¥¢. < r~%! = o(1), and concentrate on any pair of vertices u,v from I(S) that
are at distance e from each other for some 25~ 1e, < ¢ < 2¥¢.. This pair of vertices is not distinguished
with probability at most

(1—-0)"" <exp <—2k_15607‘) = exp <—6 2% log3 n/r2> < exp <—6 . 2k> )

On the other hand, pairs of vertices that are at distance at least € := =91 are not distinguished with

probability at most (1 — &)™ < exp(—log?n/r!) < exp(—log®% n). It follows that

E[W| = E|X|+E]Y|<2-10°log’n

+2 | 28810 log? n+ ) 288 10" log®n - 4% - exp <_6 : 2k> + 0@ - exp(—10g" n)
k>1

< 10 log? n.

Suppose then that 100logn < r < log”*n. By Lemma B(d), there are at most 100 log? n pairs of
vertices in I(S) at distance at most . = 12log n/r from each other. The remaining pairs of vertices are
not distinguished with probability at most

(1 —06)%" < exp(—decr) = exp (—12 log? n/r2) < exp (—12log1/2 n) )
This time

EW| < (210 log?n) + 2 <1016 log n + O(r*) - exp(—121og!/? n)>
3-10% log? n.

A

The upper bound for very sparse graphs is trivial. If » < 100logn, then one may simply put sensors
on all vertices of S, that is, take § = 1. The bound follows immediately from Lemma [B.7(a). O

4 Lower bound

This section is devoted to the proof of the lower bounds stated in Theorem [[.Il Assume first that
r =r(n) > logn; we will adjust the argument to sparser graphs at the end of this section. Let Br be the
ball with radius /3, centered in the center O of the square [0,+/n]2. We will show that if the number
of sensors is less than the lower bound given by Theorem 1] a.a.s. the robber has a strategy to remain
undetected forever while staying in the ball Bz during the entire game.

Theorem 4.1. Fizr =r(n) > logn and let G € T(n,r). Then, a.a.s. the robber may remain undetected
forever in Bg in the presence of less than 1074 7"4/3/10g1/3 n sensors at each round.

The general idea behind the proof of the lower bound is quite natural and intuitive. First, for a
carefully tuned function € = e(r), we will show that there are relatively many pairs of vertices in Br that
are at distance at most € from each other. In fact, in order to simplify the argument we will concentrate
on a particular special sub-family of pairs of such vertices, which we will call special pairs, that satisfy
some additional useful property. On the other hand, we will show that regardless of where a single sensor
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is placed, it distinguishes only a few pairs of such vertices. This will immediately imply the desired lower
bound for the number of sensors needed to distinguish vertices in Br and so to locate the robber hiding
in Bpg.

A family of pairs of vertices from Bp that are at distance at most € from each other is called e-special
if each vertex in B belongs to at most one such pair. In other words, an e-special family induces a
matching. We will start by showing that there exists a large e-special family, provided that the graph is
dense enough.

Lemma 4.2. Fiz r = r(n) > logn and let G € T(n,r). Fiz e = ¢(n) = (logn/r)'/3 < 1. Then, a.a.s.
there exists an e-special family of pairs of vertices of size r2¢%/100.

Proof. It will be convenient to use the de-Poissonization technique as explained in Section We start
with tessellating the entire torus into squares of side length £/4/2. Trivially, each pair of vertices that
belong to one square are at distance at most €. Since the area of each square (namely, €2/2 < 1/2) is
negligible in comparison to the area of the ball By (namely, 772/9 > 7log®n/9), the number of squares
that are completely inside the ball is equal to £ = (27/9 + 0o(1))(r?/<?).

We construct a special family of pairs as follows. We independently expose the vertices in each square
that is completely inside the ball, and if exactly two vertices belong to a given square, then we add this
pair to the family. The probability that a given square has exactly two vertices in it is equal to
(£2/2)2 oA

|

2 >_°
5 exp(—e“/2) > VER

Hence, the number of special pairs in Bg is stochastically bounded from below by the random variable
X ~ Bin(f,p) with EX = ¢p > r2c2/36 = ©((logn)*?r*/3) = Q(log?n). It follows immediately from
Chernoff’s bound (2)) that with probability 1 —o(1/y/n) the size of our e-special family is at least EX/2 >
r2¢2/100. By de-Poissonization the same property holds a.a.s. in 7(n,r) and so the proof of the lemma is
finished. O

Suppose that a sensor is placed on a vertex v € V' of a connected geometric graph. For a given non-
negative integer i, let D;(v) be the set of vertices that are at graph distance ¢ from v in G. Since vertices
in Bg induce a complete graph, putting a sensor on v divides B NV into the set of vertices in Bg N Dy (v)
(possibly empty) at distance k from v and the set of vertices in Br N Dy41(v) (again, possibly empty) that
are at distance k + 1 from v, where k € NU {0}: indeed, if a vertex u in Bp is at graph distance k from
v, then every other vertex in Bg is at graph distance at most k£ 4+ 1 from v. Note that, in particular, if
v € By, then Dy(v) = {v} and D;(v) contains all other vertices in Bpg, so this sensor only distinguishes
itself from the remaining vertices in Br. The partition of Br NV is more challenging to investigate when
the sensor is placed on a vertex v € V' \ Bg so that k # 0. Let us concentrate on this situation.

Note that all vertices in Dy (v) belong to

UDp1(v) = |J  Blur).

u€Dy_1(v)

The argument that will be used in the proof of Theorem [4.1] will show that U(Dj_;(v)) has a non-empty
intersection with Br. On the other hand, no vertex in Dy1(v) belongs to U(Dy—_1(v)). Hence, in order
to estimate the number of e-special pairs of vertices that are distinguished by v we need to concentrate
on the boundary between the sets Br N U(Dg_1(v)) and Br \ U(Dy—_1(v)). Note also that every vertex in
an e-special pair that is distinguished by v must be at Euclidean distance at most ¢ from the boundary of
BrNU(Dg—1(v)) in Bpr, a key property that will be used to estimate the number of such pairs.

In order to investigate the “shape” of the boundary, we relax the assumption about Dy_1(v) (vertices at
distance k — 1 from v) and simply assume that it is any finite set of points {O; };ez with the property that
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ly Ry Q2 (N Ry

Figure 3: Illustration of the proof of Lemma (1.3

U({O;}icz) has nonempty intersection with Bgr. Note that there could be many disconnected boundary
regions of Br \ U({O;}iez), and it will be convenient to distinguish between small and large regions. For
the latter family of regions, we could use Weyl’s famous tube formula (see Chapter 17.2 in [I5]), but we do
not do that for the following two reasons. First of all, we decided to provide an independent proof to keep
the presentation self-contained. Moreover, the application of Weyl’s formula would require introducing
certain curvature concepts from differential geometry, which would make the argument comparable in
length to our elementary proof but slightly more technical.

Let us now start with a few preparatory geometric lemmas.

Lemma 4.3. Let k1 and ko be two circles with centers O1 and Oy and radii v1 < 19, respectively. Suppose
that k1 Nky = {A, B} and let {1,y be two lines, parallel to O1042, that divide the plane in three parts such
that A, 01 and B are all in different parts. Let {1 Nky = {Py,S1}, laNky ={Q1,R1}, {1 Nke = {P, S}
and Uy N ko = {Q2, Ra} such that Py,Q1 are on the same side of the line AB and also P2, Q2 are on the
same side of AB. Then, |PiQ1| > |P2Q2].

Proof. Without loss of generality, we may assume that either O; and Os are on different sides of the line
AB, or O1 € AB (otherwise, apply symmetry to kg with respect to AB - this will not change the lengths
of both P1@Q1 and P>@Q2), and we may also assume that d(O1,¢1) = hy and d(O1,03) = hy with hy > ho,
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see Figure Bl We have that

hy +hy h1 + ha
Sin(éPlQlRl) B sin(APlOlRl/Z)
h1 + ha
Sin(ﬂ'/2 — 401P151/2 + 401Q1R1/2)
hy + ha
COS(401P151/2 — 401Q1R1/2)7

|P1Q1| =

and also

PyQs| = hithy h1 + ho
Sin(ZPQQgRQ) Sin(ZPQOQRg/Q)
h1 + ha
Sin(7T/2 — ZOQPQSQ/Z + 402Q2R2/2)
h1 + ha

COS(ZOQPQSQ/Q - ZOQQQRQ/Q) '

Note that since h1 > hy we have that
£01P, Sy = arcsin(hy /r1) > arcsin(hy/r1) = Z01Q1 Ry

and
ZL09 PS5 = arcsin(hy /r9) > arcsin(hg/r2) = £Z02Q2Ro.

Moreover, standard analysis shows that the function f : r € [h1,400) > arcsin(hy/r) — arcsin(hg/7) is
decreasing and therefore

L0y PySy — LO2Q2 Ry = f(r2) < f(r1) = LO1P1S1 — LO1Q1 Ry

We conclude that
hi+ he < hi + he
cos(f(rz)/2) ~ cos(f(r1)/2)

and the proof of the lemma, is completed. O

|P2Q2| =

= ‘P1Q1‘7

Corollary 4.4. In the setting of Lemma[{.3, the length of the arc Q:Pl in k1 1s larger than or equal to
the length of the arc PoQa in ko.

Proof. This follows immediately from the fact that by Lemma[L.3]|Q1 P;| > |P,Q2], and that the curvature
of the cycle kq is larger than or equal to the curvature of the cycle ko (recall that r; < ry). O

The above corollary can be used to bound the length of the boundary. The next lemma is the key
observation that we will use for this purpose.

Lemma 4.5. Fiz a finite set of points {O; }iez and a ball B' = B(O',r"), where v’ < r/3. Assume that the
points O' U{O;}icr are in general position. Then, the length of the boundary between the set

Ry:=B'n (U B(Oi,r)>

1€T

and its complement Ro := B’ \ Ry is at most the length of the perimeter of B', that is, is at most 2mr’.
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Proof. For convenience, let OR denote the boundary of region R and let B; = B(O;,r) for every i € Z.
Let us consider the following transformation of 9R;. For any i € Z and any arc in 9Ry N dB;, carry this
arc along two rays starting at its endpoints, parallel to the ray O’O;, and in the same direction as this
ray, to an arc of 88’ For example, there are three such arcs in the top part of Figure [, drawn in red; for

example, the arc AlX C 0By is projected alongside O O; to the arc X1A1 C 9B’ (note that we use the
convention that arcs are always taken in anticlockwise direction).

First, let us note that by Corollary [£.4] the image of every arc in OR is at least as long as the arc itself.
Hence, it remains to prove that the images of different arcs are disjoint. If |Z| = 1, then the statement
trivially holds and so we may assume that |Z| > 2. Note also that it is sufficient to prove this fact for any
pair of arcs in OR4 that belong to two different balls from the family {;};c7, say By and By. Recall that
B1 has center O and suppose that it intersects B’ in A; and Bj. Similarly, recall that By has center Og
and suppose that it intersects B’ in A and Bs. See the bottom part of Figure M for illustration.

Suppose that B1A1 C 0B’ and B2A2 C OB have a ‘non-empty intersection in B’; otherwise, the

statement clearly holds. Then, the arcs A131 C 9B; and Ang C 0By intersect in a unique point X € Bg.
Let X1 € 0B’ be the point such that X XlHO’ 01 with X X3 havmg the same direction as O 0. Slmllarly,

let X5 € OB’ be the point such that and X XQHO Oy with XX, X5 having the same dlrectlon as O O3 (see,
agaln the bottom part of Figure ). Then, 9Ry N 9B is either contamed in the arc AlX or in the arc
X By of 0B;. We may assume that R, N 0By is contained in the arc AlX of 0B1, as the other case can
be dealt with analogously. Then, dR{ N dBs is contained in the arc X Bg of 9Bs. In the rest of the proof,

all arcs belong to 9B’. Our goal is to prove that the arcs X1A1 and Bng are disjoint. To show this we
perform a continuous rotation of By around the point X in the direction which decreases the length of

the (directed) arc BsBj, until By coincides with B;. This operation decreases the length of the arc XoX1
as well. More 1mp0rtantly, at the end of this rotation When Bo Commdes with By, the arc Ble becomes

the image of the arc B2X2 This proves that the arcs X 1A1 and B2X2 of B’ were initially disjoint. This
finishes the proof of the lemma since |0B'| = 277, O

We will also need the following fact that has been known for centuries and by now has become part of
the mathematical folklore.

Lemma 4.6 (Folklore; see for example [16]). Out of all connected open sets in the plane with a given
perimeter, the circle has the largest area. In other words, each connected open set of perimeter £ has area
at most (2 /4.

Recall that {O;};c7 is assumed to be a finite set of points that partitions B into

Ri1:=BgrnN <U B(O,-,r)) and R :=Br\ R1.

1€T

(Eventually, this set will be fixed to be Dy_1(v), the set of vertices that are at distance k — 1 from v for
some k € N.) Note that Ro does not need to be a connected set. However, since the number of balls
(B(O;,1))icz is finite, the number of contact points between their boundaries is also finite, and therefore
the number of connected components of Ro must also be finite. A component of Ro will be called large if
its boundary has length more than 67e, and it will be called small otherwise.

Let us first concentrate on small components and consider the union of them. Suppose that for some
k € N there are k small components with lengths of their boundaries ¢1, /s, ..., f;. By Lemma L5 we get

that i
2rr
2155
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Figure 4: The top figure shows how the internal grey arcs are carried over to the external dashed arcs.
The bottom figure shows an illustration of the proof that the external arcs are disjoint.

and thus using Lemma we deduce that the area of the union of all small regions is at most

k
1=1

Now we may concentrate on large components. Let v C R? be a closed curve. The e-tube t.(y) around
7 is the set of points @ € R? such that dg(y,Q) < e. Moreover, for any arc a of a circle ¢ with radius
at least r/3 > 2¢, define the e-cut tube t¢(a) around a as the intersection of t.(c) with the sector of c,
corresponding to the arc a. In the next observation, the diameter of an arc is the longest (Euclidean)
distance between some two points in this arc.

N

2
%

W

k
3¢
- < 72&§7ﬂ"6. (9)

Observation 4.7. Let A, B be two points inside a ball B with radius r1. Let AAB be an arc between A and
B with diameter |AB|, which is part of a circle ¢ with radius ro > r1. Then, AB C B.

Proof. Since the radius of ¢ is larger than the radius of B and A, B € B, ¢ and 0B must intersect in two
points. Thus, either the arc AAB is entirely contained in B or it starts in B, contains every point in ¢ N B¢
and then ends in B. In the second case, the diameter of the arc AAB would be 2ry > 271, which would lead
to a contradiction since |AB| is clearly at most 2r;. Thus, AB C B. O

Lemma 4.8. For every large component S of Ro we have that the area of t-.(0S) is at most the sum of
the areas of the e-cut tubes around the arcs participating in 9S, that is, at most 2¢|0S]|.

Proof. The claim is trivial if Re = Br. Otherwise, consider an arbitrary intersection point I of two circles

c1 and ¢y with centers Oy and Os, respectively. Let @ and b be the two arcs in 45, contained in the
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Figure 5: Illustration of the proof of Lemma E8 Here, I is an intersection point of the arcs @ and b on
the boundary of the large component S. The points O; and Os are not shown since they are too far and

S is contained between a and b.

circles ¢ and co, respectively, which contain I as an endpoint. Let A, I, C, Oy be collinear points, lying on
the line 7O in this order and such that |AI| = |[IC| = e. Let also B, I, D, Oy be collinear points, lying on
the line 7O7 in this order and such that |BI| = |ID| = e. Then, define the internal sector at I, denoted
by ISs(I,¢), to be the sector AIB of the ball B(I,¢), and also define the external sector at I, denoted by
ESs(I,¢e), to be the sector CID of the ball B(I,e). Then, the tube t.(0S5) is obtained as a union of all
cut tubes of the arcs in 95 and the external sectors at all intersection points of neighbouring arcs - see
Figure [l
We need the following two claims before proceeding with the proof of the lemma.

Claim 4.9. There exist two internal sectors without common points.

Proof of the claim. Suppose for a contradiction that each pair of internal sectors intersect. Fix one internal
sector with center I. Then, by the triangle inequality every intersection point of two neighbouring arcs
in 0S5 is at distance at most 2e from I. Since r/3 > 2¢, by Observation [L.7] every arc in 95 is contained
in B(I,2¢) and therefore S C B(I,2¢). If 0B N 9S = 0, Lemma with B = B(I,2¢) implies that
the perimeter of S is at most |9B(I,2¢)| = 4me, contradicting with the fact that S is a large component.
Otherwise, the perimeter of S is bounded from above by the sum of [0S N dBg| and the perimeter of the
region containing S, in B(I,2¢)N (UiEZ Bi)c. Roughly speaking, the region described above is obtained by
“taking out” the ball Bg. First, note that S NOBr C B(I,2¢) NOBr and therefore, since the curvature of
OBr is smaller than the curvature of 9B(I,2¢), we have [0S NOBRr| < |B(I,2¢) N 0Br| < |0B(I,2¢)|/2 =
2me. Second, one may apply Lemma to B(I,2¢) N (UieI BZ-)C with B = B(I,2¢) to conclude that the
perimeter of B(I,2¢) N (U,ez Bi) is at most |0B(I,2¢)| = 4me. In total we get |0S| < 6me, which again
is a contradiction with the fact that S is a large component. O

Claim 4.10. Let £ € N. If a point P is contained in £ internal sectors, it must be contained in the e-cut
tubes around at least £ + 1 of the arcs in OS.

Proof of the claim. By Claim [£.9] there exists an internal sector I.Sg([,¢), which does not contain P. Let
us enumerate the arcs along 05, starting from one of the arcs, incident to I, and finish with the other
arc, incident to I. Let Iy, Is,..., I, be the points, for which P € mie[g}ISS([i,E). Then, P is contained in
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the e-cut tube around every arc of 95, incident to any of Iy, Io, ..., Iy, and there are at least £ + 1 such
arcs. U

By Claim [4.10] one may directly deduce that

> ltE(a) = | tla)| + > [15s(1,€)|

@eds ‘@eds [:1=anb;a,beds

= | U @]+ > |ESs(1,e)| > [t=(5)].

‘acds I:I:En;;ﬁ,geas

The proof of the lemma is finished. O

Corollary 4.11. The union of all e-tubes around the boundaries of large components has area at most

dmer /3.

Proof. This follows from Lemma M8 applied for every large component of Ry, and Lemma A5, which
states that the union of the boundaries of these components has length at most 27r/3. U

Let us now come back to the proof of the lower bound for the localization number of dense graphs.

Proof of Theorem 1. Fix r =r(n) >logn and ¢ = £(n) = (logn/r)'/3 < 1. Let Bg be the ball of radius
r/3 centered in the center O of the square [0,/n]2. It follows from Lemma F2] that a.a.s. there exists an
e-special family of pairs of vertices of size r2¢2/100 in Br. We will show that a.a.s. a single sensor placed
on a vertex v cannot distinguish more than 10037 special pairs which will imply the desired lower bound
of (r262/100)/(100e3r) = 10~4 /e = 10~ r4/3 /log'/3 n.

Indeed, suppose that the cops must use less than 10~474/3 /(logn)*/® sensors in each round. Using
the notation from Section 2] when the cops start the game by putting their sensors on Si, at least
two vertices (namely, some special pair) in B have the same Si-signature. The robber may choose the
equivalence class le-l these two vertices belong to and remain undetected in the very first round. Suppose

1/3

now that R;;ll contains at least two vertices from Bg. In round 4, once the cops choose S;, we get the
partition N [R;;ll] =RIURLU...U RZ with every vertex in R;- having the same S;-signature. Since the
ball Br has radius /3, N [R;-;ll] includes all vertices in Br. Hence, again, the robber may choose some

R;Z of size at least 2 as there is at least one special pair of vertices in Br with the same S;-signature. It
follows that |R;Z| > 2 for all ¢ and so the robber has a winning strategy.

It remains to show that a.a.s. a single sensor placed on a vertex v cannot distinguish more than 100e3r
special pairs. Clearly, if v is in Bg, then it can distinguish at most one special pair, the one including the
vertex v itself. Hence, we may concentrate on sensors placed on vertices outside of the ball the robber is
hiding at. To that end, we will use de-Poissonization technique as explained in Section 2.3 and show that
the desired property holds with probability 1 — o(n=2) for a given vertex v outside of Br. The desired
conclusion will hold by a union bound over all vertices.

Let v be any vertex of G € T (n,r) that is outside of the ball Bg. We will carefully expose the graph
in a breadth-first-search fashion. Recall that D;(v) denotes the set of vertices at graph distance ¢ from v.
We start with Dy(v) = {v}. Iteratively, as long as no vertex in D;(v) is at Euclidean distance at most r
from Bgr we do the following. Since vertices in D;11(v) must belong to

we expose all vertices in the part of U(D;(v)) that is not exposed yet. Vertices that are found there form
the set D;11(v). We stop the process prematurely if no vertex is found in U(D;(v)); in this case v does not
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distinguish any special pair and so the desired property holds. Suppose that for some k € N we stopped
the process because for the first time some vertex w € Dy_1(v) is at Euclidean distance at most 7 from
Bpr. If w is in fact at distance at most /3 from Bg, then all points in Bg are at distance at most r from
w. It follows that, despite the fact that we did not expose the ball yet, we can safely claim that all vertices
in Br will end up in Dg(v). On the other hand, if no vertex in Dj_1(v) is at Euclidean distance at most
r/3 from Bg, then we may pick the point A that is on the segment between w and the center O of the
ball B and at distance, say, /2 from O. By Observation [24] we may assume that there is a vertex at
distance at most 2v/logn = o(r) from A. (This is a standard technique in the theory of random graphs but
it is quite delicate. We wish to use the properties guaranteed a.a.s. by Observation 2.4] but we also wish
to avoid working in a conditional probability space, as doing so would make the necessary probabilistic
computations intractable. Thus, we will work in the unconditional probability space but in our argument
we assume that the properties mentioned in the observation hold. Since these properties hold a.a.s., the
probability of the set of outcomes in which our argument does not apply to is o(1), and thus can be safely
excised at the end of the argument.) This vertex is not only adjacent to w but also all points in Br are
at distance at most r from it. Hence, this time we can safely claim that all vertices in B will end up in
Dk(?}) U Dk+1(v)-

Let us summarize the current situation: Djy_;(v) is a set of vertices at distance k — 1 from v that
partitions Bg into

Ri1:=BrN U B(w,r) and Ro = BR\Rl.

The region R is non-empty but Rs might be empty. The ball By is not exposed yet but we do know
that all vertices in Ry (if there are any) will end up in Dg(v) and all vertices in Ro (again, if there are
any) will end up in Dy1(v). In order for a pair of vertices (a,b) to be distinguished by v, one of the two
vertices (say, a) has to be in Ry and the other one (say, b) has to be in Ry. More importantly, if a and
b are at distance at most € from each other, b has to belong to some small component of Ry or to some
e-tube around the boundary of some large component (but still in Rs).

Let us expose vertices in Re. By (@) and Corollary 11}, we get that the total number of vertices
in all small components and in the union of all e-tubes around the boundaries of large components is
stochastically bounded from above by the random variable X ~ Po(\) with \ := wer + 4wer/3 = Tmwer/3.
We have

/\i 3 )\2)\ 3
]P’(X22)\> - ;:}\Z—'e X< 2]P’(X:2)\) = 2 e A
A2A A A

Since r > logn, we get that A = %’Tsr = 7T7r7’4/3/10g1/3n > %’T logn > Tlogn. It follows from (I0) that
with probability 1 — o(n™2), X < 2\. Each vertex b that appears in this region eliminates at most one
special pair but this itself is not enough to get the desired bound.

We condition on the event that there are at most 2\ = 14mwer /3 vertices b in Ry that can potentially
participate in e-special pairs and argue as follows. Since the associated vertices a have to be not only in Ry
but also at distance at most € from some vertex b in Ro, we expose vertices in R1 and check how many of
them are close to some vertex b in Ro. The number of such vertices a is stochastically bounded from above
by the random variable Y ~ Po(¢) with & := (147mer/3)(me?) = 14n%e3r /3 = (1472 /3) logn > 46logn. It
follows from ([I0)) that with probability 1 —o(n=2), Y < 2¢ = 28723r/3 < 100e3r. Each such vertex a that
appears eliminates at most one special pair, and so the desired bound holds, and the proof is finished. [

Note that the previous proof gives the lower bounds of Part 1 and Part 2 in Theorem [Tl Let us now
consider sparser graphs. We first adjust the argument used above that gives a matching lower bound for
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r very close to logn (Part 3) in Theorem [[T]), namely, we assume first that

logn

<r<l .
(loglogn)'/2logloglogn — r=len

By fixing ¢ = 1, we argue as in the proof of Lemma that a.a.s. there exists a 1-special family of pairs
of vertices of size 72/100. The argument then proceeds as before: the total number of vertices in R
in all small components and in the union of all 1-tubes around the boundaries of large components is
stochastically bounded from above by the random variable X ~ Po(\) with A := 77 /3. This time we fix
:: 200logn S 9

log(elogn/r)

and notice that

B B B
(=) <2p(x =) =257t < = (55 ) =ew (s (727
B 2001ogn 6001logn/log(elogn/r)
- <_log(elogn/r) 0g< Temr >>

exo [ — 200log n o elogn/r
P log(elogn/r) & log(elogn/r)

— exp <—200 log n <1 - 10{%)2)&(16()2’?17/;))) = o(1/n?).

IN

Arguing as before, we get the lower bound of (r2/100)/8 = ©(r?log(elogn/r)/logn). Note that since
e = 1 (so re = re®), we have that the order of the number of points in Ry that X counts would be
comparable to the number of 1-special pairs that one sensor may distinguish, and therefore the last stage
in the proof of Part 1 and Part 2 of Theorem [L.T] will not contribute and may be omitted.

Let us now concentrate on even sparser graphs for which we use a different argument. Tessellate the
torus 7, into a family of squares (.5;);c7 of side lengths 3r and with centers (O;);ez. Then, for every i € Z,
let B; be the ball of radius logn/16r with center O;. Finally, for every i € Z, let R; be the set of points
P, for which C(P,r) N B; # 0.

Lemma 4.12. For every i € Z, R; has area wlogn/4 and is disjoint from B;.

Proof. For every i € Z, R; consists of all points at distance between r — logn/16r and r + logn/16r
from O;, so |R;| = m(r +logn/16r)? — 7(r — logn/16r)> = wlogn/4. Moreover, 2 - logn/16r < r since
r > +/logn, so R; N B; = 0. O

Proof of the lower bound of Theorem [I1, Part 4). Expose the region (J;c7z Ri € U;ez Si \ Bi- Note that
the regions (R;);ez are disjoint and for any ¢ € Z the probability that no vertex of G € T (n,r) falls
into R; is by Lemma BI2 exp(—wlogn/4) = 1/n™/*. Let J be the family of indices i, for which R;
does not contain any vertices of G. We conclude that the family of variables (1.g, v (¢)=p)icz consists of
independent Bernoulli variables with parameter 1/n™/%, so by Chernoff’s bound | 7| > n'~™/*/18r2 with
probability 1 — o(1/y/n). We condition on this event.

Now, what remains is to give a lower bound that holds with probability 1 —o(1/y/n) for the maximum
of the | 7| > n'=™/*/1872 > n%2 (the last inequality holds for every large enough n) Poisson variables
with mean A\ = 7log®n/(167)2, representing the number of vertices of G in the balls (B;)jcs. Set
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5‘ .

= . By a direct computation we get for every r > rg that & > 2\ and that
501og(r2/logn)

P(VjeJ,|Bil<& = [[P(UB;I <

JjeJ

< [[2rp(Bjl =9
JjET

2

= H 2exp (—A) a
JjET

0.2

IA

§ n
on’” exp (—n0'2)\) <%>

)\ n0.2§
2n042 exp (_n0.2)\) <€_>

§
0.27rlog2n> < erlog®n/(16r)? )%%
(167)2 logn/(501og(r?/logn))
_ 9 exp <—n0‘2 7 log? n> <50e7r log(r?/ log n)) %
25672 25612/ logn

IN

— on™? exp <—n

0.2
logn 50er log(r?/ log n) mlog?n\\"
= | 2exp log —
501log(r2/logn) 25612 /logn 25672
We conclude that the last probability is o(1/4/n) since

2 2
logn 50er log(r*/log n) < 0 and mwlog“n >
501log(r2/logn) 25612/ log n 25672

for every r = o(logn) and r > g, which gives an upper bound of (2/e)""* = o(1/\/n).

By de-Poissonization we deduce that a.a.s. there is a ball B; among (B;);cs containing at least £
vertices of the random geometric graph G € T (n,r). In particular, since by definition of the set J the
vertices B; NV (G) cannot be distinguished by a sensor outside B;, the robber can always escape from the
cops in the presence of only ¢ — 2 = Q(logn/log(r?/logn)) sensors by choosing to remain in the ball B;
after each step, thereby finishing the proof of the lower bound of Part 4) in Theorem [L1] O

5 Outlook and open problems

In this paper we determined up to a multiplicative poly-logarithmic factor the localization number of the
random geometric graph. As already mentioned in the introduction, for any graph G, we have ((G) <
B(G). Whereas in G(n,p) these two parameters are relatively close to each other, for many values of r this
is not the case for G € T(n,r), as the following lemma shows. In fact, in view of the lower bound on ((G)
given by Part 1) in Theorem [T} the following lemma shows that for r < n3/10 the bounds are far from
each other. For the sake of completeness, we also show the upper bound our approach for the localization
number gives for 5(G).

Lemma 5.1. Let G € T(n,r). A.a.s. we have
(i) If r > 1 and r < cy/n/logn for small enough ¢ > 0, then 3(G) = Q(n/r?).
(ii) Iflog®?n < r < /n/4, then B(G) = O((nlog?>n)/r?/3).
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Proof. We prove part (i) in a Poissonized setup, de-Poissonizing only at the end. Tessellate the torus into
square cells of width 3r, and consider in each cell C the inner cell ¢ of width 0.1r centered at the same
point as C. Subdivide further ¢ into subcells of width 1/r. Consider the event - that inside the inner cell
c of C there is a subcell having exactly two vertices u, v, and that there is no vertex at distance at most
r from u (v, respectively), while at the same time being at distance more than r from v (u, respectively).
Observe that if £ holds, then either u or v has to be taken into a minimum set of sensors which guarantees
that the cops can win in one round. Moreover, for different cells C,C’ the corresponding events Ec, Ecv
are independent. Denote by X¢ the indicator random variable for £c.
The probability that no subcell has exactly 2 vertices therein is equal to

2192 (0.0140(1))r* (0.01+0(1))r*
<1 @/ e—l/r2> _ <1 0.5 +40(1)> _ 0005 4 (1),
2 r
Condition on the event that there is a subcell having exactly two vertices u, v, and observe that B(u, r)AB(v, r)
is completely contained in C'\ c¢. Thus, since by Observation B.5] |B(u,r)AB(v,7)| < 4-v/2(1+ o(1)), we
have
P(Xe=1) > (1—e %% 4 (1)) - (e V2 +0(1)) > 107°.

Denote X = >~ X¢. Observing that there are ©(n/r?) cells implies that E(X) = ©(n/r?). Hence, since
r < ¢y/n/logn for a small enough constant ¢ > 0, part (i) follows by Chernoft’s bound (2] together with
the de-Poissonization argument given in Section 2.3l

For part (ii), recall by Lemma that a.a.s. for any pair of points with positions A, B such that
dr(A, B) > ¢ := (logn/r)"/?, the number of vertices in B(A,r)AB(B,r) is at least min(e, 2r)r. Now, for
every vertex, put it into a resolving set independently of all others, with probability C log2/ 3 n/r2/ 3 for
some large enough constant C' > 3 (thus constructing a random set of expected size Cn logz/ 3 n/r2/ 3,
and then add for any pair of vertices that is not distinguished yet one of the two vertices. We now show
that the number of vertices added is at most of the same order, thus proving the desired upper bound
of O(n log2/ Sn/ r2/ 3). To do so observe that by considering the family F of squares (defined right before
the statement of Lemma [B.4]) every pair of vertices at distance at most 0.1r is inside one square S € F.
Hence, for r > log®?n, by Lemma B (b) (note that (logn/r)'/3 < r=01 for the range of r) together with
a union bound over all squares S in F, the number of pairs at distance at most (logn/ 7‘)1/ 3 is at most
|F|- (24 0(1)) - 107743 10g?/% n. = O(nlog?? n/r?/3), and we may add for each such pair one vertex. For
all other pairs of vertices at distance at least (log n/r)l/ 3 by a union bound, the probability that there
exists a pair not distinguished by the random set is at most

r2/310g1/3
C’logz/gn
" (1 BT = oll/n),

and hence a.a.s. all such vertices will be distinguished by the random set. U

Together with the already obtained lower bounds on ((G) and using the fact that ((G) < B(G), we
thus have the following bounds on the metric dimension:

Theorem 5.2. Let G € T(n,r). A.a.s. the following bounds hold:

o If1<r<.y/n/4, then Q (max(n/r2,r4/3/logl/3 n)> = B(G).

o Iflog®?n <r < \/n/4, then B(G) = O <nlog2/3 n/r2/3>,

We finish the paper with the following natural open questions.
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Open problem 5.3. Let G € G(n,r). Theorem [5.4 implies that a.a.s. 5(G) = n?/3+t°W) | provided that
r = nl/2te() (and r < \/n/4) but the bounds are far away from each other for sparser graphs. What is
the value of B(G) for G € G(n,r)?

Open problem 5.4. Let G € G(n,r). Our results imply that a.a.s. ((G)/B(G) = o(1), provided that
r < n3/10. What about denser graphs?

Open problem 5.5. Let G € G(n,r). Our results give relatively tight bounds for the localization number
of G, provided that r > log?’/2 n. The bounds for sparser graphs are slightly worse. For example, our lower
bound in the range of r € [rg,logn| is not monotonic but there is no apparent reason why it should not be
monotonic. Moreover, what is the localization number close to the threshold of connectivity?
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