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1. Overview

1.1. Short summary

Roughly speaking, clustering is a data analysis task to group a
set of items into different categories so that items within one
category are similar and items between different categories
are dissimilar, where similar and dissimilar depend on
the definition of distance between items. Although known
for many decades, recently clustering has gained a lot of
importance due to the exponential growth of digital libraries
and the World Wide Web and the thus resulting need to
find and extract information. Motivated by these Information
Retrieval (IR) applications, which are usually characterized
by large, sparse and high-dimensional data, “Introduction to
Clustering Large and High-Dimensional Data” by J. Kogan is
a textbook that tries to focus on a few clustering techniques
that are very common in IR. In particular, it focuses on the k-
means algorithm, which is by far the most popular one in IR,
including many of its variations, among them incremental k-
means, spherical k-means, quadratic k-means, k-means with
divergences and others.

1.2. Formal aspects

The book is designed primarily for an audience of
advanced undergraduate students or graduate students (in
computer science or statistics), and it requires only minimal
mathematical and programming prerequisites (in fact, some
necessary linear algebra and optimization prerequisites are
provided in the appendix). Most of the chapters contain a list
of problems which vary in difficulty and a few programming
E-mail address: dmitsche@inf.ethz.ch.

1574-0137/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cosrev.2008.02.002
projects which support the use of the book in a one-semester
introductory course on clustering. Each chapter has a clear
structure including numerical experiments of the particular
algorithm discussed and is accompanied by a large number
of figures to make the understanding easier. Mathematical
notation is used when necessary, without overwhelming the
reader. Finally, the further interested reader can find a large
amount of bibliography given.

1.3. Comparison with existing literature

Machine learning/data mining textbooks usually contain a
chapter about the standard k-means algorithm applied to
the case when the distances between items are measured
by Euclidean distances, see e.g. [1] or [2]. These books,
however, cover a much wider range of clustering/learning
techniques and therefore do not go into detail of k-means
when similarities between items are measured by specific
distances or “distance-like functions” as in this book. There
are books which explain (usually on a higher, more intuitive
level) the use of k-means in specific applications, see e.g. [3]
for applications in bioinformatics or [4] for applications in
quantitative psychology, but to the best of my knowledge,
no (text)book exists covering details of variations of k-means
algorithms as discussed in the present one.

2. Detailed summaries for each chapter

Chapter 1 is devoted to motivate the need of clustering
in Information Retrieval applications. At first the task of
clustering in this area is explained, and then possible

www.sciencedirect.com
www.sciencedirect.com
www.sciencedirect.com
http://www.elsevier.com/locate/cosrev
mailto:dmitsche@inf.ethz.ch
http://dx.doi.org/10.1016/j.cosrev.2008.02.002


C O M P U T E R S C I E N C E R E V I E W 2 ( 2 0 0 8 ) 6 0 – 6 2 61
representations of the data to facilitate the clustering task
are explained. In particular, possible representations of
documents as vectors whose j-th coordinate consists of
the number of occurrences of the j-th word (of a given
dictionary) in that document are stressed. Next, the clustering
techniques described in this book are outlined, and finally
quite some bibliographical references for clustering in general
are given.

Chapter 2 introduces the classical batch k-means algo-
rithm: starting with an arbitrary k-partition1 of a set of data
(usually vectors in Rn) one has to find k centroids for each
of the k partition classes of the vectors: centroids are those
points such that the sum of the distances of all vectors be-
longing to this partition class to the corresponding centroid is
as small as possible. It is pointed out that in general (depend-
ing on the distance2) this requires solving a nontrivial opti-
mization problem. Once having found these centroids, a new
k-partition of the data set is defined by assigning each vector
to the centroid closest to it, and the whole procedure iterates
until the difference of the quality of two consecutive parti-
tions (where quality is defined as the sum of the distances
between all data vectors and its closest centroids) is below
a certain tolerance threshold. The way the algorithm works
when the distance is the squared Euclidean distance is illus-
trated with some figures. Also, the deficiencies of the algo-
rithm (e.g. that in some cases it fails to produce partitions of
“good” quality and that the right number of partition classes k
has to be supplied initially) are presented. Motivated by these
examples where the classical batch k-means algorithm fails
the author then presents an incremental k-means algorithm
which in addition to the classical algorithm contains a third
step in each iteration which guarantees that the current solu-
tion is a “local maximum”: a given set of centroids fulfils this
condition, if there is no vector whose swap from one partition
class to another one would give a solution of a better quality.
Next, the author provides numerical experiments supporting
evidence that this new algorithm performs substantially bet-
ter than the classical one. Also, it is outlined that the new al-
gorithm can be applied when the data are other geometrical
objects than vectors in Rn, e.g. lines. Since in general the op-
timal k-partition is not available, the author briefly explains
how spectral methods can be used to derive lower bounds on
the quality of the partitions.

In Chapter 3 the author extends the incremental k-means
algorithm given in the previous chapter by a step to reduce
the size of the dataset: since usually in IR applications the
dataset is very large and does not fit into the available
memory, there is a need to reduce the problem of clustering
of the original dataset into a much smaller set which keeps
most of the features of the original data set. This idea,
so called BIRCH (Balanced Iterative Reducing and Clustering
1 In this review we also use the term “partition” instead of
“clustering”. What the author calls “cluster point”, is here called
“partition class”.
2 In this review, for simplicity, we always write distance for

some functions which are only “distance-like”, i.e. they do not
satisfy all three properties of a distance metric. The author of the
book, however, is here very careful and does not use the terminus
“distance” for functions which do not fulfil all properties.
Algorithm), is explained in detail. The second part of this
chapter then shows how this idea can be combined with the
incremental k-means algorithm. Moreover, it is proven that
the quality of the original partitions does not decrease in
consecutive iterations when using BIRCH k-means.

The structure of Chapter 4 is similar to the one of Chapter
2: in this chapter the k-means algorithm with spherical
distances (the distance between two vectors is measured
by their scalar product) is presented. At first the classical
spherical k-means algorithm is explained, together with an
example that shows that it does not necessarily produce an
optimal partition. Then it is shown, how an optimal two
cluster partition on the unit circle can be found. The author
also provides an example which points out that this task
is not as straightforward as in the case of scalars (one-
dimensional vectors) where the optimal two cluster partition
is given by a vertical line with some scalars on its left
and some on its right side. As in Chapter 2, a spherical
incremental algorithm is then presented, and the author
considers also some questions of computational complexity.
Finally, the spherical k-means algorithm is compared with
the k-means algorithm with quadratic distances, and it is
explained that when constrained to the unit sphere, centroids
for the quadratic and spherical k-means coincide.

In Chapter 5 the use of linear algebra techniques for
clustering is presented. In particular, the idea of PDDP,
Principal Direction Divisive Partitioning, is described: a
given set of vectors is divided into two clusters according
to the values of the projection of the data onto the
line corresponding to the largest eigenvector of a suitably
shifted covariance matrix of the original data. Moreover, the
combination of the idea of PDDP with the spherical optimal
two cluster partition on the circle of the previous chapter is
discussed (sPDDP) — this corresponds to projecting the data
onto the plane spanned by the two largest eigenvectors of the
covariance matrix if the best two-dimensional approximation
maximizes variance of the projections. Then numerical
experiments are given for the different cases when applying
PDDP only, applying sPDDP only, applying first PDDP and
then the quadratic k-means algorithm as well as applying
first sPDDP and then the quadratic k-means algorithm —
it turns out that in any case a combination with k-means
substantially improves the quality of the partitions, and
in general sPDDP performs substantially better. Finally, the
power method for computing the largest eigenvector together
with an application of this procedure for computing the hub
and authority value of a directed (web) graph is reviewed.

Chapter 6 deals with k-means clustering when the dis-
tance between data sets (usually probability distributions
which are interpreted as unit vectors with all coordinates be-
ing nonnegative) has an information theoretic interpretation.
In particular, for relative entropy, also called Kullback–Leibler
divergence between two probability distributions, the classi-
cal batch k-means algorithm as well as the incremental k-
means algorithm is discussed. As in Chapters 2 and 4, an ex-
ample is given where the classical batch k-means algorithm
does not produce an optimal partition. Also, as before, nu-
merical experiments for this algorithm are given. In addition
to this, in Chapter 6.4 a short overview of a “natural” distance
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function between a pair of partitions, the so-called mutual in-
formation between two partitions, is given.

In Chapter 7 the focus is on the optimization step of the
k-means algorithm to search a set of centroids. In general,
this step leads to the problem of optimizing a nonsmooth
objective function which is difficult to perform. Here a
smooth approximation approach is given where the original
objective function is replaced by a family of smooth functions
depending on a scalar smoothing parameter. For a particular
family of these functions, a smoothed k-means algorithm is
presented, together with an example where this algorithm
fails to produce an optimal partition. Moreover, it is proved
that this family of smooth functions converges uniformly
to the original objective function. A quite large survey of
numerical experiments of this smoothed k-means algorithm
compared with the incremental k-means algorithm is given.
It turns out that while producing partitions of similar quality,
the number of iterations needed in the smoothed version is
significantly smaller.

The structure of Chapter 8 is similar to the one of
Chapter 2 or 4: here the application of the k-means
algorithm is discussed when the distance functions are
Bregman distances or belong to the class of Ψ-divergence
measures. It is shown exemplarily that for Bregman
distances the computational cost of computing centroids
in consecutive iterations is relatively cheap. Moreover,
the author describes that for both distance functions
the only knowledge needed for clustering is the clusters’
centroids, its sizes and its qualities which makes a “BIRCH”
type approach to k-means feasible and yields significant
memory savings. Numerical experiments for vectors where
different distance functions are combined (weighted squared
Euclidean distance and Kullback–Leibler divergence) then give
evidence that a combination of different k-means algorithms
yields significantly improved results. Finally, it is shown how
the smoothed k-means algorithm described in the previous
chapter can also be combined with the techniques described
here, and, as before, empirically it is observed that the quality
of the resulting partitions is similar to a nonsmooth approach
while running only a fraction of the iterations.

Chapter 9 considers in general the problem of assessing
the quality of a clustering procedure: on the one hand, there
are internal criteria to assess the quality of a clustering
algorithm: these are known to the algorithm and turn the
clustering into an optimization problem; one of them is
exemplarily described here. On the other hand, external
criteria are not known to the clustering algorithm and can
be used for learning purposes only. It is assumed that
the optimal partition is available, and the results of the
clustering are compared with this partition. The author
surveys several different external criteria, among them
confusion matrices with suitably defined “misclassifications”
and entropy measures.

The appendix consists of Chapter 10, which collects
some background in linear algebra, Lagrange multipliers
and convex analysis and of Chapter 11, which contains
detailed master solutions to a selected list of problems given
throughout the different chapters.

3. Typos, mistakes and suggestions

This section contains a small list of errors/suggestions found
during reading.

• p. 6, when making the reference to Figure 1.1: “...a picture
of two very different objects” (and not object).

• p. 17, statement of Problem 2.1.6: it should be a` ≤ c(A) ≤

a`+1 (and not x` and x`+1)
• p. 76, line 7: “a two-dimensional plain” should be “a two-

dimensional plane”
• p. 79, p. 174: there is a typographical problem: instead of a

line representing fractions only dots are printed.
• p. 112, second last line: “if x and y are two distinct limit

points . . . .” (and not limit point)
• p. 127: in the statement of Problem 8.1.2 there are two

mistakes: in 1) it should be DΨ (x, y) = ex − ey − ey(x − y),
in 2) there is a log-term missing: it should read DΨ (x, y) =

x log
(
x
y

)
+ (1 − x) log

(
1−x
1−y

)
.

4. Conclusion

The textbook “Introduction to Clustering Large and High-
Dimensional Data” by J. Kogan is a very good reference for
an introductory course on clustering, in particular k-means
clustering. The clear structure of each chapter and the large
amount of figures make it easily accessible and a good
choice for using it as a textbook for advanced undergraduate
students. There are quite a lot of problems which require
some thinking and can serve as good exercises for students
(especially those whose master solution is given in the book),
and a few ideas for programming projects support these
problems. Admittedly, some of the problems presented are
rather tedious calculation exercises (repeating variations of
proofs given) and hardly illuminating, but they still can serve
as good exercises for training students how to write proofs.
The large amount of numerical experiments given in the
book makes the book also a good reference for practitioners
wanting to implement one specific variation of k-means
discussed in this book.
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