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Given a class of graphs G closed under taking minors, we study
the maximum degree ∆n of random graphs from G with n
vertices. We prove several lower and upper bounds that hold with
high probability. Among other results, we find classes of graphs
providing orders of magnitude for ∆n not observed before, such us
log n/ log log log n and log n/ log log log log n.
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1. Introduction

A class of labeled graphs G is minor-closed if whenever a graph G is in G and H is a minor of G,
then H is also in G. A basic example is the class of planar graphs or, more generally, the class of graphs
embeddable in a fixed surface.

All graphs in this paper are labeled. Let Gn be the graphs in G with n vertices. By a random graph
from G of size n we mean a graph drawn with uniform probability from Gn. We say that an event A
in the class G holds with high probability (w.h.p.) if the probability that A holds in Gn tends to 1 as
n → ∞. Let ∆n be the random variable equal to the maximum vertex degree in random graphs from
Gn. We are interested in events of the form

∆n ≤ f (n) w.h.p.

and of the form

∆n ≥ f (n) w.h.p.
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Typically f (n) will be of the form c log n for some constant c , or some related functions. We say that
f (n) = O(g(n)) if there exist an integer n0 and a constant c > 0 such that |f (n)| ≤ c|g(n)| for all
n ≥ n0, f (n) = Ω(g(n)), if g(n) = O(f (n)), and finally f (n) = Θ(g(n)), if both f (n) = O(g(n)) and
f (n) = Ω(g(n)) hold. Also, f (n) = ω(g(n)), if limn→∞ |f (n)|/|g(n)| = ∞, and f (n) = o(g(n)), if
g(n) = ω(f (n)). Throughout this paper log n refers to the natural logarithm.

A classical result says that for labeled trees ∆n is of order log n/ log log n (see [13]). In fact, much
more precise results are known in this case, in particular that (see [2])

∆n

log n/ log log n
→ 1 in probability.

Manymore results about the distribution ofmaximumdegree, its concentration, and several different
models of randomly generated trees can be found in the survey of [9].

McDiarmid and Reed [12] show that for the class of planar graphs there exist constants 0 < c1 < c2
such that

c1 log n < ∆n < c2 log n w.h.p.

More recently this result has been strengthened using subtle analytic and probabilistic methods [5],
by showing the existence of a computable constant c such that

∆n

log n
→ c in probability.

For planar maps (planar graphs with a given embedding), more precise results on the distribution of
∆n can be found in [7,3,8].

Analogous results have been proved for series–parallel and outerplanar graphs [4], with suitable
constants. Using the framework of Boltzmann samplers, results about the degree distribution of
subcritical graph classes such as outerplanar graphs, series–parallel graphs, cactus graphs and clique
graphs can also be found in [1]. This paper also contains conjectures of the exact values of cOP (cSP ,
respectively) so that themaximumdegree in outerplanar graphs (series–parallel graphs, respectively)
will be roughly cOP log n (cSP log n, respectively).

The goal in this paper is to analyze the maximum degree in additional minor-closed classes of
graphs. Our main inspiration comes from the work of McDiarmid and Reed mentioned above. The
authors develop proof techniques based on double counting that assume only mild conditions on the
classes of graphs involved. We now explain the basic principle.

Let G be a class of graphs and suppose we want to show that a property P holds in G w.h.p. Let Bn
be the graphs in Gn that do not satisfy P (the ‘bad’ graphs). Suppose that for a constant fraction α > 0
of graphs in Bn we have a rule producing at least C(n) graphs in Gn (the ‘construction’ function). A
graph in Gn can be produced more than once, but assume every graph in Gn is produced at most R(n)
times (the ‘repetition’ function). By double counting we have

α|Bn|C(n) ≤ |Gn|R(n),

hence

α
|Bn|

|Gn|
≤

R(n)
C(n)

.

If the procedure is such that C(n) grows faster than R(n), that is R(n) = o(C(n)), then we conclude
that |Bn| = o(|Gn|), that is, the proportion of bad graphs goes to 0. Equivalently, property P holds
w.h.p. We often use the equivalent formulation C(n)/R(n) → ∞.

Wewill apply this principle in order to obtain lower and upper bounds on themaximumdegree for
several classes. In this context, lower bounds are easier to obtain, and only in some cases we are able
to provematching upper bounds. The proof of the upper bound for planar graphs in [12] depends very
strongly on planarity, and it seems difficult to adapt it to general situations; however we obtain such
a proof for outerplanar graphs. On the other hand, we develop new tools for proving upper bounds
based on the decomposition of a connected graph into 2-connected components.
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Here is a summary of our main results. We denote by Ex(H) the class of graphs not containing H
as a minor. All the claims hold w.h.p. in the corresponding class, and c, c1 and c2 are suitable positive
constants. The fan graph Fn consists of a path with n − 1 vertices plus a vertex adjacent to all the
vertices in the path.

• In Ex(C4) we have, for all ϵ > 0,

(2 − ϵ)
log n

log log n
≤ ∆n ≤ (2 + ϵ)

log n
log log n

.

• In Ex(C5) we have, for all ϵ > 0,

(1 − ϵ)
log n

log log log n
≤ ∆n ≤ (1 + ϵ)

log n
log log log n

.

• In Ex(C6) we have

c1
log n

log log log n
≤ ∆n ≤ c2

log n
log log log n

.

• In Ex(C7) we have

c1
log n

log log log log n
≤ ∆n ≤ c2

log n
log log log log n

.

• If H is 2-connected and contains C2ℓ+1 as a minor, then in Ex(H) we have

∆n ≥ c
log n

log(ℓ+1) n
,

where log(ℓ+1) n = log · · · log n, iterated ℓ + 1 times.
• If H is 2-connected and is not a minor of Fn for any n, then in Ex(H) we have

∆n ≥ c log n.

The results on Ex(H) also hold when forbidding more than one graph as a minor, as discussed in
the next section.

Organization of the paper. In Section 2 we prove the lower bounds for the maximum degree. In
Section 3 we determine the structure of 2-connected graphs in the classes Ex(C5), Ex(C6) and Ex(C7).
This is quite technical and based on case analysis. The reasonweundertake this analysis is to exemplify
our technique for proving upper bounds and to show that different asymptotic estimates for the
maximum degree are indeed possible. The proofs for the upper bound are contained in Section 4.
We conclude with some remarks and several conjectures and open problems.

2. Lower bounds

A pendant vertex is a vertex of degree one. The following lemma follows from [11].

Lemma 1. Let H1, . . . ,Hk be 2-connected graphs and let G = Ex(H1, . . . ,Hk). Then there is a constant
α > 0 such that a graph in Gn contains at least αn pendant vertices w.h.p.

To illustrate our proof technique, we reprove the followingwell-known result (see [13], and see [2]
for more precise results, as mentioned above), but without the need of enumerative tools.

Lemma 2. Let ϵ > 0 be any constant. In the class of forests, w.h.p.

(1 − ϵ)
log n

log log n
≤ ∆n.

Proof. Let G be the class of forests, and Gn the class of forests with exactly n vertices. Let ϵ > 0 be
any constant and let Bn ⊆ Gn denote the set of bad graphs with ∆n < (1 − ϵ)

log n
log log n , and suppose
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for contradiction that |Bn| ≥ µ|Gn| for some µ > 0, infinitely often. Our goal is to show that we can
obtain ω(|Bn|) new graphs in Gn, or equivalently, C(n)/R(n) → ∞, contradicting |Bn| ≥ µ|Gn|.
Consider the subclass B ′

n ⊆ Bn of graphs in Bn with at least αn pendant vertices. By Lemma 1,
|B ′

n| = (1 + o(1))|Bn|. Let G be a graph in B ′
n. Choose from the pendant vertices a subset of size

s + 1, where s = ⌈(1 − ϵ)
log n

log log n⌉, and delete all their pendant edges. Among those choose a vertex,
call it v1, and make it adjacent to all other s vertices. Finally, choose a vertex u different from the s+ 1
chosen vertices, andmake u adjacent to v1 (we have at least n−s ≥ n/2 choices for u). In this way one
can construct at least


αn
s+1


(s+1) n

2 graphs. Fromhowmany graphsGmay the newly constructed graph
G′ come? We identify v1 as the only vertex with largest degree in G′ and u as the only non-pendant
neighbor of v1. In order to reconstruct G completely we only need to reattach the s + 1 vertices in all
possible ways, which can be done in at most ns+1 ways. Hence

C(n)
R(n)

≥


αn
s+1


(s + 1)n

2ns+1
≥

n(α/2)s+1

2s!
.

Taking logarithms, this gives

log
C(n)
R(n)

≥ log n − s log s + O(s) = log n − (1 − ϵ)(1 + o(1)) log n,

which tends to infinity. Hence, |Bn| = o(|Gn|), and thus w.h.p. (1 − ϵ)
log n

log log n ≤ ∆n, and the result
follows. �

Nowwe are ready to state new results that can be obtained using our techniques. In order to prove
a lower bound for ∆n in a class Gn, the basic idea is to generalize the previous proof. Take a graph G in
Gn whose maximum degree is too small (a bad graph), take enough pendant vertices and make with
them a special graph S rooted at a special vertex v (in the previous proof a star rooted at its center),
and attach S to G through a single edge, producing a new graph G′ in Gn. Then v becomes the unique
vertex of maximum degree s = |S|, and G can be reconstructed from G′ easily by reattaching the
vertices in S, which are neighbors of v in G′. Double counting is then used to show that the proportion
of bad graphs goes to 0 as n goes to infinity.

Theorem 3. The following claims refer to the class Ex(H1, . . . ,Hk).

1. Let c be a positive constant satisfying c < 1
log(2/α)

. If all the Hi are 2-connected and none of them is a
minor of a fan graph Fn, then

∆n ≥ c log n w.h.p.

This holds in particular if the Hi are 3-connected or not outerplanar.
2. If all the Hi are 2-connected and contain C4 as a minor (that is, all the Hi are not C3), then for every

ϵ > 0,

∆n ≥ (2 − ϵ)
log n

log log n
w.h.p.

3. If all the Hi are 2-connected and contain C5 as a minor, then for every ϵ > 0,

∆n ≥ (1 − ϵ)
log n

log log log n
w.h.p.

4. For ℓ ≥ 3, let c = c(ℓ) be a positive constant satisfying c < 1/ℓ. If all the Hi are 2-connected and
contain C2ℓ+1 as a minor for some ℓ ≥ 3, then

∆n ≥ c
log n

log(ℓ+1) n
w.h.p.

Note that if all the Hi are 2-connected, since every 2-connected graph contains C3 as a minor, the bound
∆n ≥ c log n/ log log n always holds for c < 1.
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Proof. Throughout the proof we will assume for contradiction that there is some constant µ > 0
such that for each item and its corresponding graphs in Bn, we have |Bn| ≥ µ|Gn| infinitely often.
Our goal is to show that we can obtain ω(|Bn|) new graphs in Gn, or equivalently, C(n)/R(n) → ∞,
contradicting |Bn| ≥ µ|Gn|. Since, by assumption, |Bn| ≥ µ|Gn|, as before, by Lemma 1, the subclass
B ′

n ⊆ Bn of graphs with at least αn pendant vertices satisfies |B ′
n| = (1 + o(1))|Bn|, and we will in

all cases below consider a graph of B ′
n, where the definition of Bn, and thus of B ′

n, changes from case
to case.

1. Let G = Ex(H1, . . . ,Hk) and let Bn ⊆ Gn be the graphs with ∆n < c log n, where c is a positive
constant satisfying c < 1

log(2/α)
, and let h = ⌈c log n⌉. Let G be a graph in B ′

n ⊆ Bn. Choose an ordered
list v1, . . . , vh of h pendant vertices in G, delete the edges joining the vi to the rest of the graph, and
make a copy of Fh with a path v2, . . . , vh and v1 adjacent to all of them. Select a vertex u of G different
from the vi and make it adjacent to v1. The graph G′ constructed in this way belongs to Gn, since the
Hi are 2-connected and none of them is a minor of a fan graph, and has the same number of vertices
as G.

The number of graphs constructed in this way is at least (where (m)k denotes a falling factorial)

(αn)h(n − h) ≥

αn
2

h
n,

the last inequality being true for n large enough; we use the fact that h = ⌈c log n⌉ is small compared
with n.

How many times a graph G′ can be constructed in this way? Since G ∈ Bn, v1 can be identified as
the only vertex of degree h. Vertices v2, . . . , vh can be identified as the neighbors of v1 inducing a path
(among the neighbors of v1, u is the only cut-vertex, and hence it can be identified easily). In order to
recover G, we delete all the edges among the vi and the edge v1u, andmake v1, . . . , vh adjacent to one
of the remaining vertices through a single edge. The number of possibilities is at most

(n − h)h ≤ nh.

Summarizing, we can take C(n) = (α/2)hnh+1 and R(n) = nh. Then

C(n)
R(n)

≥ n(α/2)c log n,

which tends to infinity if c < 1
log(2/α)

. This finishes the proof.
2. Assume now that the Hi contain C4 as a minor, that is, they all contain a cycle of length at least

four. As before, let G = Ex(H1, . . . ,Hk), let Bn ⊆ Gn be the graphs with ∆n < (2− ϵ) log n/ log log n,
and let s = ⌈(2−ϵ) log n/ log log n⌉. LetG be a graph inB ′

n. Choose an (unordered) set of s+1 pendant
vertices v1, . . . , vs+1 in G, and delete the edges joining the vi to the rest of the graph. Among those
choose one of them, say v1, and make it adjacent to all others. The other s vertices are paired up, and
vertices of pairs are made adjacent (if s is odd, one vertex remains unpaired). Finally, another pendant
vertex u is chosen and made adjacent to v1. Note that there are at least αn/2 choices for u. There
are thus at least


αn
s+1


(s + 1) ((s − 1)!!) (αn/2) constructions, where (2k − 1)!! = 1 · 3 · · · (2k − 1).

The graph G′ constructed in this way belongs to Gn, and has the same number of vertices as G. When
reconstructing G, v1 can be identified as the unique vertex of maximum degree, and u is identified as
the only neighbor of v1 adjacent to a vertex which is not a neighbor of v1. Thus, only the s+ 1 chosen
vertices have to be reattached, and there are at most ns+1 choices. Hence,

C(n)
R(n)

≥


αn
s+1

  1
2αn


((s + 1)!!)

ns+1
≥

 1
2α
s+2

((s + 1)!!) n
(s + 1)!

.

Using (2g − 1)!! = (2g)!/(2gg!) and taking logarithms we obtain

log
C(n)
R(n)

≥ log n − (s/2) log s + O(s) = log n − (1 − (ϵ/2))(1 + o(1)) log n,

which tends to infinity, as desired.
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3. Nowwemay assume that the Hi contain C5 as a minor. As before, let G = Ex(H1, . . . ,Hk) and let
Bn ⊆ Gn be the graphswith∆n < (1−ϵ) log n/ log log log n, and let s′ = ⌈(1−ϵ) log n/ log log log n⌉.

Let Fn,m be the following graph: takem disjoint copies ofK+

2,n−1 (the complete bipartite graphK2,n−1
plus an edge joining the two vertices in the part of size two), and glue them together by identifying a
vertex of degree n−1 in each copy. Notice that the longest cycle in Fn,m is C4, and that Fn,m hasmn+1
vertices. Let G be a graph in B ′

n. For an integer s < s′ to be made precise below, choose a set of s + 1
pendant vertices v1, . . . , vs+1 in G, delete the edges joining the vi to the rest of the graph, and make
a copy of Fr,s/r with the vi, where r is an integer to be determined later. Let v1 be the vertex chosen to
be adjacent to all other vi (there are s+ 1 choices for this vertex). Select a vertex u of G different from
the vi and make it adjacent to v1. The graph G′ constructed in this way belongs to Gn, since the Hi are
2-connected and have no cycle of length more than four, and has the same number of vertices as G.

The number of graphs constructed in this way is at least
αn
s+1


(s + 1)


s

r,...,r


r s/r n

2

(s/r)!
,

where the first binomial is for the choice of the pendant vertices; (s+1) is for the choice of the center
vertex v1, the multinomial coefficient divided by (s/r)! stands for a lower bound on the number of
partitions of the s vertices into groups of size r; the factor r s/r for the choice of the vertices of degree
r in each group; and finally n/2 is a lower bound for the choices of the target vertex u. The number of
ways such a graphG′ can be constructed is atmost ns+1, the argument is the same as before. Therefore,
for n large enough, we have

C(n)
R(n)

≥


αn
s+1


(s + 1)


s

r,...,r


r s/r n

2

(s/r)!ns+1
≥

( α
2 )s+1 n

2 r
s/r

(r!)s/r(s/r)!
.

Taking logarithms in the last expression we obtain

(1 + o(1))


(s + 1) log
α

2
+ log

1
2

+ log n +
s
r
log r − s log r −

s
r
log

s
r


.

For the choices

s′ =


(1 − ϵ)

log n
log log log n


, r =


2 log s′

ϵ log log s′


and s to be the largest integer smaller or equal to s′ with the property of being divisible by r (note that
s = (1+ o(1))s′), we can safely ignore the term (s+ 1) log(α/2) + log(1/2) + (s/r) log r . Plugging in
these values of s and r into the remaining term, we obtain

(1 + o(1))

log n − s log r −

s
r
log

s
r


≥ (1 + o(1))


log n − s(log log s − log log log s) −

ϵ

2
s log log s


≥ (1 + o(1))


log n −


1 +

ϵ

2


s log log s


≥ (1 + o(1))


log n −


1 +

ϵ

2


(1 − ϵ) log n


,

which tends to infinity, since (1 +
ϵ
2 )(1 − ϵ) < 1.

4. As before, assume that the Hi contain C2ℓ+1 as a minor, and let G = Ex(H1, . . . ,Hk). Let
Bn ⊆ Gn be the graphs with ∆n < c log n/ log(ℓ+1) n (where c is a small enough constant), and let
s = ⌈c log n/ log(ℓ+1) n⌉.

Let G be a graph in B ′
n ⊆ Bn. Choose a set of s + 1 pendant vertices v1, . . . , vs+1 in G, delete the

edges joining the vi to the rest of the graph, andmake a copy of the following graph F with the vi: first,
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as before, choose one special vertex, call it v1, andmake it adjacent to all other vi. Group the remaining
vi (all except for v1) into groups of size r1 = log s/ log(ℓ) s (we ignore rounding issues, taking care of
them below). Choose in each of the s/r1 groups a center vertex. Call all center vertices to be vertices
at level 1. Iteratively, for i = 1, . . . , ℓ − 2, do the following: group each group of size ri − 1 (from
each group we eliminate the center vertices at level i) into subgroups of size ri+1 = log(i+1) s/ log(ℓ) s.
Choose in each subgroup a new center vertex, and call all center vertices chosen in this step to be
vertices at level i + 1. Connect each center vertex at level i with all center vertices at level i + 1
resulting from subgroups of the group of vertex i. Connect all center vertices at level ℓ − 1 with the
remaining vertices of its corresponding subgroup (those vertices not chosen as centers).

Observe that the graph F does not contain a C2ℓ+1, since in the construction we add a forest of
maximum path length 2(ℓ − 1) to a star centered at v1, and thus the maximum cycle length is 2ℓ.

Next select a vertex u ofG different from the vi andmake it adjacent to v1. The graphG′ constructed
in this way belongs to Gn, and has the same number of vertices as G. As before, we count the number
of different graphs obtained by applying this construction to one graph of B ′

n. We obtain at least

n
2


αn
s+1


(s + 1)

 s
r1,...,r1

 ℓ−2
i=1

 ri−1
ri+1,...,ri+1

s/ri(1+βi)
(ri − 1)s/ri(1+βi)


s
r1


!

ℓ−2
i=1


ri−1
ri+1


!

s/ri(1+βi)

many graphs, where the βi = o(1) take into the account rounding issues and also the fact that in the
ith step only ri − 1 vertices are split into subgroups of size ri+1 (for example, we approximate s(r1−1)

r1r2
by s

r2
; β2 accounts for the difference). Indeed, even for the last term βℓ−2 the error term is bounded

from above by
ℓ−3

i=1
1
ri

= o(1). By the same argument as in the proof of 2., a new graph can have

at most ns+1 preimages. Thus, for n sufficiently large (the factors r s/rii in the denominator are a lower
bound corresponding to the fact that the factors ri in the numerator do not exactly cancel), we have

C(n)
R(n)

≥

1
2n
 1
2α
s+1

((r1 − 1)!)s/r1

(r1!)s/r1


s
r1


!(rℓ−1)!

s/rℓ−1(1+βℓ−1)
ℓ−2
i=2

r s/rii

ℓ−2
i=1


ri−1
ri+1


!

s/ri(1+βi)
.

Taking logarithms, we obtain

(1 + o(1))


log n + s log(r1 − 1) − s log r1 −

s
r1

log
s
r1

− s log rℓ−1 −

ℓ−2
i=1

s
ri

ri − 1
ri+1

log
ri − 1
ri+1


.

Using s log(r1 − 1) = s log(r1) + s log(1 − 1/r1) and s
ri

ri−1
ri+1

log ri−1
ri+1

≤
s

ri+1
log ri, we get that this

expression is at least

(1 + o(1))


log n −

s
r1

log
s
r1

− s log rℓ−1 −

ℓ−2
i=1

s
ri+1

log ri


. (1)

Plugging in the values ri = log(i) s/ log(ℓ) s, all but the first term are (1 + o(1))s log(ℓ) s, and thus,
plugging in the value s = c log n/ log(ℓ+1) n, for c < 1/ℓ, the expression in (1) tends to infinity. �

Remark. The 2-connected graphswhich are aminor of some Fn consist just of a cycle and some chords,
all of them incident to the same vertex. In particular, if we forbid the graph consisting of a cycle of
length six v1, v2, v3, v4, v5, v6 and the chords v1v3 and v4v6, the condition of part 1 of Theorem 3 still
holds, and the conclusion that w.h.p. ∆n ≥ c log n follows. The same also holds when forbidding the
6-cycle together with the chords v1v3, v3v5, v5v1.
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Fig. 1. The graph H2,s,t with the notation as in Lemma 5, and with two optional edges (dashed).

3. Characterization of 2-connected graphs in Ex(C5), Ex(C6) and Ex(C7)

In this section we determine all 2-connected graphs in the classes Ex(C5), Ex(C6) and Ex(C7). This
is an essential ingredient for the proofs in the next section.

As usual, K2,n is the complete bipartite graph with partite sets of size 2 and n. Recall that K+

2,n
denotes the graph obtained from K2,n by adding an edge between the two vertices of degree n. We
have the following:

Lemma 4. The only 2-connected graphs in Ex(C5) are K3, K4, K2,m and K+

2,m, for m ≥ 2.

Proof. Let G be a 2-connected graph in Ex(C5). If G has at most three vertices, then it has to be K3.
Otherwise, if G has exactly four vertices, then it is either C4, K4 minus one edge, or K4. Otherwise,
suppose thatG has at least 5 vertices. Let v, v1, v2, v3 be the vertices in cyclic order of a C4 inG. Assume
without loss of generality that v has another neighbor different from v1 and v3, and also different from
v2. Observe that a cannot be adjacent to v1 or v3, since this would create a C5. By 2-connectivity, there
must exist a path from a to v2 containing none of v, v1, v3. Since G is in Ex(C5), it follows that a is
adjacent to v2. This holds for all neighbors of v different from v2. Thus, theymust form an independent
set, and we obtain a copy of K2,m. The only edge that can be added while staying in Ex(C5) is the edge
vv2, giving rise to K+

2,m. �

For s, t ≥ 0, define the graphH2,s,t , obtained by identifying a vertex v of degree s+1 in K2,s+1 and a
vertex of degree t + 1 in K2,t+1, and by adding an edge between the other vertices v2 and v3 of degree
s+1 and t +1, respectively. Note that v has thus at least one common neighbor with v2, call it v1, and
at least one common neighbor with v3, call it v4 (see Fig. 1). We denote by H∗

2,s,t any graph obtained
from H2,s,t by adding a subset of the edges between vertices x and y with x, y ∈ {v, v1, v2, v3, v4},
unless they are creating a cycle of length 6 or longer (see Fig. 1). Observe that the subset of edges
allowed depends on the fact whether s or t is different from 0 or not; only in the case s = t = 0 all
edges between special vertices can be added, yielding K5.

Lemma 5. The only 2-connected graphs in Ex(C6) are those in Ex(C5), the graphs H2,s,t , and any graph of
the form H∗

2,s,t , for s, t ≥ 0.

Proof. Let G be a 2-connected graph in Ex(C6). If G is in Ex(C5), we apply the previous lemma. If G
contains C5 and has exactly 5 vertices, then G is either H2,0,0 or H∗

2,0,0. Otherwise let v, v1, v2, v3, v4
be the vertices in cyclic order of a C5 in G (see Fig. 1). Call these vertices special. Observe that except
for possible edges between neighbors of v that are both special vertices, N(v) is an independent set.
Consider a non-special neighbor a of v. As in the proof of Lemma 4, by 2-connectivity, a is adjacent to
either v2 or v3, but not both. Let A = N(v) ∩ N(v2) − {v1}, B = N(v) ∩ N(v3) − {v4}, s = |A|, and
t = |B|. With this notation, it can be checked that G is either H2,s,t or is in H∗

2,s,t , possibly with v3 or v4
playing the role of v. �

Remark. When later we refer to graphs H2,s,t or in H∗

2,s,t , with v3 or v4 playing the role of v, they will
be denoted asH2,s,t andH∗

2,s,t .



O. Giménez et al. / European Journal of Combinatorics 55 (2016) 41–61 49

Fig. 2. The graph Ss,t,u,w with the notation as in Lemma 6, and with two optional edges (dashed).

Fig. 3. The graph Vs,t,E with the notation as in Lemma 6 (e1 = e2 = 1, e3 = e4 = 0, e5 = e6 = 1 with corresponding degrees
q1 and q2), and with two optional edges (dashed).

Define the graph Ss,t,u,w to be the graph constructed as follows: start with a 6-cycle whose vertices
in cyclic order are v, v1, v2, v3, v4, v5, and call these vertices special. In addition there are w ≥ 0
vertices connecting v2 and v4, s ≥ 0 vertices connecting v with v2, t ≥ 0 vertices connecting v
with v4, and u ≥ 0 vertices connecting v with both v2 and v4 (in all cases excluding special vertices).
Define then by S∗

s,t,u,w any graph obtained by possibly adding any of the edges between special vertices
without creating a cycle of length 7 or more, see Fig. 2.

Finally, let Vs,t,E be the following class of graphs: start with a 6-cycle v, v1, v2, v3, v4, v5, again
called special vertices. There is a set A of s ≥ 0 vertices connecting v with v2, and a set B of t ≥ 0
vertices connecting v with v4 (always excluding special vertices).

In addition, there is the following set of connections between v and v3 (not including vertices in A
or B or special vertices) specified by K = {e1, e2, e3, e4, e5, e6}. There are e1 ≥ 0 vertices connecting
v with v3, and e2 pairs of vertices which are adjacent to each other, and both are adjacent to both v
and v3. Furthermore, there are e3 disjoint graphs K2,qi (for i = 1, . . . , e3) emanating from v3, and the
other vertex of degree qi is connected to v. For e4, the construction is the same, except that for these
graphs also the edge between v3 and the other vertex of degree qi is present. Finally, there are e5 and
e6 disjoint graphs K2,qi which are as the graphs e3 and e4, but with the roles of v3 and v exchanged. For
further reference, call the graphs of group e3 and e4 double stars of degree qi emanating from v3 (for
i = 1, . . . , e3), and those of group e5 and e6 double stars emanating from v of degree qi. All vertices
appearing in any of the six groups are disjoint and we refer to them as external vertices. Finally, V ∗

s,t,E
is the class of graphs obtained by possibly adding any of the edges between special vertices without
creating a cycle of length 7 or more (see Fig. 3 for an example).

Lemma 6. The only 2-connected graphs in Ex(C7) are those in Ex(C6), the graphs Ss,t,u,w , Vs,t,E and the
corresponding graphs S∗

s,t,u,w , V
∗

s,t,E .
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Proof. Let G be a 2-connected graph in Ex(C7). If G is in Ex(C6), we apply the previous lemma.
If G contains C6 and has exactly 6 vertices, then G = S0,0,0,0 or G = S∗

0,0,0,0. Otherwise, let
v, v1, v2, v3, v4, v5 be the vertices in cyclic order of a C6 in G, again called special. We distinguish
two cases now. In the sequel all new vertices considered are not special vertices.

Case 1: There is no other vertex a with the property that there are two internally vertex-disjoint
paths of length three from v to a. We distinguish between two subcases.

Case 1.1: Suppose first that there exist u ≥ 1 vertices a ∈ N(v) that are adjacent to both v2 and
v4. Observe that the existence of such a vertex a implies that no external vertex e can be present in G,
as otherwise one would have a cycle of length at least 7 (namely, v, v1, v2, a, v4, v3, e, v). Hence, all
non-special neighbors of v can be partitioned into three sets A, B and C , where A is the set of s ≥ 0
vertices connected only with v2, B is the set of t ≥ 0 vertices connected only v4, and C is the set of
u ≥ 1 vertices connected to both v2 and v4. This corresponds exactly to the graph Ss,t,u,w with w = 0.
It is easy to check that except for edges yielding a graph in S∗

s,t,u,0, no edge can be added, as otherwise
a 7-cycle would be generated (see Fig. 2).

Case 1.2: Suppose that there is no vertex a ∈ N(v) adjacent to both v2 and v4. Let A be the neighbors
of v connecting v with v2, and let B be the neighbors of v connecting v with v4. Let s = |A| and t = |B|.
External vertices connecting v with v3 are nowpossible. Note first that none of themcan be adjacent to
a special vertex except for v, v2 in the case of A and except for v, v4 in the case of B, neither to another
vertex in A nor B. There can be e1 vertices connecting v with v3, and e2 pairs of vertices, adjacent to
each other, both adjacent to v and v3. Also, we might have e3 (e4, respectively) double stars of degree
qi ≥ 0 emanating from v3, where the other vertex of degree qi is also adjacent to v (in the case of
the e4 vertices, the edge between v3 and the other vertex of degree qi is also present). Also, the roles
of v3 and v can be interchanged, yielding e5 double stars (e6, respectively) of degree qi emanating
from v (in the case of the e6 stars, the edge between v and the other vertex of degree qi is added as
well; observe that in the case of the e5 double stars wemay assume qi ≥ 2, as otherwise these vertices
appear already among the e3 stars). The six groups are disjoint and there can be no other edge between
external vertices. Thus, denoting K = {e1, . . . , e6}, we obtain a graph in Vs,t,E . As before, no other edge
except for edges yielding a graph in V ∗

s,t,E can be added (see Fig. 3).
Case 2: There exists at least one more vertex a such that there are two internally vertex-disjoint

paths of length three from v to a. These paths must be of the form v, v1, v2, a and v, v5, v4, a (if for
example instead of the edge vv1 there would be an edge vz for some other vertex z, there would be
a path of length 6 going from z, v, v5, . . . , v1, which, by 2-connectivity, would give a cycle of length
at least 7). We suppose there are w ≥ 1 such vertices a with such paths. Observe that the existence
of such a vertex a implies that no external vertex e can be present in G, as otherwise one would have
a cycle of length at least 7 (namely, the cycle v, v1, v2, a, v4, v3, e, v). All non-special neighbors of v
can thus be partitioned into three sets A, B, and C , where A are those connected only with v2, B those
connected only with v4, and C those connected both with v2 and v4. We let s = |A|, t = |B|, u = |C |.
LetW be the vertices which are neither neighbors of v nor special vertices, and w = |W |. Again it can
be checked that they all are such that there are two internally vertex-disjoint paths of length three
from v to them, thus yielding a graph in Ss,t,u,w . As before, except for edges yielding a graph in S∗

s,t,u,w ,
no other edge can be added. �

Remark. When later we refer to graphs in Ss,t,u,w or Vs,t,E (or to the corresponding graphs in S∗
s,t,u,w

or V ∗

s,t,E), where either v2, v3, v4 or any of the external vertices of high degree play the role of v, they
will be denoted asSs,t,u,w andVs,t,E (S∗

s,t,u,w andV ∗

s,t,E , respectively).

4. Upper bounds

Wemake repeated use of the followingwell-known lemma, whose proof is standard and therefore
omitted.

Lemma 7. Let n1, . . . , nr be positive integers such that


i ni = N for some constant N. Then


i ni log ni
is minimized when all ni are equal to ⌈N/r⌉ or ⌊N/r⌋.



O. Giménez et al. / European Journal of Combinatorics 55 (2016) 41–61 51

Also, we need the following lemma, whose proof is a straightforward generalization of Lemma 2.2
from [12].

Lemma 8. Let G = Ex(H1, . . . ,Hk), where the Hi are 2-connected. Then w.h.p. each vertex in a graph in
Gn is adjacent to at most 2 log n/ log log n pendant vertices.

As in Section 2, we illustrate our technique to reprove in a simpler way the following known result
(see [13,2]), complementing Lemma 2.

Lemma 9. Let ϵ > 0 be any constant. In the class of forests, w.h.p.

∆n ≤ (1 + ϵ)
log n

log log n
.

Proof. Let G be the class of forests and Gn the class of forests with n vertices. Let Bn ⊆ Gn now denote
the set of bad graphs with

∆n > (1 + ϵ)
log n

log log n
,

and suppose for contradiction that |Bn| ≥ µ|Gn| for some µ > 0, infinitely often. Let B ′
n ⊆ Bn

be the class of graphs that has at least αn pendant vertices, and which is such that every vertex is
adjacent to at most 2 log n/ log log n pendant vertices. By Lemmas 1 and 8, |B ′

n| = (1+ o(1))|Bn|. Let
G be a graph in B ′

n, and let v be a vertex with degree k > (1 + ϵ)
log n

log log n . Since G ∈ B ′
n, there are at

least (αn − 2 log n/ log log n) ≥ 2αn/3 pendant vertices not adjacent to v. Let c = min(
ϵ/2
1+ϵ

, α/3)
and choose a set of ⌈ck⌉ ≤ 2αn/3 pendant vertices not adjacent to v and delete their adjacent
edges. Maintain vertex v and delete all its adjacent edges. Attach the ⌈ck⌉ chosen vertices to v, and
construct many new graphs by attaching the former k neighbors of v in all possible ways to any of the
previously added ⌈ck⌉ vertices. More precisely, a fixed new graph is obtained by choosing for each of
the former k neighbors of v, its corresponding vertex among the ⌈ck⌉ vertices previously added, and
then connecting to it by an edge. Observe that the new vertices have been added in a tree-like way,
and hence the new graph is still in Gn. Since we are interested in an asymptotic result, we may ignore
ceilings from now on. The number of graphs constructed in this way is at least

2αn/3
ck


(ck)k. From how

many graphs may the newly constructed graph G′ come? One has to guess v, and then reattach the ck
pendant vertices, giving rise to at most nck+1 choices. Hence,

C(n)
R(n)

≥

2αn/3
ck


(ck)k

nck+1
≥

(α/3)ck(ck)k

n(ck)!
.

Note that (ck)k/(ck)! > (ck)(1−c)k. Taking logarithms, this gives

log
C(n)
R(n)

≥ (1 − c)k log k − log n + O(k) ≥ (1 − c)(1 + ϵ)(1 + o(1)) log n − log n,

which tends to infinity by our choice of c. Hence, |Bn| = o(|Gn|), and thus w.h.p. ∆n > (1+ ϵ)
log n

log log n ,
and the result follows. �

Recall that a block H is a maximal connected subgraph without having a cut-vertex. Note that if H
is a block, either H is 2-connected or H has at most 2 vertices.

Now we proceed to prove new results. In order to prove an upper bound for ∆n in a class Gn, the
basic idea is to generalize the previous proof. Take a graph G in Gn whose maximum degree is too
large (a bad graph), and let v be a vertex with large degree. Consider the blocks containing v and their
contribution to the degree of v: the lemmas in Section 3 tell us all possible 2-connected components
that can occur, which therefore, together with isolated vertices and isolated edges, tell us all blocks
that can occur. We classify the blocks according to whether this contribution is larger or smaller than
a suitable threshold. If B is a block with a vertex b of large degree t , remove the edges connecting
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b to its neighbors b1, . . . , bt , take ct pendant vertices (where c < 1 is a suitable constant), isolate
them andmake them adjacent to v, and connect arbitrarily each of the bi to any of the new ct vertices.
Whateverwas attached to the bi remains untouched.When necessary, we add a few extra vertices and
edges to ensure unique reconstruction. Blockswith small degree are not dismantled. This construction
guarantees thatwe stay inGn. Double counting is used again to show that the proportion of bad graphs
goes to 0 as n goes to infinity.

In the next proof we do not need all the power of this method, since blocks in Ex(C4) have bounded
degree, but already in the class Ex(C5) there are blocks of arbitrary high degree.

Lemma 10. Let ϵ > 0 be any constant. In the class Ex(C4), w.h.p.

∆n ≤ (2 + ϵ)
log n

log log n
.

Proof. We first observe that the only blocks in Ex(C4) are isolated vertices, edges and triangles. Let
G = Ex(C4) and let Bn ⊆ Gn now denote the set of bad graphs with

∆n > (2 + ϵ)
log n

log log n
.

As before, let B ′
n ⊆ Bn be the class of graphs that has at least αn pendant vertices, and which is such

that every vertex is adjacent to at most 2 log n/ log log n pendant vertices. Once again, by Lemmas 1
and 8, |B ′

n| = (1+o(1))|Bn|. LetG be a graph inB ′
n and let v be a vertexwith degree k > (2+ϵ)

log n
log log n .

As before, there are at least (αn − 2 log n/ log log n) ≥ 2αn/3 pendant vertices not adjacent to v. Let
c = min(

ϵ/3
1+(ϵ/2) , α/3). Let r be the number of blocks incident to v and observe that (k/2) ≤ r ≤ k,

since the only blocks are edges and triangles. Choose a set of ⌈cr⌉ ≤ 2αn/3 pendant vertices not
adjacent to v and delete their adjacent edges. Maintain vertex v and delete all its adjacent edges.
Attach the ⌈cr⌉ chosen vertices to v, and construct, as before, new graphs by attaching the roots of
all r blocks in all possible ways to any of the previously added ⌈cr⌉ vertices. Ignoring ceilings, the
counting is as before: the number of graphs constructed in this way is at least

2αn/3
cr


(cr)r , and for

recovering G, one has to guess v, then reattach the cr pendant vertices, giving rise to at most ncr+1

choices. Hence,

C(n)
R(n)

≥

2αn/3
cr


(cr)r

ncr+1
≥

 1
3α
cr

(cr)r

n(cr)!
.

Note that (cr)r/(cr)! > (cr)(1−c)r . Thus, taking logarithms, this gives

log
C(n)
R(n)

≥ (1 − c)r log r − log n + O(r) ≥ (1 − c)(k/2) log k − log n + O(k),

which again tends to infinity by our choice of c. Hence, |Bn| = o(|Gn|). �

Theorem 11. Let ϵ > 0 be any constant. In the class Ex(C5), w.h.p.

∆n ≤ (1 + ϵ)
log n

log log log n
.

Proof. Let G = Ex(C5) and let Bn ⊆ Gn be the graphs with

∆n > (1 + ϵ) log n/ log log log n.

Assume for contradiction that there is some constant µ such that |Bn| ≥ µ|Gn| infinitely often.
Once more, let B ′

n ⊆ Bn be the class of graphs that has at least αn pendant vertices, and which
is such that every vertex is adjacent to at most 2 log n/ log log n pendant vertices. Again, we have
|B ′

n| = (1 + o(1))|Bn|. Let G be a graph in B ′
n and let v be a vertex of G such that k = deg(v) >
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(1 + ϵ) log n/ log log log n. Since G ∈ B ′
n, at least (αn − 2 log n/ log log n) ≥ 2αn/3 pendant vertices

are not adjacent to v. The strategy of the proof is as follows. We partition the blocks incident with v
according to their type and to their contribution to the degree of v. Those with degree smaller than
a threshold can be safely ignored for the asymptotics. Those of large degree, which by Lemma 4 are
isomorphic to either K2,t or K+

2,t , are used to produce many new graphs as in the proofs for the lower
bounds. Then a double counting argument is used again to show that |Bn|/|Gn| → 0. The strategy for
Ex(C6) and Ex(C7) is very similar but there are more types of blocks to consider, making the situation
a bit cumbersome.

Let us proceed with the proof. We partition the blocks attached to v. Using Lemma 4, they can be
partitioned into the following classes:

1. blocks contributing to deg(v) at most log k
log log k . That is, these are blocks whose root degree is at most

log k
log log k .

2. blocks of type K2,t with t >
log k

log log k .
3. blocks of type K+

2,t ′ with t ′ >
log k

log log k .

Let ri be the number of blocks of class i and denote by ki the total contribution of edges belonging to
a block of class i to deg(v). Clearly, k = k1 + k2 + k3, and also observe that r1 ≥

k1 log log k
log k and that

ri <
ki log log k

log k for i = 2, 3.
In order not to run out of pendant vertices, let now c = min(

ϵ/2
1+ϵ

, 1
4α). From G we construct now

a class of graphs, as follows.
• Choose a set U of h (hwill be determined below) pendant vertices and delete their adjacent edges.

Maintain vertex v and delete all its adjacent edges. Choose three vertices from U , eliminate them
from U andmake them neighbors of v. Call themw.l.o.g. v1, v2, v3 and assume that their labels are
sorted increasingly. Choose ⌈cr1⌉ vertices fromU , eliminate them fromU andmake themneighbors
of v1. Attach the roots of all blocks of class 1 in all possible ways to any of the previously added
⌈cr1⌉ vertices.

• Choose r2 vertices fromU , eliminate them fromU (each of them representing a block of class 2) and
make them neighbors of v2. For each block of class 2 of type K2,ti (i = 1, . . . , r2) choose 1 + ⌈cti⌉
vertices from U , eliminate them from U , and connect all of them to the previously added vertex
that represents the ith block of this class. Let xi be the vertexwith smallest label among the 1+⌈cti⌉
vertices added (i = 1, . . . , r2). For each block K2,ti of G, define z0i to be the other vertex apart from
v of degree ti, and let z1i , . . . , z

ti
i be the vertices of degree 2. In our construction, we delete all edges

belonging to the original block and we add the following edges: z0i is connected with xi, and we
connect each of the vertices z ji (j ≥ 1) in all possible ways to any of the previously added ⌈cti⌉
vertices excluding xi.

• For blocks of class 3, do the analogous steps as for blocks of type 2.

Observe that the new vertices have been added in a tree-like way in this construction, that is, we
have not created any cycle that did not exist in the original graph. In particular, if G ∈ Ex(C5), so are
all the newly constructed graphs. Also observe that the number of pendant vertices h used satisfies
h ≤ ck(1 + o(1)) < αn/3.

We proceed to count the number of different graphs we obtain by applying this construction to
one graph of B ′

n. To simplify notation, we will ignore ceilings. We obtain at least
2αn/3

h


h

cr1, r2, ct1 + 1, . . . , ctr2 + 1, r3, ct ′1 + 1, . . . , ct ′r3 + 1, 3


r2!r3!

× (cr1)r1


r2
i=1

(cti)ti


r3
i=1

(ct ′i )
t ′i


(2)

many graphs, since there are at least
2αn/3

h


ways to choose h pendant vertices not incident to v,

which then have to be partitioned into the different groups explained before (yielding themultinomial



54 O. Giménez et al. / European Journal of Combinatorics 55 (2016) 41–61

coefficient). The factors r2! and r3! come from the fact that blocks of class 2 and 3 are distinguishable
because of their labels, hence any permutation of the r2 and r3 verticeswill give rise to different graphs.
The last group of three vertices in the multinomial coefficient corresponds to the vertices v1, v2, v3
(there is no 3!, since the roles of these vertices are determined by their labels). The remaining factors
count the possible ways to do the connections between the r1 vertices and the added cr1 vertices,
between the added ti vertices and the added cti vertices, and between the t ′i and the ct ′i .

Since different original graphs may give rise to the same new graph, we have to divide the total
number of constructions by the number of preimages of a new graph. This number is as before atmost
n · nh, since we first must guess the vertex v of the original graph (this gives the factor n) and then
we have to redistribute the h newly added vertices as pendant vertices (for those we have at most nh

choices).
Our goal is to show that the total number of newly constructed graphs divided by the number of

preimages of a new graph tends to infinity as n increases, hence contradicting the assumption that
|Bn| ≥ µ|Gn| for infinitely many values of n.

Note that the following expression is a lower bound of (2).

(1/2)k log log k/ log k

1
3
(α − c)n

h

(cr1)(1−c)r1
r2
i=1

(cti)(1−c)ti
r3
i=1

(ct ′i )
(1−c)t ′i ,

where we have used that h = ck(1 + o(1)), k < n so that 1
6 (

2
3αn)!/(

2
3αn − h)! is bounded from

below by ( 1
3 (α − c)n)h; we also used that for any g > 0 it holds that (cg)g/(cg)! ≥ (cg)(1−c)g , and

that for any g such that cg ≥ 3 it holds that (cg)g/(cg + 1)! ≥ (cg)(1−c)g , and for smaller values of cg ,
(cg)g/(cg + 1)! ≥

1
2 (cg)

(1−c)g , giving the additional (1/2)k log log k/ log k leading factor.
We now divide by the number of preimages n ·nh, and then we take logarithms. Hence, noting that

k2 =
r2

i=1 ti and k3 =
r3

i=1 t
′

i , we obtain

− log n + o(k) + O(h) + (1 − c)r1 log r1 + O(r1) + (1 − c)
r2
i=1

ti log ti + O(k2)

+ (1 − c)
r3
i=1

t ′i log t
′

i + O(k3).

By Lemma 7,
r2

i=1 ti log ti is minimal when all ti are equal, and the same applies to the t ′i . Hence, the
previous expression is bounded from below by

− log n + O(k) + (1 − c + o(1))

r1 log r1 + k2 log

k2
r2

+ k3 log
k3
r3


. (3)

Now, letting ki = βik for i = 1, 2, 3, we obtain

r1 ≥
k1 log log k

log k
= β1

k log log k
log k

,

and thus

r1 log r1 ≥ β1
k log log k

log k
(log k + o(log k)) = β1k log log k(1 + o(1)).

Also, recall that r2 ≤
k2 log log k

log k , so that

k2
r2

≥
log k

log log k
,

and the term k2 log
k2
r2

in (3) is at least

k2 log
k2
r2

≥ k2 log log k(1 + o(1)) = β2k log log k(1 + o(1)).
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By the same argument, k3 log
k3
r3

≥ β3k log log k(1 + o(1)). As β1 + β2 + β3 = 1, one of the βi has to
be at least 1

3 , hence we can safely ignore the term O(k) in (3). The expression in (3) is thus bounded
from below by

(1 + o(1))(1 − c)k log log k − log n,

which by our choice of c tends to infinity, as desired. �

Theorem 12. Let C > 0 be a sufficiently large constant. In the class Ex(C6), w.h.p.

∆n ≤ C
log n

log log log n
.

Proof. The proof starts as for Ex(C5). Let G = Ex(C6) and let Bn ⊆ Gn be the class of graphs with

∆n > C log n/ log log log n.

We assume for contradiction that there is some constantµ such that |Bn| ≥ µ|Gn| infinitely often. Let
alsoB ′

n ⊆ Bn be the class of graphs that has at least αn pendant vertices, andwhich is such that every
vertex is adjacent to at most 2 log n/ log log n pendant vertices. Again, we have |B ′

n| = (1+o(1))|Bn|.
Let G be a graph in B ′

n and let v be a vertex of G such that

k = deg(v) >
C log n

log log log n

for some constant C large enough, and since G ∈ B ′
n, there are at least 2αn/3 pendant vertices not

incident to v. We partition the blocks attached to v into different classes (see Lemma 5):

1. blocks contributing to deg(v) at most log k
log log k .

2. blocks of type K2,s and K+

2,s with s >
log k

log log k .
3. blocks of type H2,s,t or H∗

2,s,t .
4. blocks of typeH2,s,t orH∗

2,s,t (see the remark after Lemma 5).

Choose a set U of h pendant vertices not incident to v and delete their adjacent edges. Maintain vertex
v and delete all its adjacent edges. We now have a bounded number N of subclasses represented by
classes 1 to 4 and the possible cases in the definition of H∗

2,s,t ,
H2,s,t andH∗

2,s,t . For each subclass i, let ri
be the number of blocks of subclass i incident with v. For each i, take a pendant vertex wi from U and
make it adjacent to v, and sort the wi in increasing order of the labels. For each i (except for class 1),
take ri pendant vertices from U and make them adjacent to wi. Let c = min(1 −

3N
C , 1

4α). Note that
for C < 3N the expression for c is negative, so the assumption that C is sufficiently large in particular
also implies that C ≥ 3N .

For blocks in classes 1 and 2 (they give rise to r1, r2, r3), the ri play the same role as in the proof of
Theorem 11, and we append the same construction as there.

For blocks of type H2,s,t the construction is very similar; they behave like the graphs K2,s, but with
two sets, of size s and t , of vertices of degree two. For each block of type H2,s,t , we add two new sorted
vertices from U and make them adjacent to the vertex representing the block. Take 2 + cs and 2 + ct
vertices fromU (ignoring ceilings from now on) and connect them, respectively, to the two previously
added vertices. Let x0, x1 and y0, y1, respectively, be the vertices with smallest labels (in this order)
among the 2 + cs and the 2 + ct added vertices. Delete all edges belonging to the original block and
attach the s vertices to the newly added cs vertices (excluding x0 and x1) in all possible ways, and do
the same for the t vertices (excluding y0 and y1). Also, connect x0 to v1 (notation as in Lemma 5), x1 to
v2, and y0 to v3, y1 to v4. For blocks of type H∗

2,s,t the construction is exactly the same; the fact that the
different subclasses are identified by the labels as well as the special role of v1, v2, v3, v4 guarantees
unique reconstruction. Finally, consider blocks of type H2,s,t , and assume without loss of generality
that v2 plays the role of v. In this case we add only cs + 4 vertices from U and make them adjacent
to the vertex representing the block. Let x0, x1, x2 and x3 be the vertices with the four smallest labels
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(in this order). Delete all edges inH2,s,t emanating from v and v2, all edges between special vertices,
and connect all the s non-special neighbors of v2 to the cs vertices (excluding x0, x1, x2 and x3) in all
possibleways. Connect x0 to v, x1 to v3, x2 to v1, and x3 to v4. As before, the same construction is applied
forH∗

2,s,t (the only difference being that all optional edges are deleted as well); as before, the special
roles and the different labels of different subclasses provide all information for unique reconstruction.

Since no new cycle is created, given v and the new graph, we can uniquely determine the original
graph it comes from. Observe also that we used only h ≤ ck(1 + o(1)) pendant vertices. As before,
we count the number of different graphs we obtain by applying this construction, yielding similar
multinomial coefficients and other factors. Dividing by the number of preimages of a newgraph,which
is at most nh+1, and taking logarithms, we obtain

− log n + o(k) + O(h) + (1 − c)r1 log r1 + O(r1) + (1 − c)
r2
j=1

(sj)2 log(sj)2 + O(k2)

+ (1 − c)
r3
j=1

(sj)3 log(sj)3 + O(k3) + (1 − c)


i≥4,i∈T

ri
j=1

(sj)i log(sj)i

+ (1 − c)


i≥4,i∈T ′

ri
j=1

(tj)i log(tj)i + O


i≥4

ki


,

where we denote by ki the total contribution of blocks of subclass i to the degree of v, and by (sj)i and
(tj)i the corresponding sizes of the jth block of subclass i ≥ 2; both sets T and T ′ contain all indices
of subclasses belonging to blocks H2,s,t or H∗

2,s,t , T contains in addition to this all indices of subclasses
of blocks of type H2,s,t and H∗

2,s,t with v2 playing the role of v, and T ′ contains in addition to this
all subclasses of blocks of typeH2,s,t andH∗

2,s,t with v3 playing the role of v. This distinction is needed
since in the cases ofH2,s,t andH∗

2,s,t only one of the two sums above has to be counted. Supposew.l.o.g.
that the contribution of all (tj)i to the degree of v is at most k/2, and we may ignore this contribution
above. Define then for 1 ≤ i ≤ 3, k′

i = ki, and for i ≥ 4, let k′

i =
ri

j=1(sj)i. Note that k′

i counts the
contribution of the ith subclass to the degree of v coming from the (sj)i only. Clearly, k′

i ≤ ki and by
assumption


i≥1 k

′

i ≥ k/2. By Lemma 7, the previous expression is at least

− log n + O(k) + (1 − c + o(1))


r1 log r1 +


i≥2

k′

i log
k′

i

ri


. (4)

Since


i≥1 k
′

i ≥ k/2, there exists some 1 ≤ i ≤ N with k′

i ≥ k/(2N). If this is true for i = 1, then

r1 log r1 ≥
k′

1 log log k
log k

(log k1 + o(log k1)) =
k log log k

2N
(1 + o(1)).

Otherwise, if i ≥ 2, since k′i
ri

≥
log k

2N log log k , as before, k
′

i log
k′i
ri

≥
k log log k

2N (1 + o(1)). Thus, by our choice
of c , for C sufficiently large, (4) tends to infinity as desired. �

In the class Ex(C7), the right order of magnitude of the expected maximum degree changes,
compared to Ex(C5) and Ex(C6). Before going into the proof, we give some intuition about the different
behavior in Ex(C7). The existence of a component Vs,t,E as described in Lemma 6, and in particular the
existence of t stars of different degrees qi inside one block, gives rise to new constructions. In order
to ensure many constructions, both for the number of stars t (call this the first level), as well as for
their degrees qi (call this the second level), choices have to be made: if there were few stars of a high
degree, only on the second level many choices can be made, but if, however, there are many stars of
small degree, on the first levelmany choices can bemade. For amediumnumber of starswithmedium
degree, on both levels some choices can be made. These two choices imply that the definition of small
has to be changed, and the trade-off between the contribution of small blocks and other larger blocks
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(which give different types of contributions in the proofs) gives rise to an additional application of the
logarithm. We now state the result for this class.

Theorem 13. Let C > 0 be a sufficiently large constant. In the class Ex(C7), w.h.p.

∆n ≤ C
log n

log log log log n
.

Proof. Let G = Ex(C7). The proof starts as for Ex(C5) and Ex(C6). Let Bn ⊆ Gn be the graphs with

∆n > C log n/ log log log log n.

We assume once more for contradiction that there is some constant µ such that |Bn| ≥ µ|Gn|

infinitely often. As in the previous proofs, let B ′
n ⊆ Bn be the class of graphs that has at least αn

pendant vertices, and which is such that every vertex is adjacent to at most 2 log n/ log log n pendant
vertices. Again, |B ′

n| = (1 + o(1))|Bn|. Let G be a graph in B ′
n and let v be a vertex of G such that

k = deg(v) >
C log n

log log log log n

for some constant C large enough, and since G ∈ B ′
n, there are at least 2αn/3 pendant vertices not

incident to v. As before, we partition the blocks attached to v into different classes. Using Lemma 6,
whose notation is used in the following (see also the remark following Lemma 6), we may partition
them into

1. blocks contributing to deg(v) at most log k
log log log k

2. blocks of type K2,s, K+

2,s, H2,s,t , H∗

2,s,t ,H2,s,t andH∗

2,s,t
3. blocks of type Ss,t,u,w , Vs,t,E , and the corresponding graphs S∗

s,t,u,w , V
∗

s,t,E

4. blocks of typeSs,t,u,w ,Vs,t,E , and the corresponding graphsS∗
s,t,u,w ,V ∗

s,t,E .

Choose a set of U of h pendant vertices not incident to v and delete their adjacent edges. Maintain
vertex v and delete all its adjacent edges.We still have a bounded number of subclassesN represented
by the different classes and the possible optional edges. For each subclass i, let ri be the number of
blocks of subclass i incident with v. For each i, take a pendant vertex wi from U and make it adjacent
to v, and sort the wi in increasing order of the labels. For each i (except for those subclasses belonging
to class 1), take ri pendant vertices from U and make them adjacent to wi. Let c = min(1 −

9N
C , 1

4α).
As before, we assume that C is large enough and in particular C ≥ 9N , so that c is positive.

For blocks in classes 1 and 2, we proceed as in the proof of Theorems 11 and 12. We ignore ceilings
and justify after the constructions that they may be safely disregarded. For blocks Ss,t,u,w and S∗

s,t,u,w
the construction is very similar as before: for the new vertex b (among the ri added ones) representing
a block of such a subclass, take three sorted vertices b1, b2, b3 from U and make them adjacent to b.
Take 5 + cs, (ct , cu, respectively) vertices from U , and attach them to the first of these sorted vertices
(second and third, respectively). Denote by x1, x2, x3, x4, x5 the vertices with smallest labels (in this
order) of the first group. Delete all edges from the original block except for the edges incident to the
w vertices (excluding v, v1, v3, v5, if the edges are present) that are connected with both v2 and v4.
Append the special vertices v1, v2, v3, v4 and v5 to the vertices x1, x2, x3, x4, x5 in this order. Connect then
the s vertices (which originallywere adjacent to v and v2) to the cs vertices of the first group (excluding
x1, . . . , x5) in all possible ways, and do the analogous construction for the t and u vertices. Note that
this time we might construct cycles of length 6 (of the type b1, x2, v2, a, v4, x4), where a is one of the
w vertices connecting v2 and v4, but by the special roles of special vertices unique reconstruction is
still guaranteed.

For blocks of type Vs,t,E and V ∗

s,t,E , and its corresponding vertex b representing the block, take eight
sorted vertices b1, . . . , b8 from U and make them adjacent to b. Take ce1, ce2, ce3, ce4 elements from
U and add them to b1, b2, b3, b4, respectively. Take 5+cs elements fromU (call the vertices with the 5
smallest labels x1, . . . , x5, in this order, as before),make themadjacent to b7, and take ct elements from
U andmake them adjacent to b8. From the original block delete all edges emanating from v, v2, v4, all
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edges between special vertices, all edges going between v3 and any of the e1, e2 vertices of the first
and second group of E. For the e3 graphs of the third group of E, for any i, 1 ≤ i ≤ e3, the edges
between the vertices of degree qi (different from v3) and its qi neighbors of degree 2 are retained, and
all others are deleted, and analogously for the e4 graphs of the fourth group. For the e5 and e6 graphs
of the fifth and sixth group of E, all edges of it are deleted if the vertex of degree qi (different from v)
satisfies qi >

log log log n
log log log log n , otherwise all edges going between the vertex of degree qi (different from

v) and its qi neighbors different from v and v3 are retained and the others are deleted. Now, connect
v1, . . . , v5 with x1, . . . , x5. For the e1 vertices originally connecting v and v3, connect them to the ce1
vertices (which were attached to b1) in all possible ways. For the e2 pairs adjacent to each other and
both connecting v and v3, connect the one with smaller label in all possible ways to the ce2 vertices
attached to b2 (recall that the edge connecting such a pair is not deleted). For the e3 and e4 double
stars K2,qi , connect all vertices of degree qi (different from v3) and its pending qi neighbors with the
ce3 and ce4 vertices attached to b3 and b4, respectively, in all possible ways. For the e5 graphs K2,qi
emanating from v (of degrees q1, . . . , qe5 ), take

c
2 e5 vertices from U , attach them to b5, and connect

each of the e5 vertices z1, . . . , ze5 of degree q1, . . . , qe5 to the c
2 e5 vertices in all possible ways. Then,

for each of the zi (1 ≤ i ≤ e5), do the following: if qi ≤
log log log n

log log log log n , do nothing (recall that the
neighbors of zi are still pending). Otherwise, take c

2qi vertices from U and make them adjacent to zi.
Connect each of the qi vertices (originally neighbors of zi) in all possible ways to the newly attached
c
2qi vertices. The analogous construction is done for e6 (with b6 instead of b5). Finally, connect the s
vertices originally connecting v and v2 (excluding special vertices) with the group of cs new vertices
(excluding x1, . . . , x5) attached to b7 in all possible ways. Similarly, connect the t vertices originally
connecting v and v4 with the group of ct new vertices attached to b8 in all possible ways. Here, the
graph constructed is always a tree, and reconstruction is unique.

For blocks of typeSs,t,u,w andS∗
s,t,u,w , the strategy is similar as before. Assume without loss of

generality that v2 plays the role of v. In this case we take three vertices from U (sorted) and make
them adjacent to the vertex representing this block. Take 5 + cs new vertices from U , make them
adjacent to the first one, then cu further ones, make them adjacent to the second one, and finally
another cw, which are made adjacent to the third one. All edges are deleted except for edges between
v4 and its t non-special neighbors that were also connected with v. The 5 vertices of the first group
with smallest labels are connected to special vertices, and the s, u and w neighbors of v2 (except for
special vertices) are, as before, connected in all possible ways with the cs, cu and cw vertices of the
respective groups. Observe that the constructed graph is a tree.

For blocks of typeVs,t,E andV ∗

s,t,E , either of v2, v3, v4 or any of the external vertices in double stars
of degree q ≥

C log n
log log log log n arising in the groups e3, e4, e5, e6 may play the role of v. In all cases, edges

between special vertices are always deleted. If v3 plays the role of v, all edges between v2 and its s
neighbors that are connected with v, and all edges between v4 and its t neighbors that are connected
with v are retained; for the others deletion is as for Vs,t,E and V ∗

s,t,E with v3 playing the role of v. Inmore
detail, for each vertex b representing a block of such a subclass, six sorted vertices b1, . . . , b6 from U
are added, 5 extra vertices taking care of special vertices are attached to b1, say, and the previous
constructions restricted to b1, . . . , b6 with v3 playing the role of v is performed. If v2 or v4 (assume v2
without loss of generality) plays the role of v, all edges emanating from a neighbor of v2 are deleted (in
particular, all edges emanating from v3). For each block of such a subclass with b the newly attached
vertex representing the block of this subclass, add 5 + cs vertices to b. The 5 vertices with smallest
labels (in order) are attached to v, v1, v3, v4 and v5, respectively. The s vertices originally connected
to v2 are then connected in all possible ways to the cs vertices excluding the 5 special vertices. Note
that cycles of length 6 such as b, x2, v, a, v4, x4, bwith a being one of the t vertices connecting v with
v4 can occur and x2 (x4, respectively) one of the special neighbors of b to which v (v4, respectively) is
attached, but the special role of the special vertices still guarantees unique reconstruction. For the s
edges emanating from v2 the usual reconstruction is performed (againwith 5 special vertices assuring
unique reconstruction, and another cs vertices to which the s vertices may connect in all possible
ways). If any of the external vertices a of degree q plays the role of v, say w.l.o.g. a neighbor of v, the
procedure is very similar: all edges emanating from a neighbor of a, in particular all edges emanating
from v, are deleted. Then, 5 + cq vertices are taken from U , and the q neighbors of a are connected in
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all possible ways to the cq new vertices (the 5 vertices take care of special vertices). Note that again
cycles of length 6 can be constructed (in case a is a neighbor of v3), but by the special roles of special
vertices reconstruction is still unique.

Observe that the largest cycle created is of length at most 6, and in all cases the special vertices
guarantee unique reconstruction. Observe also that the number of pendant vertices used is at most
h = ck(1 + o(1)): for contributions of type e5 and e6 in components Vs,t,E, V ∗

s,t,E (and of type e3 and
e4 in components Vs,t,E, V ∗

s,t,E with v3 playing the role of v), at the first level c
2 e5 vertices are used,

and at the second level, at most c
2

e5
i=1 qi(1 + o(1)) (note that ceilings may be safely disregarded, as

only for sufficiently large qi these vertices are chosen), and since e5 ≤
e5

i=1 qi, the total number is at
most c

e5
i=1 qi. For the other contributions it is obvious. As before, for each case we count the number

of different graphs we obtain by applying this construction, yielding similar multinomial coefficients
and other factors as before. Then we divide by the number of preimages of a new graph, which is at
most nh+1, and take logarithms. Similar calculations as before show that the most negative term is
− log n, coming from the choice of the vertex v. Recall that N is the total number of subclasses.

Now, if at least k/N of the degree of v is in blocks of size at most log k
log log log k , then the number of such

blocks r1 is at least
k log log log k

N log k . By the same arguments as before, the constructions of these blocks give

a term r1 log r1 ≥
k log log log k

N log k (log k + o(log k)) =
k
N log log log k(1 + o(1)), and for c as chosen and

C large enough this is bigger than the (negative) term log n. Otherwise, suppose that at least k/N of
the degree of v results from any fixed subclass of blocks excluding Vs,t,E or V ∗

s,t,E (and also excludingVs,t,E andV ∗

s,t,E with v3 playing the role of v). Letting rj denote the number of such blocks, by similar
calculations as before, as there is only one level of choice, we obtain a positive term Θ(k log k

rj
). Since

rj ≤
k log log log k

log k ,

Θ


k log

k
rj


= Ω(k log log k),

which is asymptotically bigger than log n.
Hence, assume that k/N of the degree of v comes froma subclass j inVs,t,E orV ∗

s,t,E (orVs,t,E andV ∗

s,t,E
with v3 playing the role of v), and assume without loss of generality that it belongs to the class Vs,t,E .
Let again rj ≤

k log log log k
log k be the number of blocks of this subclass. If at least k/(2N) of the total degree

comes from contributions of the groups of s, t , e1, e2, e3, e4 in the blocks of Vs,t,E , then, as before, only
considering those terms, as there is one level of choice, we obtain a term Θ(k log k

rj
) = ω(log n).

Hence, we may assume without loss of generality that k/(4N) of the total degree comes from
contributions of group e5. Once more, we split this into two subcases: if at least k/(8N) of the total
degree comes from double stars K2,q with q ≤

log log log n
log log log log n , then at least z ≥

k log log log log n
8N log log log n such double

stars K2,q are needed. Denote by zi the number of double stars inside the ith block to z, for 1 ≤ i ≤ rj.
Each such block gives a term zi log zi, and the total contribution is by Lemma 7 minimized when the
number of double stars is equally split among all blocks. Assuming the worst case of rj =

k log log log k
log k

and z =
k log log log log n
8N log log log n , the total contribution is thus at least

(1 + o(1))(1 − c)

z log

z
rj


= (1 + o(1))(1 − c) (z log log log n) = (1 + o(1))(1 − c)

C log n
8N

,

which for our choice of c and C large enough is bigger than log n. If on the other hand at least k/(8N)

of the total degree comes from double stars K2,q with q >
log log log n

log log log log n , then first observe that the

number z of double stars K2,q contributing to the total degree satisfies z ≤
k log log log log n
8N log log log n . Recall that qi

denotes the degree of the ith double star for 1 ≤ i ≤ z. Clearly,
z

i=1 qi ≥ k/(8N). Each such double
star on the second level of choice gives rise to a term (1 − c)qi log qi. Assume again the worst casez

i=1 qi = k/(8N) and z =
k log log log log n
8N log log log n . This contribution is, once more by Lemma 7, minimized if
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the contribution is split evenly, that is, qi =
k

8Nz , and in this case we obtain

(1 + o(1))(1 − c)


k
8N

log
k

8Nz


= (1 + o(1))(1 − c)


k
8N

log log log log n


= (1 + o(1))(1 − c)
C log n
8N

,

which for our choice of c andC large enough again is bigger than log n. Hence, in all cases,C(n)/R(n) →

∞, as desired, and the proof is finished. �

5. Conclusion and open problems

Our work suggests several conjectures and open problems.

1. We conjecture that the lower bound

∆n ≥ c
log n

log(ℓ+1) n

for the class Ex(C2ℓ+1) is of the right order of magnitude. The proofs for Ex(C5) and Ex(C7) seem
difficult to adapt for arbitrary ℓ.

2. We conjecture that the asymptotic behavior of∆n is the same for Ex(C2ℓ) as for Ex(C2ℓ−1). We have
shown this is the case for ℓ = 2 and ℓ = 3.

3. We conjecture an upper bound of the form

∆n ≤ c log n

for the class Ex(H1, . . . ,Hk), whenever the Hi are 2-connected (see also the concluding remarks
of [11], where this question was also asked). Examples show that this is not true for arbitrary H
(see the discussion below). Using analytic methods, this upper bound can be proved for so-called
subcritical classes of graphs (see [6]), which include outerplanar and series–parallel graphs.

4. Which are the possible orders ofmagnitude of∆n when forbidding a 2-connected graph?Assuming
the truth of the conjecture in item1, are there other possibilities besides log n and log n/ log(k+1) n?

5. Which are the possible orders of magnitude of ∆n for arbitrary minor-closed classes of graphs?
Besides those discussed above, examples show that it can be constant (forbidding a star) and it
can be linear (forbidding two disjoint triangles). The last statement follows from [10], where it is
shown that the class Ex(C3 ∪C3) is asymptotically the same as the class of graphs G having a vertex
v such that G − v is a forest.

6. Is it true that if H consists of a cycle and some chords, all of them incident to the same vertex, then
∆n = o(log n) holds in Ex(H) w.h.p.? These are the 2-connected graphs that are a minor of some
fan Fn, so that the proof of the first part in Theorem 3 does not hold.

7. Prove an upper bound ∆n ≤ c log n for series–parallel graphs without using the analysis of
generating functions as in [4]. More generally, prove such a bound for graphs of bounded tree-
width (series–parallel graphs are those with tree-width at most two). For outerplanar graphs this
is easy, but we decided to leave out the proof of this result.
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