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1. Introduction

A class of labeled graphs ¢ is minor-closed if whenever a graph G is in § and H is a minor of G,
then H is also in §. A basic example is the class of planar graphs or, more generally, the class of graphs
embeddable in a fixed surface.

All graphs in this paper are labeled. Let G, be the graphs in § with n vertices. By a random graph
from § of size n we mean a graph drawn with uniform probability from §,. We say that an event A
in the class g holds with high probability (w.h.p.) if the probability that A holds in §, tends to 1 as
n — oo. Let A, be the random variable equal to the maximum vertex degree in random graphs from
Gn. We are interested in events of the form

Ap < f(n) w.h.p.
and of the form

An > f(n) w.h.p.
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Typically f (n) will be of the form c log n for some constant c, or some related functions. We say that
f(n) = 0(g(n)) if there exist an integer ng and a constant ¢ > 0 such that [f(n)| < c|g(n)| for all
n > no, f(n) = $2(g(n)), if g(n) = O(f(n)), and finally f (n) = ©(g(n)), if both f (n) = O(g(n)) and
f(n) = £2(g(m)) hold. Also, f(n) = w(g(n)), if lim,_, [f(M)|/|g(M)| = o0, and f(n) = o(g(n)), if
g(n) = w(f(n)). Throughout this paper log n refers to the natural logarithm.

A classical result says that for labeled trees A, is of order log n/ loglogn (see [13]). In fact, much
more precise results are known in this case, in particular that (see [2])

An

————— — 1 in probability.
logn/loglogn

Many more results about the distribution of maximum degree, its concentration, and several different
models of randomly generated trees can be found in the survey of [9].

McDiarmid and Reed [ 12] show that for the class of planar graphs there exist constants 0 < ¢; < ¢;
such that

cilogn < A, < cplogn w.h.p.

More recently this result has been strengthened using subtle analytic and probabilistic methods [5],
by showing the existence of a computable constant ¢ such that
Ay . -
—— — ¢ in probability.
logn
For planar maps (planar graphs with a given embedding), more precise results on the distribution of
A, can be found in [7,3,8].

Analogous results have been proved for series—parallel and outerplanar graphs [4], with suitable
constants. Using the framework of Boltzmann samplers, results about the degree distribution of
subcritical graph classes such as outerplanar graphs, series—parallel graphs, cactus graphs and clique
graphs can also be found in [1]. This paper also contains conjectures of the exact values of cop (csp,
respectively) so that the maximum degree in outerplanar graphs (series-parallel graphs, respectively)
will be roughly cop log n (csp log n, respectively).

The goal in this paper is to analyze the maximum degree in additional minor-closed classes of
graphs. Our main inspiration comes from the work of McDiarmid and Reed mentioned above. The
authors develop proof techniques based on double counting that assume only mild conditions on the
classes of graphs involved. We now explain the basic principle.

Let § be a class of graphs and suppose we want to show that a property P holds in § w.h.p. Let B,
be the graphs in §, that do not satisfy P (the ‘bad’ graphs). Suppose that for a constant fraction ¢ > 0
of graphs in 8, we have a rule producing at least C(n) graphs in 4, (the ‘construction’ function). A
graph in §, can be produced more than once, but assume every graph in 4, is produced at most R(n)
times (the ‘repetition’ function). By double counting we have

a|B,|C(n) < |GalR(n),
hence
Bl _ R
[Gn] — C()

If the procedure is such that C(n) grows faster than R(n), that is R(n) = o(C(n)), then we conclude
that |8,| = 0o(]%al), that is, the proportion of bad graphs goes to 0. Equivalently, property P holds
w.h.p. We often use the equivalent formulation C(n)/R(n) — oc.

We will apply this principle in order to obtain lower and upper bounds on the maximum degree for
several classes. In this context, lower bounds are easier to obtain, and only in some cases we are able
to prove matching upper bounds. The proof of the upper bound for planar graphs in [ 12] depends very
strongly on planarity, and it seems difficult to adapt it to general situations; however we obtain such
a proof for outerplanar graphs. On the other hand, we develop new tools for proving upper bounds
based on the decomposition of a connected graph into 2-connected components.
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Here is a summary of our main results. We denote by Ex(H) the class of graphs not containing H
as a minor. All the claims hold w.h.p. in the corresponding class, and c, ¢; and ¢, are suitable positive
constants. The fan graph F, consists of a path with n — 1 vertices plus a vertex adjacent to all the
vertices in the path.

e In Ex(C4) we have, forall ¢ > 0,

logn logn
C-6)—F—— =A== QAT
loglogn log logn
e In Ex(Cs) we have, forall e > 0,
logn logn
( —G)L <A, =(1 +6)L.
logloglogn logloglogn
e In Ex(Cg) we have
lo 1
o8N A <81
logloglogn logloglogn
o In Ex(C7) we have
lo 1
o— 8N p < BN
loglogloglogn loglogloglogn
e If H is 2-connected and contains Cy,1 as a minor, then in Ex(H) we have
logn
= Clogtriy’

where log“*tV n = log - - - logn, iterated £ + 1 times.
If H is 2-connected and is not a minor of F, for any n, then in Ex(H) we have

A, > clogn.

The results on Ex(H) also hold when forbidding more than one graph as a minor, as discussed in
the next section.

Organization of the paper. In Section 2 we prove the lower bounds for the maximum degree. In
Section 3 we determine the structure of 2-connected graphs in the classes Ex(Cs), Ex(Cs) and Ex(C7).
This is quite technical and based on case analysis. The reason we undertake this analysis is to exemplify
our technique for proving upper bounds and to show that different asymptotic estimates for the
maximum degree are indeed possible. The proofs for the upper bound are contained in Section 4.
We conclude with some remarks and several conjectures and open problems.

2. Lower bounds

A pendant vertex is a vertex of degree one. The following lemma follows from [11].
Lemma 1. Let Hy, ..., Hy be 2-connected graphs and let § = Ex(Hq, . .., Hy). Then there is a constant
o > 0such that a graph in §, contains at least an pendant vertices w.h.p.

To illustrate our proof technique, we reprove the following well-known result (see [13], and see [2]
for more precise results, as mentioned above), but without the need of enumerative tools.
Lemma 2. Let € > 0 be any constant. In the class of forests, w.h.p.

logn
1-—e)—— < A,.
loglogn

Proof. Let § be the class of forests, and 4, the class of forests with exactly n vertices. Let ¢ > 0 be

any constant and let B8, € §, denote the set of bad graphs with A, < (1 — €) log’ﬁ)gn, and suppose




44 0. Giménez et al. / European Journal of Combinatorics 55 (2016) 41-61

for contradiction that |B,| > ©|%,| for some p > 0, infinitely often. Our goal is to show that we can
obtain w(|8B;,|) new graphs in 4,, or equivalently, C(n)/R(n) — oo, contradicting |B,| > w®|%nl-
Consider the subclass 8], < B, of graphs in B, with at least an pendant vertices. By Lemma 1,
|8B;] = (1 + 0(1))|Byl. Let G be a graph in B;. Choose from the pendant vertices a subset of size

s+ 1, wheres = [(1 —¢) log’]go';nL and delete all their pendant edges. Among those choose a vertex,
call it v{, and make it adjacent to all other s vertices. Finally, choose a vertex u different from the s 4+ 1
chosen vertices, and make u adjacent to v, (we have atleastn—s > n/2 choices for u). In this way one
can construct at least (;1”1) (s+1) 5 graphs. From how many graphs G may the newly constructed graph
G' come? We identify vy as the only vertex with largest degree in G’ and u as the only non-pendant
neighbor of v;. In order to reconstruct G completely we only need to reattach the s 4 1 vertices in all
possible ways, which can be done in at most n**! ways. Hence

cm _ (GY6+Dn n@/2)

R(n) — 2nst1 - 2s!
Taking logarithms, this gives
C(m
log % > logn — slogs+ O(s) = logn — (1 —€)(1 4 0(1)) logn,
which tends to infinity. Hence, |8,| = 0(|$xl|), and thus w.h.p. (1 — e)lolg"l% < A, and the result
follows. O

Now we are ready to state new results that can be obtained using our techniques. In order to prove
alower bound for A, in a class ,, the basic idea is to generalize the previous proof. Take a graph G in
g, whose maximum degree is too small (a bad graph), take enough pendant vertices and make with
them a special graph S rooted at a special vertex v (in the previous proof a star rooted at its center),
and attach S to G through a single edge, producing a new graph G’ in . Then v becomes the unique
vertex of maximum degree s = |S|, and G can be reconstructed from G’ easily by reattaching the
vertices in S, which are neighbors of v in G'. Double counting is then used to show that the proportion
of bad graphs goes to 0 as n goes to infinity.

Theorem 3. The following claims refer to the class Ex(Hq, .. ., Hy).

1. Let c be a positive constant satisfying ¢ <
minor of a fan graph F,, then

m. If all the H; are 2-connected and none of them is a
Ap > clogn w.h.p.

This holds in particular if the H; are 3-connected or not outerplanar.
2. If all the H; are 2-connected and contain C4 as a minor (that is, all the H; are not Cs3), then for every
€ >0,

logn
Ay > (2—€)———— w.hp.
loglogn
3. If all the H; are 2-connected and contain Cs as a minor, then for every € > 0,
logn
Ay > (1—€)———— w.hp.
logloglogn

4. For £ > 3, let c = c(£) be a positive constant satisfying ¢ < 1/¢. If all the H; are 2-connected and
contain Cy¢1 as a minor for some £ > 3, then

logn

Tl)n w. h.p.

A c
log

Note that if all the H; are 2-connected, since every 2-connected graph contains C3 as a minor, the bound
Ay, > clogn/ loglog n always holds for ¢ < 1.
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Proof. Throughout the proof we will assume for contradiction that there is some constant & > 0
such that for each item and its corresponding graphs in 8, we have |B,| > |4,/ infinitely often.
Our goal is to show that we can obtain w(|8B,|) new graphs in §,, or equivalently, C(n)/R(n) — oo,
contradicting |B,| > |%xa|. Since, by assumption, |B,| > |4, as before, by Lemma 1, the subclass
B, < B, of graphs with at least an pendant vertices satisfies |8, | = (1 + 0(1))|8Bx|, and we will in
all cases below consider a graph of B;, where the definition of 8,, and thus of $;, changes from case
to case.

1.Let § = Ex(Hy, ..., Hy) and let B, € 4, be the graphs with A, < clogn, where c is a positive
constant satisfying ¢ < oz 2" and let h = [clogn].Let Gbe a graph in B, € B,. Choose an ordered
list vy, ..., v, of h pendant vertices in G, delete the edges joining the v; to the rest of the graph, and
make a copy of F, with a path v,, ..., v, and v adjacent to all of them. Select a vertex u of G different
from the v; and make it adjacent to v;. The graph G’ constructed in this way belongs to §,, since the
H; are 2-connected and none of them is a minor of a fan graph, and has the same number of vertices
as G.

The number of graphs constructed in this way is at least (where (m), denotes a falling factorial)

- = (4,

the last inequality being true for n large enough; we use the fact that h = [c log n] is small compared
with n.

How many times a graph G’ can be constructed in this way? Since G € 8By, v; can be identified as
the only vertex of degree h. Vertices v,, . . ., v, can be identified as the neighbors of v, inducing a path
(among the neighbors of vy, u is the only cut-vertex, and hence it can be identified easily). In order to
recover G, we delete all the edges among the v; and the edge v;u, and make vy, ..., vy adjacent to one
of the remaining vertices through a single edge. The number of possibilities is at most

n—n"<nh.
Summarizing, we can take C(n) = (a/2)"n"*1 and R(n) = n". Then

cm 1
2)clogn
Ry = "2

which tends to infinity if ¢ < log(2 T This finishes the proof.

2. Assume now that the H; contain C4 as a minor, that is, they all contain a cycle of length at least
four. As before, let § = Ex(Hy, ..., Hy), let B, C §, be the graphs with A, < (2 —€) logn/ loglogn,
andlets = [(2—e¢) logn/ loglogn].Let G be a graph in B;. Choose an (unordered) set of s+ 1 pendant
vertices v, ..., Us11 in G, and delete the edges joining the v; to the rest of the graph. Among those
choose one of them, say vq, and make it adjacent to all others. The other s vertices are paired up, and
vertices of pairs are made adjacent (if s is odd, one vertex remains unpaired). Finally, another pendant
vertex u is chosen and made adjacent to vy. Note that there are at least «n/2 choices for u. There
are thus at least( )(s + 1) ((s — D) (an/2) constructions, where 2k — H!! =1-3.-- 2k — 1).
The graph G’ constructed in this way belongs to §,, and has the same number of vertices as G. When
reconstructing G, vy can be identified as the unique vertex of maximum degree, and u is identified as
the only neighbor of v; adjacent to a vertex which is not a neighbor of v. Thus, only the s + 1 chosen
vertices have to be reattached, and there are at most n**! choices. Hence,

C(n) (H])( an) ((s+ D! (% )s+2 (s + D n

R(n) nst1 - s+ 1!
Using 2g — 1)!! = (2g)!/(28¢g!) and taking logarithms we obtain
log TE ; > logn — (s/2) logs + 0(s) = logn — (1 — (¢/2))(1 + o(1)) logn,

which tends to infinity, as desired.
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3. Now we may assume that the H; contain Cs as a minor. As before, let § = Ex(Hjy, ..., Hy) and let
By C G, bethe graphswith A, < (1—¢)logn/logloglogn,andlets’ = [(1—¢)logn/logloglogn].

Let F, i, be the following graph: take m disjoint copies of K;_ .1 (the complete bipartite graph K, ;1
plus an edge joining the two vertices in the part of size two), and glue them together by identifying a
vertex of degree n — 1in each copy. Notice that the longest cycle in F, ,, is C4, and that F, ,, hasmn+ 1
vertices. Let G be a graph in 8;. For an integer s < s’ to be made precise below, choose a set of s + 1
pendant vertices v, ..., Us11 in G, delete the edges joining the v; to the rest of the graph, and make
a copy of F; 5/ with the v;, where r is an integer to be determined later. Let v; be the vertex chosen to
be adjacent to all other v; (there are s + 1 choices for this vertex). Select a vertex u of G different from
the v; and make it adjacent to v;. The graph G’ constructed in this way belongs to 4, since the H; are
2-connected and have no cycle of length more than four, and has the same number of vertices as G.

The number of graphs constructed in this way is at least

() s+n(,, )

(s/m! ’

where the first binomial is for the choice of the pendant vertices; (s + 1) is for the choice of the center
vertex vy, the multinomial coefficient divided by (s/r)! stands for a lower bound on the number of
partitions of the s vertices into groups of size r; the factor r*/" for the choice of the vertices of degree
r in each group; and finally n/2 is a lower bound for the choices of the target vertex u. The number of
ways such a graph G’ can be constructed is at most n°*!, the argument is the same as before. Therefore,
for n large enough, we have

R(n) — (s/r)!ns+1 = ) (s/r)!

Taking logarithms in the last expression we obtain

C(n) - (S‘j—nl) (S+ 1) (r S r)rS/r% _ (%)S+l%rs/r

1
(1+0(1)) <(s+ 1)log% +10g5 + logn + Elogr—slogr — Elogf)
r r r

For the choices

, logn 2logs’
s=10-e——-F—1, r=|————
log loglogn eloglogs’
and s to be the largest integer smaller or equal to s’ with the property of being divisible by r (note that

s = (1+0(1))s’), we can safely ignore the term (s + 1) log(«/2) 4+ log(1/2) + (s/r) log r. Plugging in
these values of s and r into the remaining term, we obtain

(14 0(1)) (logn —slogr — s log E)
r r
> (14 0(1)) <logn — s(loglogs — logloglogs) — %slog logs)
€
> (140(1)) (logn — (1 + 5) slog logs>

> (14 0(1)) (logn - (1 + g) (1-¢) logn) ,

which tends to infinity, since (1 + %)(1 —€e) <1

4. As before, assume that the H; contain Cpyq as a minor, and let § = Ex(Hq,..., Hy). Let
B, € G, be the graphs with A, < clogn/log“*V n (where c is a small enough constant), and let
s = [clogn/log®*V n].

Let G be a graph in B;, C B,. Choose a set of s + 1 pendant vertices vy, ..., vs41 in G, delete the
edges joining the v; to the rest of the graph, and make a copy of the following graph F with the v;: first,
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as before, choose one special vertex, call it v{, and make it adjacent to all other v;. Group the remaining
v; (all except for vq) into groups of size r; = logs/ log'® s (we ignore rounding issues, taking care of
them below). Choose in each of the s/r; groups a center vertex. Call all center vertices to be vertices
at level 1. Iteratively, fori = 1, ..., £ — 2, do the following: group each group of size r; — 1 (from
each group we eliminate the center vertices at level i) into subgroups of size ri.; = log®™" s/log® s.
Choose in each subgroup a new center vertex, and call all center vertices chosen in this step to be
vertices at level i + 1. Connect each center vertex at level i with all center vertices at level i + 1
resulting from subgroups of the group of vertex i. Connect all center vertices at level £ — 1 with the
remaining vertices of its corresponding subgroup (those vertices not chosen as centers).

Observe that the graph F does not contain a Cy41, since in the construction we add a forest of
maximum path length 2(¢£ — 1) to a star centered at v, and thus the maximum cycle length is 2¢.

Next select a vertex u of G different from the v; and make it adjacent to vy. The graph G’ constructed
in this way belongs to ,, and has the same number of vertices as G. As before, we count the number
of different graphs obtained by applying this construction to one graph of B;. We obtain at least

=2 i
B G, TG )7 e
1

-1 Tit 15 Tit1

OIS
n .i:1 fix1 )"

many graphs, where the 8; = o(1) take into the account rounding issues and also the fact that in the

ith step only r; — 1 vertices are split into subgroups of size ri; (for example, we approximate %
by %; B2 accounts for the difference). Indeed, even for the last term S;_, the error term is bounded

from above by Zl_3 1 — o(1). By the same argument as in the proof of 2., a new graph can have

=17
s/1i

at most n*+! preimages. Thus, for n sufficiently large (the factors ;""" in the denominator are a lower

bound corresponding to the fact that the factors r; in the numerator do not exactly cancel), we have

1
cm _ In(1a)™ (= D)
R(n) — e s/ri(1+B)
(1) () eyl (e Tl ((520)1)
i=2 i=1
Taking logarithms, we obtain
s S 2 ri—1 ri—1
(14 0(1)) (logn +slog(r; — 1) —slogr; — — log — —slogr,_1 — — log .
| n = i Tt Tit1
Using slog(r; — 1) = slog(ry) + slog(1 — 1/r;) and rirr': log rrl,: < ﬁ log r;, we get that this
expression is at least
s S =2 s
(1+0(1)) logn——log——slogrg,1—Z—logri . (1)
n L5 =1 Ti+1

Plugging in the values r; = log® s/ log® s, all but the first term are (1 + 0(1))slog® s, and thus,
plugging in the value s = clogn/log“*V n, for ¢ < 1/¢, the expression in (1) tends to infinity. O

Remark. The 2-connected graphs which are a minor of some F,, consist just of a cycle and some chords,
all of them incident to the same vertex. In particular, if we forbid the graph consisting of a cycle of
length six vq, v,, V3, V4, Us, Vg and the chords v;v3 and v4vg, the condition of part 1 of Theorem 3 still
holds, and the conclusion that w.h.p. A, > c logn follows. The same also holds when forbidding the
6-cycle together with the chords vqvs, v3vs, vsv;.
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Fig. 1. The graph H, . with the notation as in Lemma 5, and with two optional edges (dashed).

3. Characterization of 2-connected graphs in Ex(Cs), Ex(Cs) and Ex(C7)

In this section we determine all 2-connected graphs in the classes Ex(Cs), Ex(Cg) and Ex(C;). This
is an essential ingredient for the proofs in the next section.

As usual, K5 , is the complete bipartite graph with partite sets of size 2 and n. Recall that KZ R
denotes the graph obtained from K; , by adding an edge between the two vertices of degree n. We
have the following:

Lemma 4. The only 2-connected graphs in Ex(Cs) are K3, Ky, Ko and K"

Sy form > 2.

Proof. Let G be a 2-connected graph in Ex(Cs). If G has at most three vertices, then it has to be Ks.
Otherwise, if G has exactly four vertices, then it is either C4, K, minus one edge, or K4. Otherwise,
suppose that G has at least 5 vertices. Let v, vq, v, v3 be the vertices in cyclic order of a C4 in G. Assume
without loss of generality that v has another neighbor different from v; and v3, and also different from
v,. Observe that a cannot be adjacent to v or v3, since this would create a Cs. By 2-connectivity, there
must exist a path from a to v, containing none of v, vy, vs. Since G is in Ex(Cs), it follows that a is
adjacent to v,. This holds for all neighbors of v different from v,. Thus, they must form an independent
set, and we obtain a copy of K, . The only edge that can be added while staying in Ex(Cs) is the edge
vy, giving rise to K3, O

Fors, t > 0, define the graph H, s ;, obtained by identifying a vertex v of degree s+ 1in K, s, 1 and a
vertex of degree ¢t + 1in K3 41, and by adding an edge between the other vertices v, and v; of degree
s+ 1and t + 1, respectively. Note that v has thus at least one common neighbor with v, call it v¢, and
at least one common neighbor with vs, call it v4 (see Fig. 1). We denote by H3  , any graph obtained
from H, s, by adding a subset of the edges between vertices x and y with x,y € {v, vq, v2, v3, v4},
unless they are creating a cycle of length 6 or longer (see Fig. 1). Observe that the subset of edges
allowed depends on the fact whether s or ¢ is different from 0 or not; only in the cases = t = 0 all
edges between special vertices can be added, yielding Ks.

Lemma 5. The only 2-connected graphs in Ex(Cs) are those in Ex(Cs), the graphs H, s ¢, and any graph of
the form H;" fors,t > 0.

st

Proof. Let G be a 2-connected graph in Ex(Cg). If G is in ExX(Cs), we apply the previous lemma. If G
contains Cs and has exactly 5 vertices, then G is either H, o o or H; ;. Otherwise let v, vy, v,, v3, v
be the vertices in cyclic order of a Cs in G (see Fig. 1). Call these vertices special. Observe that except
for possible edges between neighbors of v that are both special vertices, N(v) is an independent set.
Consider a non-special neighbor a of v. As in the proof of Lemma 4, by 2-connectivity, a is adjacent to
either v, or vs, but not both. Let A = N(v) N N(v;) — {vq1}, B = N(v) N N(v3) — {v4}, s = |A], and
t = |B|. With this notation, it can be checked that G is either H, ; ; oris in H; , ,, possibly with vz or v4
playing the role of v. O -

Remark. When later we refer to graphs H, 5 ; or in Hj ; , with v3 or vy playing the role of v, they will
be denoted as H; s+ and Hik,s,t'
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Fig. 3. The graph V;; ; with the notation as in Lemma 6 (e; = e; = 1,e3 = e4 = 0, e5 = eg = 1 with corresponding degrees
¢1 and g3 ), and with two optional edges (dashed).

Define the graph S; ; 4., to be the graph constructed as follows: start with a 6-cycle whose vertices
in cyclic order are v, vy, vy, v3, V4, Us, and call these vertices special. In addition there are w > 0
vertices connecting v, and vg4, S > 0 vertices connecting v with v,, t > 0 vertices connecting v
with vy, and u > 0 vertices connecting v with both v, and v, (in all cases excluding special vertices).
Define then by S}, , , any graph obtained by possibly adding any of the edges between special vertices
without creating a éycle of length 7 or more, see Fig. 2.

Finally, let V. be the following class of graphs: start with a 6-cycle v, vy, vy, v3, V4, Vs, again
called special vertices. There is a set A of s > 0 vertices connecting v with v,, and aset Boft > 0
vertices connecting v with v, (always excluding special vertices).

In addition, there is the following set of connections between v and v3 (not including vertices in A
or B or special vertices) specified by K = {eq, e;, e3, ey, €5, eg}. There are e; > 0 vertices connecting
v with vs3, and e, pairs of vertices which are adjacent to each other, and both are adjacent to both v
and vs. Furthermore, there are e disjoint graphs K; 4, (fori = 1, ..., e3) emanating from vs, and the
other vertex of degree q; is connected to v. For e4, the construction is the same, except that for these
graphs also the edge between v3 and the other vertex of degree q; is present. Finally, there are e5 and
eg disjoint graphs K, 4, which are as the graphs e; and e4, but with the roles of v3 and v exchanged. For
further reference, call the graphs of group e; and e, double stars of degree g; emanating from v5 (for
i=1,...,e3),and those of group es and ez double stars emanating from v of degree g;. All vertices
appearing in any of the six groups are disjoint and we refer to them as external vertices. Finally, V', ;
is the class of graphs obtained by possibly adding any of the edges between special vertices without
creating a cycle of length 7 or more (see Fig. 3 for an example).

Lemma 6. The only 2-connected graphs in Ex(C;) are those in Ex(Cg), the graphs Sg ¢ y.w, Vs.r.p and the
corresponding graphs S* %

s,t,u,w’ stE*
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Proof. Let G be a 2-connected graph in Ex(C;). If G is in Ex(Cg), we apply the previous lemma.
If G contains Cs and has exactly 6 vertices, then G = Spg00 OF G = S5, Otherwise, let
v, V1, VU, V3, Vs, Us be the vertices in cyclic order of a Cs in G, again called special. We distinguish
two cases now. In the sequel all new vertices considered are not special vertices.

Case 1: There is no other vertex a with the property that there are two internally vertex-disjoint
paths of length three from v to a. We distinguish between two subcases.

Case 1.1: Suppose first that there exist u > 1 vertices a € N(v) that are adjacent to both v, and
v4. Observe that the existence of such a vertex a implies that no external vertex e can be present in G,
as otherwise one would have a cycle of length at least 7 (namely, v, vy, v7, @, v4, v3, €, v). Hence, all
non-special neighbors of v can be partitioned into three sets A, B and C, where A is the set of s > 0
vertices connected only with v,, B is the set of t > 0 vertices connected only v4, and C is the set of
u > 1 vertices connected to both v, and vy4. This corresponds exactly to the graph S ; ,, ., with w = 0.
It is easy to check that except for edges yielding a graph in S}, , o, no edge can be added, as otherwise
a 7-cycle would be generated (see Fig. 2). o

Case 1.2: Suppose that there is no vertex a € N(v) adjacent to both v, and v4. Let A be the neighbors
of v connecting v with v,, and let B be the neighbors of v connecting v with v4. Lets = |A| and t = |B].
External vertices connecting v with v; are now possible. Note first that none of them can be adjacent to
a special vertex except for v, v, in the case of A and except for v, v,4 in the case of B, neither to another
vertex in A nor B. There can be e; vertices connecting v with v3, and e, pairs of vertices, adjacent to
each other, both adjacent to v and vs. Also, we might have e3 (e4, respectively) double stars of degree
gi > 0 emanating from v3, where the other vertex of degree g; is also adjacent to v (in the case of
the e,4 vertices, the edge between v3 and the other vertex of degree ¢; is also present). Also, the roles
of v3 and v can be interchanged, yielding es double stars (eg, respectively) of degree q; emanating
from v (in the case of the eg stars, the edge between v and the other vertex of degree q; is added as
well; observe that in the case of the es double stars we may assume g; > 2, as otherwise these vertices
appear already among the e stars). The six groups are disjoint and there can be no other edge between
external vertices. Thus, denoting K = {ey, ..., eg}, we obtain a graph in V; ; . As before, no other edge
except for edges yielding a graph in V', ; can be added (see Fig. 3).

Case 2: There exists at least one more vertex a such that there are two internally vertex-disjoint
paths of length three from v to a. These paths must be of the form v, vq, v,, a and v, vs, v4, a (if for
example instead of the edge vv, there would be an edge vz for some other vertex z, there would be
a path of length 6 going from z, v, vs, ..., vq, which, by 2-connectivity, would give a cycle of length
at least 7). We suppose there are w > 1 such vertices a with such paths. Observe that the existence
of such a vertex a implies that no external vertex e can be present in G, as otherwise one would have
a cycle of length at least 7 (namely, the cycle v, vy, v, @, v4, v3, €, v). All non-special neighbors of v
can thus be partitioned into three sets A, B, and C, where A are those connected only with v,, B those
connected only with vy, and C those connected both with v, and v4. We lets = |A|,t = |B|,u = |C]|.
Let W be the vertices which are neither neighbors of v nor special vertices, and w = |W|. Again it can
be checked that they all are such that there are two internally vertex-disjoint paths of length three
from v to them, thus yielding a graph in S; ; ., .,. As before, except for edges yielding a graph in S;',
no other edge can be added. O

Remark. When later we refer to graphs in Sg ; , or Vs ¢ (Or to the corresponding graphs in S, ,

or V', p), where either vy, v3, v4 or any of the external vertices of high degree play the role of v, they

will be denoted as FSVS,t’u,w and VS,I,E (5§ ¢ .40 and V:LE, respectively).

4. Upper bounds

We make repeated use of the following well-known lemma, whose proof is standard and therefore
omitted.

Lemma 7. Let ny, ..., n, be positive integers such that ), n; = N for some constant N. Then ) _, n; log n;
is minimized when all n; are equal to [N /r] or [N /r].



0. Giménez et al. / European Journal of Combinatorics 55 (2016) 41-61 51

Also, we need the following lemma, whose proof is a straightforward generalization of Lemma 2.2
from [12].

Lemma 8. Let § = Ex(H4, ..., Hy), where the H; are 2-connected. Then w.h.p. each vertex in a graph in
G, is adjacent to at most 2 log n/ log log n pendant vertices.

As in Section 2, we illustrate our technique to reprove in a simpler way the following known result
(see [13,2]), complementing Lemma 2.
Lemma9. Let € > 0 be any constant. In the class of forests, w.h.p.

logn

Ay = (1+¢)

loglogn’
Proof. Let § be the class of forests and 4, the class of forests with n vertices. Let 8, € 4, now denote
the set of bad graphs with
logn
loglogn’

Ap > (1+€)

and suppose for contradiction that |8,| > |4 for some u > 0, infinitely often. Let B, S B,
be the class of graphs that has at least an pendant vertices, and which is such that every vertex is
adjacent to at most 2 log n/ log log n pendant vertices. By Lemmas 1and 8, |8B;| = (14 0(1))|By|. Let

G be a graph in 8;, and let v be a vertex with degree k > (1 + ¢€) log’fog .Since G € B, there are at
least (an — 2logn/loglogn) > 2an/3 pendant vertices not adjacent to v. Let c = min( f/i a/3)

and choose a set of [ck] < 2an/3 pendant vertices not adjacent to v and delete their adjacent
edges. Maintain vertex v and delete all its adjacent edges. Attach the [ck] chosen vertices to v, and
construct many new graphs by attaching the former k neighbors of v in all possible ways to any of the
previously added [ck] vertices. More precisely, a fixed new graph is obtained by choosing for each of
the former k neighbors of v, its corresponding vertex among the [ck] vertices previously added, and
then connecting to it by an edge. Observe that the new vertices have been added in a tree-like way,
and hence the new graph is still in §,,. Since we are interested in an asymptotic result, we may ignore
ceilings from now on. The number of graphs constructed in this way is at least (**/®) (ck)*. From how
many graphs may the newly constructed graph G’ come? One has to guess v, and then reattach the ck
pendant vertices, giving rise to at most n°*" choices. Hence,

cw _ (IR @/3)% ekt

R(m) = a7 n(ck)!
Note that (ck)*/(ck)! > (ck)'~, Taking logarithms, this gives
lo % > (1—c)klogk —logn+ 0(k) > (1 —c)(1+¢€)(1+o0(1))logn — logn,
which tends to infinity by our choice of c. Hence, | 8| = 0(|$x), and thus w.h.p. A, > (1+€) 10155;;,7'

and the result follows. O

Recall that a block H is a maximal connected subgraph without having a cut-vertex. Note that if H
is a block, either H is 2-connected or H has at most 2 vertices.

Now we proceed to prove new results. In order to prove an upper bound for A, in a class 4,, the
basic idea is to generalize the previous proof. Take a graph G in §, whose maximum degree is too
large (a bad graph), and let v be a vertex with large degree. Consider the blocks containing v and their
contribution to the degree of v: the lemmas in Section 3 tell us all possible 2-connected components
that can occur, which therefore, together with isolated vertices and isolated edges, tell us all blocks
that can occur. We classify the blocks according to whether this contribution is larger or smaller than
a suitable threshold. If B is a block with a vertex b of large degree t, remove the edges connecting
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b to its neighbors by, ..., b, take ct pendant vertices (where ¢ < 1 is a suitable constant), isolate
them and make them adjacent to v, and connect arbitrarily each of the b; to any of the new ct vertices.
Whatever was attached to the b; remains untouched. When necessary, we add a few extra vertices and
edges to ensure unique reconstruction. Blocks with small degree are not dismantled. This construction
guarantees that we stay in §,. Double counting is used again to show that the proportion of bad graphs
goes to 0 as n goes to infinity.

In the next proof we do not need all the power of this method, since blocks in Ex(C4) have bounded
degree, but already in the class Ex(Cs) there are blocks of arbitrary high degree.

Lemma 10. Let € > 0 be any constant. In the class Ex(Cy4), w.h.p.

logn

Ap < (2+4¢€) .
loglogn

Proof. We first observe that the only blocks in Ex(C,4) are isolated vertices, edges and triangles. Let
g = Ex(C4) and let 8, C 4, now denote the set of bad graphs with

logn

Ay>2+6)
loglogn’

As before, let B, C B, be the class of graphs that has at least «n pendant vertices, and which is such
that every vertex is adjacent to at most 2 log n/ log log n pendant vertices. Once again, by Lemmas 1
and8, |B;| = (1+0(1))|B,|. Let Gbe a graph in B; and let v be a vertex with degree k > (2+¢) log’ﬁ)’gln.
As before, there are at least (an — 2logn/loglogn) > 2an/3 pendant vertices not adjacent to v. Let
¢ = min(—: 1+(e/2) ,/3). Let r be the number of blocks incident to v and observe that (k/2) < r < k,
since the only blocks are edges and triangles. Choose a set of [cr] < 2an/3 pendant vertices not
adjacent to v and delete their adjacent edges. Maintain vertex v and delete all its adjacent edges.
Attach the [cr] chosen vertices to v, and construct, as before, new graphs by attaching the roots of
all r blocks in all possible ways to any of the previously added [cr] vertices. Ignoring ceilings, the
counting is as before: the number of graphs constructed in this way is at least (Z“g/ 3) (cr)", and for
recovering G, one has to guess v, then reattach the cr pendant vertices, giving rise to at most n+!
choices. Hence,

co _ R (o) @y

R(n) —  notl ~  n(cr)!

Note that (cr)"/(cr)! > (cr)~9", Thus, taking logarithms, this gives

log % > (1—o)rlogr —logn+ O(r) > (1 —c)(k/2)logk — logn + O(k),

which again tends to infinity by our choice of c. Hence, |8,| = 0(|$s]). O

Theorem 11. Let € > 0 be any constant. In the class Ex(Cs), w.h.p.
logn

A= (1t €)——.
log log logn

Proof. Let § = Ex(Cs) and let B, C 4, be the graphs with
A > (14 €)logn/logloglogn.

Assume for contradiction that there is some constant p such that |8,| > w|§,| infinitely often.
Once more, let B, < B, be the class of graphs that has at least on pendant vertices, and which
is such that every vertex is adjacent to at most 2 logn/loglogn pendant vertices. Again, we have
|8B;] = (1+ 0(1))|Byl. Let G be a graph in B; and let v be a vertex of G such that k = deg(v) >
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(1+ €)logn/logloglogn. Since G € B;, at least (an — 2logn/ loglogn) > 2an/3 pendant vertices
are not adjacent to v. The strategy of the proof is as follows. We partition the blocks incident with v
according to their type and to their contribution to the degree of v. Those with degree smaller than
a threshold can be safely ignored for the asymptotics. Those of large degree, which by Lemma 4 are
isomorphic to either K5 ; or Ksz .» are used to produce many new graphs as in the proofs for the lower
bounds. Then a double counting argument is used again to show that |8,|/|$,| — 0. The strategy for
Ex(Cs) and Ex(C7) is very similar but there are more types of blocks to consider, making the situation
a bit cumbersome.

Let us proceed with the proof. We partition the blocks attached to v. Using Lemma 4, they can be
partitioned into the following classes:

1. blocks contributing to deg(v) at most lolg"lgo’;k. That is, these are blocks whose root degree is at most
log k
loglogk* logk
2. blocks of type K, ; with t > %.

3. blocks of type K, with t’ > lolg‘)lgoz .

Let r; be the number of blocks of class i and denote by k; the total contribution of edges belonging to
a block of class i to deg(v). Clearly, k = ki + k, + k3, and also observe that r; > M and that

log k

1< 7""1fg'°gk fori =2, 3.
og k

£2 14, From G we construct now

In order not to run out of pendant vertices, let now ¢ = min( Tres 1

a class of graphs, as follows.

e Choose a set U of h (h will be determined below) pendant vertices and delete their adjacent edges.
Maintain vertex v and delete all its adjacent edges. Choose three vertices from U, eliminate them
from U and make them neighbors of v. Call them w.l.o.g. v1, v, v3 and assume that their labels are
sorted increasingly. Choose [cry] vertices from U, eliminate them from U and make them neighbors
of vq. Attach the roots of all blocks of class 1 in all possible ways to any of the previously added
[crq] vertices.

e Choose r;, vertices from U, eliminate them from U (each of them representing a block of class 2) and
make them neighbors of v,. For each block of class 2 of type K> 1, (i = 1, ..., 1) choose 1+ [ct;]
vertices from U, eliminate them from U, and connect all of them to the previously added vertex
that represents the ith block of this class. Let x; be the vertex with smallest label among the 1+ [ct;]
vertices added (i = 1, ..., rp). For each block K; ¢, of G, define zio to be the other vertex apart from
v of degree t;, and let zi] s zfi be the vertices of degree 2. In our construction, we delete all edges
belonging to the original block and we add the following edges: zl-O is connected with x;, and we

connect each of the vertices z,’ (j = 1) in all possible ways to any of the previously added [ct;]
vertices excluding x;.
e For blocks of class 3, do the analogous steps as for blocks of type 2.

Observe that the new vertices have been added in a tree-like way in this construction, that is, we
have not created any cycle that did not exist in the original graph. In particular, if G € Ex(Cs), so are
all the newly constructed graphs. Also observe that the number of pendant vertices h used satisfies
h < ck(1+0(1)) < an/3.

We proceed to count the number of different graphs we obtain by applying this construction to
one graph of B;. To simplify notation, we will ignore ceilings. We obtain at least

2an/3 h
, rz!r3!
h cry, ra, ¢ty +1,..., cty, +1,r3,ct1+1,...,ct,’3 +1,3

x (cry)"t (]‘[(m)“‘) (H(cq’)*) (2)

i=1 i=1

many graphs, since there are at least (2“2/ 3) ways to choose h pendant vertices not incident to v,

which then have to be partitioned into the different groups explained before (yielding the multinomial
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coefficient). The factors r,! and r3! come from the fact that blocks of class 2 and 3 are distinguishable
because of their labels, hence any permutation of the r, and 5 vertices will give rise to different graphs.
The last group of three vertices in the multinomial coefficient corresponds to the vertices v1, v,, v3
(there is no 3!, since the roles of these vertices are determined by their labels). The remaining factors
count the possible ways to do the connections between the r; vertices and the added cr; vertices,
between the added t; vertices and the added ct; vertices, and between the t/ and the ct;.

Since different original graphs may give rise to the same new graph, we have to divide the total
number of constructions by the number of preimages of a new graph. This number is as before at most
n - n", since we first must guess the vertex v of the original graph (this gives the factor n) and then
we have to redistribute the h newly added vertices as pendant vertices (for those we have at most n"
choices).

Our goal is to show that the total number of newly constructed graphs divided by the number of
preimages of a new graph tends to infinity as n increases, hence contradicting the assumption that
|Bn| > w|%n| for infinitely many values of n.

Note that the following expression is a lower bound of (2).

(1/2)k10glogk/logk < (Ol _ c)n) (CT )(1 o)ry n(ct)(l ot H(Ct )(l c)t
i=1 i=1
where we have used that h = ck(1 + o(1)), k < n so that g(gan)!/(gan — h)! is bounded from
below by (3 (a — ¢)n)"; we also used that for any g > 0 it holds that (cg)%/(cg)! > (cg)'~%, and
that for any g such that cg > 3 it holds that (cg)&/(cg + 1)! > (cg)'~%, and for smaller values of cg,
(cg)%/(cg + D! > 1(cg)'=°%, giving the additional (1/2)*!°8'ogk/ o8k Jeading factor.
We now divide by the number of preimages n - n", and then we take logarithms. Hence, noting that

k=Y, tiandks = Y, t/, we obtain

rn
—logn+o(k) +O0(h) + (1 — c)rylogry + 0(r1) + (1 —¢) Z tilogt; + O(ky)
i=1

r3
+(1-0 ) t/logt] + 0(ks).

i=1

By Lemma 7, Zf; ti logt; is minimal when all t; are equal, and the same applies to the t/. Hence, the
previous expression is bounded from below by

k k
—logn+ 0O(k) + (1 —c + o(1)) <r1 logr; + k; log -2 + k3 log —3> . (3)
r r3

Now, letting k; = Bik fori = 1, 2, 3, we obtain

- kiloglogk kloglogk

n= logk "' logk

and thus
kloglog k
rilogry > ,Bli(logk + o(logk)) = Bikloglog k(1 + o(1)).
logk

Also, recall that r, < M so that

kfz - log k ,

~ loglogk

and the term k, log -2 in (3)is at least

K
k; log 2 > ky loglog k(1 + o(1)) = Bakloglog k(1 + o(1)).
L)
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By the same argument, k3 log % > Bskloglogk(1+ o(1)). As B1 + B2 + B3 = 1, one of the §; has to
be at least ; hence we can safely ignore the term O(k) in (3). The expression in (3) is thus bounded
from below by

(14 0(1))(1 —c)kloglogk — logn,

which by our choice of ¢ tends to infinity, as desired. O

Theorem 12. Let C > 0 be a sufficiently large constant. In the class Ex(Cs), w.h.p.
logn
logloglogn’

Proof. The proof starts as for Ex(Cs). Let ¢ = Ex(Cs) and let B, C 4, be the class of graphs with
A, > Clogn/logloglogn.

We assume for contradiction that there is some constant p such that |8,| > ©|4,| infinitely often. Let
also B, C B, be the class of graphs that has at least «n pendant vertices, and which is such that every
vertex is adjacent to at most 2 log n/ log log n pendant vertices. Again, we have |8, | = (1+0(1))|Bx|.
Let G be a graph in B}, and let v be a vertex of G such that

Cl
k = deg(v) > _ - o8m
log log logn

for some constant C large enough, and since G € B;, there are at least 2an/3 pendant vertices not
incident to v. We partition the blocks attached to v into different classes (see Lemma 5):

log k
loglogk*

log k
loglogk*

1. blocks contributing to deg(v) at most
2. blocks of type K3 s and K3, with s >
3. blocks of type H2 st OF H2 st

4. blocks of type H2 st OF H2 s.c (see the remark after Lemma 5).

Choose a set U of h pendant vertices not incident to v and delete their adjacent edges. Maintain vertex
v and delete all its adjacent edges. We now have a bounded number N ¢ of subclasses represented by
classes 1to 4 and the possible cases in the definition of Hy ; , H,, s, and Hy . For each subclass i, let r;
be the number of blocks of subclass i incident with v. For each i, take a pendant vertex w; from U and
make it adjacent to v, and sort the w; in increasing order of the labels. For each i (except for class 1),
take r; pendant vertices from U and make them adjacent to w;. Let c = min(1 — c , 4a) Note that
for C < 3N the expression for c is negative, so the assumption that C is sufficiently large in particular
also implies that C > 3N.

For blocks in classes 1 and 2 (they give rise to ry, 15, 13), the r; play the same role as in the proof of
Theorem 11, and we append the same construction as there.

For blocks of type H, s ; the construction is very similar; they behave like the graphs K; s, but with
two sets, of size s and ¢, of vertices of degree two. For each block of type H s, we add two new sorted
vertices from U and make them adjacent to the vertex representing the block. Take 2 + c¢s and 2 + ct
vertices from U (ignoring ceilings from now on) and connect them, respectively, to the two previously
added vertices. Let xq, X1 and yg, y1, respectively, be the vertices with smallest labels (in this order)
among the 2 + cs and the 2 + ct added vertices. Delete all edges belonging to the original block and
attach the s vertices to the newly added cs vertices (excluding xo and x1) in all possible ways, and do
the same for the t vertices (excluding y, and y1). Also, connect xq to vy (notation as in Lemma 5), X1 to
vz, and yp t0 v, ¥1 to v4. For blocks of type Hy s.¢ the construction is exactly the same; the fact that the
different subclasses are identified by the labels as well as the special role of v1, v,, v3, v4 guarantees
unique reconstruction. Finally, consider blocks of type HZ,s,tv and assume without loss of generality
that v, plays the role of v. In this case we add only cs + 4 vertices from U and make them adjacent
to the vertex representing the block. Let xq, X1, X, and x3 be the vertices with the four smallest labels
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(in this order). Delete all edges in ﬁZ,s,t emanating from v and v, all edges between special vertices,
and connect all the s non-special neighbors of v, to the cs vertices (excluding xq, X1, X, and x3) in all
possible ways. Connect xg to v, X1 to vs, X, to vy, and X3 to v4. As before, the same construction is applied
for H;s . (the only difference being that all optional edges are deleted as well); as before, the special
roles and the different labels of different subclasses provide all information for unique reconstruction.

Since no new cycle is created, given v and the new graph, we can uniquely determine the original
graph it comes from. Observe also that we used only h < ck(1 + o(1)) pendant vertices. As before,
we count the number of different graphs we obtain by applying this construction, yielding similar
multinomial coefficients and other factors. Dividing by the number of preimages of a new graph, which
is at most n"*!, and taking logarithms, we obtain

R
—logn + o(k) + O(h) + (1 — )1 logry + 0(r1) + (1 =€) Y _(s)2 log(s)2 + O(ky)
j=1

+<1—c)Z(spglog(s])woaca)+(1—c) > Z(s,),log(s,)l

i>4,ieT j=1

+(1-0) Y E(Q)flog<Q)i+o<Zl<i>,

i>4,ie7’ j=1 i>4

where we denote by k; the total contribution of blocks of subclass i to the degree of v, and by (s;); and
(tj); the corresponding sizes of the jth block of subclass i > 2; both sets 5~ and 7’ contain all indices
of subclasses belongmg to blocks Hy 5 ; or Hy ¢, 7 contains in addition to this all indices of subclasses
of blocks of type Hz,s,t and H;‘M with v, playing the role of v, and 7' contains in addition to this
all subclasses of blocks of type H, ¢ and H;‘,s’t with v3 playing the role of v. This distinction is needed
since in the cases of Hz s.cand H;‘ only one of the two sums above has to be counted. Suppose w.lL.o.g.
that the contribution of all (t;); to the degree of v is at most k/2, and we may ignore this contribution
above. Define then for 1 < i < 3, kl = k;, and fori > 4, let k; = 21:1 (sj)i. Note that kl counts the
contribution of the ith subclass to the degree of v coming from the (s;); only. Clearly, k; < k; and by
assumption Zizl ki > k/2. By Lemma 7, the previous expression is at least

k;
—logn+ 0(k) + (1 —c 4+ 0(1)) <r1 logry + Z kilog - ) (4)

i>2
Since ) ;. ki > k/2, there exists some 1 < i < N with k{ > k/(2N). If this is true for i = 1, then

Kk} loglog k kloglogk
r1logr1>%(l g ki + o(logky)) = g g ———(1+0(1)).

. P . K, K .
Otherwise, if i > 2, since & > 1%k __ 35 hefore, k! log - > X1°8logk (1 | (1)), Thus, by our choice
Ti 2N loglog k 1 Ti 2N

of ¢, for C sufficiently large, (4) tends to infinity as desired. O

In the class Ex(C7), the right order of magnitude of the expected maximum degree changes,
compared to Ex(Cs) and Ex(Cs). Before going into the proof, we give some intuition about the different
behavior in Ex(C;). The existence of a component V; ;  as described in Lemma 6, and in particular the
existence of t stars of different degrees g; inside one block, gives rise to new constructions. In order
to ensure many constructions, both for the number of stars t (call this the first level), as well as for
their degrees g; (call this the second level), choices have to be made: if there were few stars of a high
degree, only on the second level many choices can be made, but if, however, there are many stars of
small degree, on the first level many choices can be made. For a medium number of stars with medium
degree, on both levels some choices can be made. These two choices imply that the definition of small
has to be changed, and the trade-off between the contribution of small blocks and other larger blocks
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(which give different types of contributions in the proofs) gives rise to an additional application of the
logarithm. We now state the result for this class.

Theorem 13. Let C > 0 be a sufficiently large constant. In the class Ex(C;), w.h.p.
logn
loglogloglogn’

Proof. Let § = Ex(C;). The proof starts as for Ex(Cs) and Ex(Cg). Let B, € §, be the graphs with
A, > Clogn/loglogloglogn.

We assume once more for contradiction that there is some constant p such that |8,| > |Gl
infinitely often. As in the previous proofs, let 8, C B, be the class of graphs that has at least an
pendant vertices, and which is such that every vertex is adjacent to at most 2 log n/ log log n pendant
vertices. Again, |8, | = (1 + 0(1))|8B,|. Let G be a graph in B, and let v be a vertex of G such that
Clogn

k=deg(v) > ———
log log loglogn
for some constant C large enough, and since G € B,, there are at least 2an/3 pendant vertices not
incident to v. As before, we partition the blocks attached to v into different classes. Using Lemma 6,
whose notation is used in the following (see also the remark following Lemma 6), we may partition
them into

log k

logloglogk
2. blocks of type K5 s, <2 "o Hase H3 b Hz s,c and H it

1. blocks contributing to deg(v) at most

3. blocks of type SS tows VS +.e» and the corresponding graphs S Ss e V;LE
4. blocks of type S touws VS ¢.£,» and the corresponding graphs SS tuw VS’,‘[,E.

Choose a set of U of h pendant vertices not incident to v and delete their adjacent edges. Maintain
vertex v and delete all its adjacent edges. We still have a bounded number of subclasses N represented
by the different classes and the possible optional edges. For each subclass i, let r; be the number of
blocks of subclass i incident with v. For each i, take a pendant vertex w; from U and make it adjacent
to v, and sort the wj; in increasing order of the labels. For each i (except for those subclasses belonging
to class 1), take r; pendant vertices from U and make them adjacent to w;. Let c = min(1 — ?, ZO‘)
As before, we assume that C is large enough and in particular C > 9N, so that c is positive.

For blocks in classes 1 and 2, we proceed as in the proof of Theorems 11 and 12. We ignore ceilings
and justify after the constructions that they may be safely disregarded. For blocks Ss ¢ 4., and 55, , ,,
the construction is very similar as before: for the new vertex b (among the r; added ones) representing
a block of such a subclass, take three sorted vertices by, by, bs from U and make them adjacent to b.
Take 5 + cs, (ct, cu, respectively) vertices from U, and attach them to the first of these sorted vertices
(second and third, respectively). Denote by x1, X2, X3, X4, X5 the vertices with smallest labels (in this
order) of the first group. Delete all edges from the original block except for the edges incident to the
w vertices (excluding v, vy, vs, vs, if the edges are present) that are connected with both v, and vs.
Append the special vertices v1, v, V3, v4 and vs to the vertices X1, X2, X3, X4, X5 in this order. Connect then
the s vertices (which originally were adjacent to v and v, ) to the cs vertices of the first group (excluding
X1, ..., Xs)in all possible ways, and do the analogous construction for the t and u vertices. Note that
this time we might construct cycles of length 6 (of the type b1, x;, v2, @, v4, X4), where a is one of the
w vertices connecting v, and vy, but by the special roles of special vertices unique reconstruction is
still guaranteed.

For blocks of type V; ; ¢ and V' "+ and its corresponding vertex b representing the block, take eight

sorted vertices by, ..., bg from U and make them adjacent to b. Take ce, ce,, ces, ces elements from
U and add them to b1, bz, b3, by, respectively. Take 5+ cs elements from U (call the vertices with the 5
smallest labelsxy, ..., x5, in this order, as before), make them adjacent to b, and take ct elements from

U and make them adjacent to bg. From the original block delete all edges emanating from v, v, vy, all
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edges between special vertices, all edges going between v; and any of the eq, e, vertices of the first
and second group of E. For the e3 graphs of the third group of E, for any i, 1 < i < e3, the edges
between the vertices of degree g; (different from v3) and its g; neighbors of degree 2 are retained, and
all others are deleted, and analogously for the e, graphs of the fourth group. For the es and eg graphs
of the fifth and sixth group of E, all edges of it are deleted if the vertex of degree g; (different from v)
satisfies q; > %, otherwise all edges going between the vertex of degree g; (different from
v) and its g; neighbors different from v and v3 are retained and the others are deleted. Now, connect
v1, ..., Us With xq, ..., xs. For the e; vertices originally connecting v and v3, connect them to the ce;
vertices (which were attached to by) in all possible ways. For the e, pairs adjacent to each other and
both connecting v and vs, connect the one with smaller label in all possible ways to the ce, vertices
attached to b, (recall that the edge connecting such a pair is not deleted). For the e; and e, double
stars K; 4, connect all vertices of degree g; (different from v3) and its pending g; neighbors with the
ces and ce4 vertices attached to bs and by, respectively, in all possible ways. For the es graphs K; g,
emanating from v (of degrees qq, .. ., g.,), take %es vertices from U, attach them to bs, and connect
each of the es vertices zy, ..., z,; of degree qy, ..., ge, to the %es vertices in all possible ways. Then,

for each of the z; (1 < i < es), do the following: if q; < %, do nothing (recall that the
neighbors of z; are still pending). Otherwise, take %q,- vertices from U and make them adjacent to z;.
Connect each of the g; vertices (originally neighbors of z;) in all possible ways to the newly attached
%q,- vertices. The analogous construction is done for eg (with bg instead of bs). Finally, connect the s
vertices originally connecting v and v, (excluding special vertices) with the group of cs new vertices
(excluding x4, ..., x5) attached to b, in all possible ways. Similarly, connect the t vertices originally
connecting v and v4 with the group of ct new vertices attached to bg in all possible ways. Here, the
graph constructed is always a tree, and reconstruction is unique.

For blocks of type Ss; . and S, . the strategy is similar as before. Assume without loss of
generality that v, plays the role of v. In this case we take three vertices from U (sorted) and make
them adjacent to the vertex representing this block. Take 5 + cs new vertices from U, make them
adjacent to the first one, then cu further ones, make them adjacent to the second one, and finally
another cw, which are made adjacent to the third one. All edges are deleted except for edges between
v4 and its t non-special neighbors that were also connected with v. The 5 vertices of the first group
with smallest labels are connected to special vertices, and the s, u and w neighbors of v, (except for
special vertices) are, as before, connected in all possible ways with the cs, cu and cw vertices of the
respective groups. Observe that the constructed graph is a tree.

For blocks of type V; ; r and V:LE, either of v,, v3, v4 Or any of the external vertices in double stars

of degree q > logl(fgll% arising in the groups es, ey, €5, €g may play the role of v. In all cases, edges

between special vertices are always deleted. If v3 plays the role of v, all edges between v, and its s
neighbors that are connected with v, and all edges between v, and its t neighbors that are connected
with v are retained; for the others deletion is as for V; ; r and V:[ ¢ With v3 playing the role of v. In more
detail, for each vertex b representing a block of such a subclass, six sorted vertices b, .. ., bg from U
are added, 5 extra vertices taking care of special vertices are attached to by, say, and the previous
constructions restricted to by, . . ., bg with v3 playing the role of v is performed. If v, or v4 (assume v,
without loss of generality) plays the role of v, all edges emanating from a neighbor of v, are deleted (in
particular, all edges emanating from v3). For each block of such a subclass with b the newly attached
vertex representing the block of this subclass, add 5 + cs vertices to b. The 5 vertices with smallest
labels (in order) are attached to v, vy, vs, v4 and vs, respectively. The s vertices originally connected
to v, are then connected in all possible ways to the cs vertices excluding the 5 special vertices. Note
that cycles of length 6 such as b, x,, v, a, v4, X4, b with a being one of the t vertices connecting v with
v4 can occur and x, (x4, respectively) one of the special neighbors of b to which v (vg4, respectively) is
attached, but the special role of the special vertices still guarantees unique reconstruction. For the s
edges emanating from v, the usual reconstruction is performed (again with 5 special vertices assuring
unique reconstruction, and another cs vertices to which the s vertices may connect in all possible
ways). If any of the external vertices a of degree g plays the role of v, say w.l.o.g. a neighbor of v, the
procedure is very similar: all edges emanating from a neighbor of g, in particular all edges emanating
from v, are deleted. Then, 5 + cq vertices are taken from U, and the g neighbors of a are connected in
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all possible ways to the cq new vertices (the 5 vertices take care of special vertices). Note that again
cycles of length 6 can be constructed (in case a is a neighbor of v3), but by the special roles of special
vertices reconstruction is still unique.

Observe that the largest cycle created is of length at most 6, and in all cases the special vertices
guarantee unique reconstruction. Observe also that the number of pendant vertices used is at most
h = ck(1 + o(1)): for contributions of type es and es in components Vs, V', ; (and of type e; and

e4 in components V¢ g, V* +.; With v3 playing the role of v), at the first level %es vertices are used,
and at the second level, at most £ Zl 1 Gi(1+ o(1)) (note that ceilings may be safely disregarded, as
only for sufficiently large g; these vertices are chosen), and since e5 < Zeil @i, the total number is at

most ¢ Y %, q;. For the other contributions it is obvious. As before, for each case we count the number
of different graphs we obtain by applying this construction, yielding similar multinomial coefficients
and other factors as before. Then we divide by the number of preimages of a new graph, which is at
most n"*1, and take logarithms. Similar calculations as before show that the most negative term is
— log n, coming from the choice of the vertex v. Recall that N is the total number of subclasses.

Now, if at least k/N of the degree of v is in blocks of size at most m, then the number of such
klogloglog k

N log k

aterm rylogr; > %Oggl,‘:gk(log k + o(logk)) = % logloglog k(1 + o(1)), and for c as chosen and
C large enough this is bigger than the (negative) term log n. Otherwise, suppose that at least k/N of
the degree of v results from any fixed subclass of blocks excluding Vs ; ¢ or V' £ (and also excluding
VS t.£ and V¥, . with v3 playing the role of v). Letting r; denote the number of such blocks, by similar

calculatlons as before, as there is only one level of choice, we obtain a positive term @ (k log ) Since

blocks ry is at least . By the same arguments as before, the constructions of these blocks give

klogloglog k

Tj = log k ’

k
e (k log i) = 2(kloglogk),
Tj

which is asymptotically bigger than log n.

Hence, assume that k/N of the degree of v comes from a subclassjin V; g or V', ; (or VirpandV Ve
with v3 playing the role of v), and assume without loss of generality that it belongs to the class Vg 1 k.
Letagainr; < w be the number of blocks of this subclass. If at least k/(2N) of the total degree
comes from contrlbutlons of the groups of s, t, eq, ez, e3, e4 in the blocks of V; ; g, then, as before, only
considering those terms, as there is one level of choice, we obtain a term © (k log TKJ_) = w(logn).

Hence, we may assume without loss of generality that k/(4N) of the total degree comes from
contributions of group es. Once more, we split this into two subcases: if at least k/(8N) of the total

degree comes from double stars K; 4 with g < llogloﬂ then at least z > Kloglogloglogn o\ -y 4o ple
g og logloglogn’ 8N log log logn

stars K, 4 are needed. Denote by z; the number of double stars inside the ith block to z, for 1 <i <r;.

Each such block gives a term z; log z;, and the total contribution is by Lemma 7 minimized when the

number of double stars is equally split among all blocks. Assuming the worst case of r; = %

kloglogloglogn

N , the total contribution is thus at least
og loglogn

andz =

Clogn
8N

)

(140(1))(1—0) (z log ;) = (14 0(1))(1 —c) (zlogloglogn) = (14 0o(1))(1 —¢)
j

which for our choice of ¢ and C large enough is bigger than log n. If on the other hand at least k/(8N)

of the total degree comes from double stars K, ; with ¢ > % then first observe that the

number z of double stars K 4 contributing to the total degree satisfies z < %. Recall that g;

denotes the degree of the ith double star for 1 < i < z. Clearly, Zle gi > k/(8N). Each such double
star on the second level of choice gives rise to a term (1 — c)g; log g;. Assume again the worst case

¥4 — __ kloglogloglogn : . . . e .
Zi:] gi = k/(8N) and z = SN oglog logn * This contribution is, once more by Lemma 7, minimized if
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the contribution is split evenly, that is, g; = and in this case we obtain

8N'

k
(1+o(M)(1—0) (* 0g %>

Clogn

=(14+o0(1)(1-0¢) <I— logloglog logn) =(1+o0(1)(1-0)

which for our choice of c and C large enough again is bigger than log n. Hence, in all cases, C(n) /R(n) —
00, as desired, and the proofis finished. 0O

5. Conclusion and open problems

Our work suggests several conjectures and open problems.
1. We conjecture that the lower bound
logn
log“*Vn
for the class Ex(Cy¢41) is of the right order of magnitude. The proofs for Ex(Cs) and Ex(C;) seem
difficult to adapt for arbitrary £.
2. We conjecture that the asymptotic behavior of A, is the same for Ex(Cy,) as for Ex(Cy¢—1). We have

shown this is the case for £ = 2 and ¢ = 3.
3. We conjecture an upper bound of the form

Ap>¢C

Ap <clogn

for the class Ex(Hq, ..., Hy), whenever the H; are 2-connected (see also the concluding remarks
of [11], where this question was also asked). Examples show that this is not true for arbitrary H
(see the discussion below). Using analytic methods, this upper bound can be proved for so-called
subcritical classes of graphs (see [6]), which include outerplanar and series—parallel graphs.

4. Which are the possible orders of magnitude of A, when forbidding a 2-connected graph? Assuming
the truth of the conjecture in item 1, are there other possibilities besides log n and log n/ log**V n?

5. Which are the possible orders of magnitude of A, for arbitrary minor-closed classes of graphs?
Besides those discussed above, examples show that it can be constant (forbidding a star) and it
can be linear (forbidding two disjoint triangles). The last statement follows from [10], where it is
shown that the class Ex(C3 U C3) is asymptotically the same as the class of graphs G having a vertex
v such that G — v is a forest.

6. Isit true that if H consists of a cycle and some chords, all of them incident to the same vertex, then
A, = o(logn) holds in Ex(H) w.h.p.? These are the 2-connected graphs that are a minor of some
fan F,, so that the proof of the first part in Theorem 3 does not hold.

7. Prove an upper bound A, < clogn for series-parallel graphs without using the analysis of
generating functions as in [4]. More generally, prove such a bound for graphs of bounded tree-
width (series-parallel graphs are those with tree-width at most two). For outerplanar graphs this
is easy, but we decided to leave out the proof of this result.
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