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It has been empirically observed that many networks, in particular so called social networks,
are typically scale-free and exhibit non-vanishing clustering coefficient. Several models of
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Abstract

Random hyperbolic graphs have been suggested as a promising model of social
networks. A few of their fundamental parameters have been studied. However, none
of them concerns their spectra. We consider the random hyperbolic graph model as
formalized by [GPP12] and essentially determine the spectral gap of their normalized
Laplacian. Specifically, we establish that with high probability the second smallest
eigenvalue of the normalized Laplacian of the giant component of an n-vertex random
hyperbolic graph is at least Q(n~(?*=1) /D), where % < a < 1is a model parameter and
D is the network diameter (which is known to be at most polylogarithmic in n). We also
show a matching (up to a polylogarithmic factor) upper bound of n~ (=1 (log n)! o).

As a byproduct we conclude that the conductance upper bound on the eigenvalue
gap obtained via Cheeger’s inequality is essentially tight. We also provide a more
detailed picture of the collection of vertices on which the bound on the conductance is
attained, in particular showing that for all subsets whose volume is O(n®) for 0 < e < 1
the obtained conductance is with high probability Q(n~(*~Dete()) Finally, we also
show consequences of our result for the minimum and maximum bisection of the giant
component.
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random graphs exhibiting either scale freeness or non-vanishing clustering coefficient have
been proposed. A model that seems to naturally exhibit both properties is the one intro-
duced rather recently by Krioukov et al. [KPK™10] and referred to as random hyperbolic
graph model, which is a variant of the classical random geometric graph model adapted to
the hyperbolic plane. The resulting graphs have key properties observed in large real-world
networks. This was convincingly demonstrated by Bogund et al. in [BnPK10] where a max-
imum likelihood fit of the autonomous systems of the internet graph in hyperbolic space
is computed. The impressive quality of the embedding obtained is an indication that hy-
perbolic geometry underlies important real networks. This partly explains the considerable
interest the model has attracted since its introduction.

Formally, the random hyperbolic graph model Unf, «(n) is defined in [GPPI12] as de-
scribed next: for a > %, CeR, neN,set R=2logn+C (log denotes here and throughout
the paper the natural logarithm), and build G = (V, E) with vertex set V' a subset of n
points of the hyperbolic plane H? chosen as follows:

e For each v € V| polar coordinates (7, 60,) are generated identically and independently
distributed with joint density function f(r,#), with 6, chosen uniformly at random in
the interval [0, 27) and r, with density:

asinh(ar)
f(ry:=4 C(a,R)’

0, otherwise,

if0<r<R,

where C'(a, R) = cosh(aR) — 1 is a normalization constant.

e For u,v € V, u # v, there is an edge with endpoints v and v provided the distance (in
the hyperbolic plane) between u and v is at most R, i.e., the hyperbolic distance be-
tween two vertices whose native representation polar coordinates are (r,6) and (', 6’),
denoted by dy, := dy(7y, 7y, 0, —0,), is such that d;, < R where dj, is obtained by solving

cosh dy, := coshr coshr’ — sinh r sinh ' cos(§—6"). (1)

The restriction o > % and the role of R, informally speaking, guarantee that the resulting
graph has bounded average degree (depending on « and C only): intuitively, if a < %, then
the degree sequence is so heavy tailed that this is impossible, and if @ > 1, then as the
number of vertices grows, the largest component of a random hyperbolic graph has sublinear
order [BEM15, Theorem 1.4]. In fact, although some of our results hold for a wider range of
a, we will always assume % < «a < 1, since as already discussed, this is the most interesting
regime.

A common way of visualizing the hyperbolic plane H? is via its native representation
where the choice for ground space is R?. Here, a point of R? with polar coordinates (r,6)
has hyperbolic distance to the origin O equal to its Euclidean distance r. In the native
representation, an instance of Unf, o(n) can be drawn by mapping a vertex v to the point



Figure 1: Native representation of the largest connected component (with 621 vertices) of
an instance of Unf, ¢(n) with a = 0.55, C' = 2.25 and n = 740. The solid (respectively,
segmented) circle is the boundary of Bo(R) (respectively, Bo(%)).

in R? with polar coordinate (r,,6,) and drawing edges as straight lines. Clearly, the graph
drawing will lie within Bo(R) (see Figure [1)).

The adjacency, Laplacian, and normalized Laplacian are three well-known matrices as-
sociated to a graph, all of whose spectrum encode important information related to fun-
damental graph parameters. For non-regular graphs, such as a random hyperbolic graph
G = (V, E) obtained from Unf, ~(n), arguably the most relevant associated matrix is the
normalized Laplacian L. Note that Lg is positive semidefinite and has smallest eigenvalue
0. Certainly, the most interesting parameter of Lg is its eigenvalue gap A\i(G). Since for
2 < a <1, a typical occurrence of G has O(|V|) isolated vertices, the eigenvalue 0 of G has
high multiplicity and thus A;(G) = 0. On the other hand, it is known that for the aforesaid
range of a, most likely the graph G has a component of linear order [BEMI5, Theorem 1.4]
(see also Theorem |16{and Corollary 17| below) and all other components are of polylogarith-
mic order [KM15) Corollary 13], which justifies referring to the linear size component as the
giant component. Thus, the most basic non-trivial question about the spectrum of random
hyperbolic graphs is to determine the spectral gap of their giant component. Implicit in the
proof of [BEMI5, Theorem 1.4] (once more, see also Theorem [16{ and Corollary (17| below)
is that the giant component of a random hyperbolic graph G is the one that contains all

vertices whose radial coordinates are at most %, which we onward refer to as the center



component of the hyperbolic graph and denote by H := H(G).

The preceding discussion motivates our study of the magnitude of the second largest
eigenvalue A\; = A\;(H) of the normalized Laplacian matrix Ly of the center component H
of G chosen according to Unf, ¢(n). Formally, denoting by d(v) the degree of v in G' (which
equals v’s degree in H), the normalized Laplacian of H is the (square) matrix Ly whose
rows and columns are indexed by the vertex set of H and whose (u, v)-entry takes the value

1, if u=w,
1 : :
Ly (u,v) = —W, if uv is an edge of H,
0, otherwise.

Alternatively, Ly := 1 — Dl_{l/ 2AHD;II/ ?  where Ay denotes the adjacency matrix of H and
Dy is the diagonal matrix whose (v, v)-entry equals d(v). It is well known that L is positive
semi-definite and its smallest eigenvalue equals 0 with geometric multiplicity 1 (given that H
is by definition connected). Note that the stochastic matrix associated to the random walk
in His Py := D Ay = D;Il/z(l — £H)D11q/2. Hence, results concerning the spectra of Ly
easily translate into results about the spectra of Py and thence has implications concerning
the rate of convergence towards the stationary distribution of such random walks and related
Markov processes.

One often used approach for bounding A\, (H) for a connected graph H = (U, F') is via the
so called Cheeger inequality. To explain this, recall that for S C U, the volume of S, denoted
vol(9), is defined as the sum of the degrees of the vertices in S, i.e., vol(S) := > _sd(v).
Also, recall that the cut induced by S in H, denoted by 995, is the set of graph edges with
exactly one endvertex in S, ie., dS := {uwv € F : [{u,v} N S| = 1} (see Figure [2). The
conductance of S'in H, ) C S C U, is defined as

_ |05]
M) = min{vol(S),vol(U \ S)}’ 2)

and the conductance of H is h(H) := min {h(S) : 0 € S C U}. Cheeger’s inequality (see
e.g. [Chu97, §2.3]) states that for an arbitrary connected graph G,

SH(G) < M(€) < 20(C), )
and often provides an effective way for bounding the eigenvalue gap of graphs. Our main
result gives a stronger characterization of A\;(H) than the one obtained through Cheeger’s
inequality. In fact, we show that A;(H) essentially matches the upper bound given by (3),
i.e., \i(H) equals h(H) up to a small polylogarithmic factor. As a byproduct, we obtain
an almost tight bound on the conductance of the giant component of random hyperbolic
graphs.

Despite the fact that in the original model of Krioukov et al. [KPK™10] n points were
chosen uniformly at random, it is from a probabilistic point of view arguably more natural
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Figure 2: Cut induced in the graph of Figure [1| by vertices of polar coordinate between 0
and 7 (angles measured relative to a horizontal axis passing through H?’s origin).

to consider the Poissonized version of this model. Specifically, we consider a Poisson point
process on the hyperbolic disk of radius R and denote its point set by P. The intensity
function at polar coordinates (r,0) for 0 <r < R and 0 < 0 < 27 is equal to

g(r,0) = 5e§f(r, 0)

with 6 = e~ 2. Throughout the paper we denote this model by Poi, ¢(n). Note in particular
that fOR Ozﬂ g(r,0)dodr = e? =n, and thus E|P| = n. The main advantage of defining P as
a Poisson point process is motivated by the following two properties: the number of points
of P that lie in any region A N Bo(R) follows a Poisson distribution with mean given by
Sy 9(r,0)drdd = nu(AN Bo(R)), and the numbers of points of P in disjoint regions of the
hyperbolic plane are independently distributed. Moreover, by conditioning P upon the event
|P| = n, we recover the original distribution. Therefore, since P(|P| =n — k) = ©(1/y/n)
for any £ = O(1), any event holding in P with probability at least 1 — o( f,,) must hold in the
original setup with probability at least 1 —o( f,,\/n), and in particular, any event holding with
probability at least 1 — o(1/4/n) holds a.a.s. in the original model. Also, an event holding
w.e.p. in Poi, ¢(n) also holds w.e.p. in Unf, ¢(n). Henceforth, unless stated otherwise, our
results will be presented in the Poissonized model only; the corresponding results for the
uniform model follow by the above considerations.

<
2

Notation. All asymptotic notation in this paper is respect to n. Expressions given in terms



of other variables such as O(R) are still asymptotics with respect to n, since these variables
still depend on n. We say that an event holds asymptotically almost surely (a.a.s.), if it holds
with probability tending to 1 as n — oo. We say that an event holds with extremely high
probability (w.e.p.), if for a fixed (but arbitrary) constant C’ > 0, there exists an ng := ng(C")
such that for every n > ny the event holds with probability at least 1 — n=¢". Throughout
the paper, denote by v := v(n) a function tending to infinity arbitrarily slowly with n. By a
union bound, we get that the union of polynomially (in n) many events that hold w.e.p. is
also an event that holds w.e.p. For N € N, we denote the set {1,..., N} by [N]. For a graph
G = (V,E) with S,8" C V and SN S’ = 0, we denote by E(S,S’) the set of edges having
one endvertex in S, and one endvertex in S’. For v € V, we refer to the neighborhood of
v inside S by Ng(v), i.e., Ng(v) = {w € S : vw € E}. Finally, we will often consider a
subset S of vertices of a connected component of a given graph in which case S will denote
its complement with respect to the vertex set of the component.

1.1 Main contributions

The following theorem is the main result of this paper. It bounds from below the spectral
gap of random hyperbolic graphs.

Theorem 1. If H is the center component of G chosen according to Poi, (n) and D(H)
denotes the diameter of H, then w.e.p.,

M(H) = Q(n~ =Y /D).

We also have the following complementary result. We remark that a similar upper bound,
slightly less precise but in the more general setup of geometric inhomogeneous random
graphs, was obtained in [BKLa].

Lemma 2. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poi, c(n) or Unf,c(n). Then, a.a.s. h(H) < vn~22"Ylogn.

Whereas Theorem 1] gives a global lower bound on the conductance of a random hyper-
bolic graph, we obtain additional information from the next theorem. By classifying subsets
of vertices according to their structure and their volume, we can show the following theorem:

Theorem 3. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poiyc(n), and let 0 < e < 1. W.e.p., for every set S C U with vol(S) = O(n®), we have
h(S) _ Q(n—(2a—1)e+o(1))‘

We also obtain the following corollary regarding minimum and maximum sizes of arbitrary
bisectors (recall that a bisection of a graph is a bipartition of its vertex set in which the
number of vertices in the two parts differ by at most 1, and its size is the number of edges
which go across the two parts):

Corollary 4. Let H = (U, F) be the giant component of G = (V, E) chosen according to
Poiyc(n). Then, the following statements hold:
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(i) W.e.p., the minimum bisection of H is b(H) = Q(n*'=*) /D), where D := D(H) is the
diameter of H.

(i) For any & > 0, with probability at least 1 — o(n™'*¢), the mazimum bisection of H is
B(H) = ©(n).

1.2 Related work

Although the random hyperbolic graph model was relatively recently introduced [KPK™10],
quite a few papers have analyzed several of its properties. However, none of them deals
with the spectral gap of these graphs. In [GPP12], the degree distribution, the maximum
degree and global clustering coefficient were determined. The already mentioned paper
of [BEM15| characterized the existence of a giant component as a function of «; very recently,
more precise results including a law of large numbers for the largest component in these
networks was established in [FM]. The threshold in terms of « for the connectivity of
random hyperbolic graphs was given in [BEMar]. Concerning diameter and graph distances,
except for the aforementioned papers of [KMI5| and [FK15], the average distance of two
points belonging to the giant component was investigated in [ABFE]. Results on the global
clustering coefficient of the so called binomial model of random hyperbolic graphs were
obtained in [CEF13], and on the evolution of graphs on more general spaces with negative
curvature in [Foul2].

The model of random hyperbolic graphs in the regime where % < a < 1, is very similar
to two different models studied in the literature: the model of inhomogeneous long-range
percolation in Z? as defined in [DvdHHI13], and the model of geometric inhomogeneous
random graphs, as introduced in [BKLD]. In both cases, each vertex is given a weight, and
conditionally on the weights, the edges are independent (the presence of edges depending
on one or more parameters). In [DvdHHI3| the degree distribution, the existence of an
infinite component and the graph distance between remote pairs of vertices in the model of
inhomogeneous long-range percolation are analyzed. On the other hand, results on typical
distances, diameter, clustering coefficient, separators, and existence of a giant component in
the model of geometric inhomogeneous graphs were given in [BKLal, BKLb], and bootstrap
percolation in the same model was studied in [KL]. Both models are very similar to each
other, and similar results were obtained in both cases; since the latter model assumes vertices
in a toroidal space, it generalizes random hyperbolic graphs.

1.3 Organization

In Section [2, we give an overview of the general proof strategy. In Section [3] we collect some
known general useful results and establish a couple of new ones concerning random hyperbolic
graphs that we later rely on. In Section [} we determine up to polylogarithmic factors both
the conductance and the eigenvalue gap of the giant component of random hyperbolic graphs.
In Section [o], we essentially show that only linear size vertex sets S of the giant component of
random hyperbolic graphs can induce “small bottlenecks” measured in terms of conductance,



i.e., if h(S) is approximately equal to the conductance of the giant component H, then S
must contain essentially a constant fraction of H’s vertices. In Section [ we derive results
concerning related graph parameters such as minimum and maximum bisection as well as
maximum cuts of random hyperbolic graphs. Finally, in Section[7} we discuss some questions
our result naturally raises as well as possible future research directions.

2 Overview of the proof of the main theorems

The proof of Theorem [1|is based on the so called multicommodity flow method. Specifically,
it is based on the fact that A\;(H) can by its variational characterization be bounded from
below as a function of a suitably defined multicommodity flow defined on H. Roughly
speaking, we aim for finding a flow between all pairs of vertices consisting of not too long
paths, and moreover these paths are defined in such a way that no single edge has too much
flow going through it. We point out that the classical canonical path technique of routing
the flow through one single path cannot give the claimed result, hence we have to split the
flow through different edges. Our main task therefore consists in defining such a flow by
exploiting properties of the hyperbolic model. In a nutshell, for pairs of vertices “close” to
the center we route the flow evenly through paths of length 3 all of whose vertices are also
relatively close to the center. We then extend the flow to pairs of vertices where at least one
vertex is “far” from the center by attaching a “shortest” path from each such vertex into the
center area; from there on the same strategy of length 3 paths as before is applied. A crucial
ingredient on which the analysis relies concerns properties of the mentioned “shortest” paths
implied by the metric of the underlying hyperbolic space. The corresponding upper bound
of Lemma [2] is easier, by Cheeger’s inequality it is enough to find an upper bound on the
conductance of H. The latter can be obtained by considering the set of vertices of H that
belong to a half disk of Bo(R).

In order to obtain Theorem [3| we decompose the graph in a way that takes into account
the underlying geometry. Informally said, the decomposition establishes the existence of
regions R of Bp(R) such that for sets of vertices S whose volume is O(n?) for some 0 < € < 1
the following holds: (i).- R covers a significant fraction of the edges incident to S, and (ii).-
the fraction of vertices of R that belong to S N R and to S NR are both non-trivial, or
both vol(S NR) and vol(S NR) are a non-trivial fraction of vol(P N'R). In either case, the
number of cut edges of 9S within R is relatively large. The main task is to classify sets S
according to their shape so that corresponding regions R can be found.

Additional technical contributions are derived in the process of establishing both theo-
rems. We show that w.e.p. the volume of H is linear in n, and that moreover, the volume
of a not too small sector is w.e.p. at most proportional to its angle, provided that inside the
sector there is no vertex very close to the origin (see Lemma [15| for details). Whereas this
result is not surprising, we hope that it will turn out to be useful in other applications as
well.



3 Preliminaries

In this section we collect some of the known properties as well as derive some additional ones
concerning random hyperbolic graph model. We also state for future reference some known
approximations for different terms concerning distances, angles, and measure estimates that
are useful in their study.

By the hyperbolic law of cosines (I]), the hyperbolic triangle formed by the geodesics
between points p', p”, and p, with opposing side segments of length dj , dj/, and d, respectively,
is such that the angle formed at p is:

coshd! coshd! — coshd,
h h > . (4)

fa, (e, dy) = arccos ( sinh d! sinh d”
Clearly, 64, (d;,,d}) = 64, (d},d}). Next, we state a very handy approximation for g, (-, ).
Lemma 5 (|[GPP12, Lemma 3.1]). If 0 < min{d;,d}} < d, < dj +d{, then

04, (dy,, dy) = 9e7 (dn—dj,—df) (1 + @(edh_dﬁ_dg)).

Remark 6. We will use the previous lemma also in this form: let p’ and p” be two points at
distance dy, from each other such that ry, vy > % and min{ry,ry.} <dy < R. Then, taking
L =1y and df =y in Lemmal[3, we get

O, (g, ) = 262 =) (1 4 @ (7w 7o),

Note also that 04, (ry, 1), for fived ry,ry > &, is increasing as a function of dy, (for dy
satisfying the constraints). Below, when aiming for an upper bound, we always use d,, = R.

Throughout, we will need estimates for measures of regions of the hyperbolic plane, and
more specifically, for regions obtained by performing some set algebra involving a few balls.
For a point p of the hyperbolic plane H?, the ball of radius p centered at p will be denoted

by Bp(p>7 i‘e'7 Bp(p) = {q € H2 : dh(p7 Q) S p}
Also, we denote by u(S) the measure of a set S C H? i.e.,

wu(S) = / f(r,0)drdo.
S
Next, we collect a few results for such measures.
Lemma 7 (|[GPP12, Lemma 3.2]). If 0 < p < R, then
w(Bo(p)) = e P (1+ o(1)). (5)
Moreover, if p € Bo(R) is such that v, = r, then for C, :=2a/(w(a — 1)),

1(B,(R) N Bo(R)) = Coe™ 2 (1+ O(e @27 4 ¢77)). (6)



A direct consequence of is:

Corollary 8. If 0 < pj, < po < R, then

1(Bo(po) \ Bo(pp)) = e *Wro)(1 — em2or0) 4 o(1)).
Sometimes we will require the following stronger version of ().

Lemma 9 ([KMI5, Lemma 4]). If r, < p, and po + 1, > py, then for Co = 2a/(m(a — 3))

M(Bp(f)p) N BO(po)) = Ca (efa(R’pO)*%(PofperTp)) 4 O<€fa(R—pp+rp)).

At several places in this paper we need the following concentration bound.

Theorem 10. [AS08, Corollary A.1.14] LetY be the sum of mutually independent indicator
random variables, u = E(Y). For all € > 0, there is a ¢ > 0 that depends only on € such
that

P(JY — p| > ep) < 2e7H.

For Poisson variables, we also need the following slightly stronger bound:

Theorem 11. [AS0S, Theorem A.1.15] Let P have Poisson distribution with mean p. For
0<e<l,
P(P<pu(l—¢) < e <n2
and for e > 0,
P(P>pu(l+e) < (e7¢(1+e)~ A",

We immediately derive the following lemma:

Lemma 12. Let P be the vertex set of a graph chosen according to Poinc(n). If S C
Bo(R) is such that u(S) = w(tlogn), then, w.e.p. |S NP = nu(S)(1+ o(1)). Otherwise,
w.e.p. |[SNP| <wvlogn.

Many of the proof arguments we will later put forth involve statements concerning sectors
of the hyperbolic disk Bo(R), in particular, their size and volume. The next two lemmas
provide estimates for such quantities. We first provide estimates for the degree of vertices
of G as a function of their radius.

Throughout the paper let v/ := 2log R + w(1) N o(log R).

Proposition 13. Let v be a vertex of G chosen according to Poi,c(n). If r, < R—1', then
w.e.p. d(v) = O(ez2B)) and if r, > R— v/, then w.e.p. d(v) < (logn)°0).

Proof. Assume first that r, < R — /. Note that d(v) = |B,(R) N P|. Since by Lemma [7] we
have i(B,(R)NBo(R)) = 0(e™ %) = w(lo%), by Lemma |12|the first part of the claim follows.
If r, > R—1/, then u(B,(R) N Bo(R)) is bounded from above by u(B,(R) N Bo(R)) where

w is a point of Bp(R) with r, = R— /. We have u(B,(R) N Bo(R)) = @(e%l/n) = w(lesny,
%’

n

and hence by Lemma w.e.p. d(v) < nu(By(R) N Bo(R)) = O(e7) = (logn)*oW), O
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When working with a Poisson point process P, for a positive integer ¢, we refer to the
vertices of G that belong to Bo(¢) \ Bo(¢ — 1) as the ¢-th band or layer and denote it by
Py :=Pu(G), i.e., Pr=P(G)NBo(f)\ Bo(f —1). We also need estimates for the cardinality
and the volume of the P,’s.

Since our results are asymptotic, we may and will ignore floors in the following calcu-
lations, and assume that certain expressions such as R — % or the like are integers, if
needed. In what follows, also let

glow = L(l - i)RJ,
v:=1log R+ w(1) No(log R).

Proposition 14. Let G = (V, E) be chosen according to Poi, c(n) and let Py = Py(G).

(i).- If £ > liow + v, then w.e.p. |Py| = O(ne *B=9). Moreover, if { < lioy + v, then
w.e.p. |Py| = O(e) = (logn)tol),

(ii).- If by +v < < R—1/, then w.e.p. vol(P;) = ©(e2f(e—2)E-0),

Proof. Note that e®” = (logn)'*°MNw(logn). Consider the first part of the claim. By Lemmalﬂ
we have pu(Bo(€) \ Bo(f — 1)) = e *E=9(1 — e7*)(1 + o(1)), which is w(*E2) if £ > lio, + 1,
so the result follows by applying Lemma [I2] Assume now that ¢ < fj4 + v. By Lemmal/[7] we
have that p(Bo(liow + 1)) = e *E vt (1 4 o(1)) = O(£-) = w(loi"), so applying again
Lemma , w.e.p., |Pe] < |P N Bo(liow + )| = O(e*).

Since vol(Pr) = >, cp, d(v), and for each such vertex v, by Proposition , its degree is,

w.e.p., @(e%(R_’"“)), the second part of the claim then follows easily from the first part. [J

Since the introduction of the random hyperbolic graph model [KPK™10], it was pointed
out that it gives rise to sparse networks, specifically constant average degree graphs (a fact
that was soon after rigorously established in |[GPP12]). It follows that the expected volume
of random hyperbolic graphs is ©(n), and thus their center component has, in expectation,
volume O(n). A close inspection of [BEM15] (see Theorem (16 below) actually yields that the
volume of the center component is 2(n) w.e.p. In this paper, we aim for results that hold
w.e.p. and will require very sharp estimates not only for the volume of the center component
of random hyperbolic graphs but also for collections of vertices restricted to some regions
of Bo(R). Next, we describe the regions we will be concerned about. Let ® be a ¢-sector,
that is, ® contains all points in Bo(R) making an angle of at most ¢ at the origin with an
arbitrary but fixed reference point. For a vertex v, we say that a ¢-sector ® is centered at
v if v lies on the bisector of ®. Moreover, for a ¢-sector ® and a vertex v € ®, we say that
T := &\ Bo(r,) is a sector truncated at v, and if in addition ® is centered at v, then we
say it is a sector truncated and centered at v. Our next result gives precise estimates for
the volume of the center component vertices that belong to sectors and truncated sectors.
Although the result is not surprising we believe it is useful to isolate it not only for ease of
reference later in this work, but also for reference in follow up work. However, we suggest
the reader skip the proof at first reading, due to its rather technical nature.
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Lemma 15. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poiyc(n). Then, w.e.p. vol(U) = O(n). Moreover, let v € Py be such that { < (1 — &R

for some arbitrarily small £ > 0. If T is a sector truncated at v of angle ¢ = Q(e~ 2) then
w.e.p. vol(T) = O(¢n).

Proof. Consider the first part of the lemma. Let ¢ = &'(a) > 0 be a sufficiently small
constant and let 7y = (1 — 5~ — ¢/)R. By Lemma 7] l (Bo(r)) = (1 + o(1))e Er0) =
O (e~ (=R Hence, |P N Bo(ro)| is a Poisson random variable with mean ¢ = ©(n~2°<').
Thus, by Theorem |[11] . for every ¢’ > 0 there exists a sufficiently large constant C" =
C"(a) > 0, so that

/

P(|P N Bo(ro)| > SE(|P N Bo(ro)])) < (3¢)~ - = O(n 2"y < n~¢,

Hence, w.e.p. [P N Bo(rg)] < C” = O(1). Thus, by Proposition[13]| w.e.p. vol(P N Bo(ro)) =
O(n). Recall that v = Llog R + w(1) No(log R). By the same argument, using Corollary
and Proposition [I3] the total contribution to the volume of vertices v with rq < r, < foy + v
is w.e.p.,

1 /

O(|7D N Bo(glow + V)| vQIJrBlggio) d(’l})) = O(ne_a(R—flow v) %(R To)) — O(nﬁ—l—a eau) _ 0(71),

where the last equality follows for sufficiently small & > 0, since o > 1. Similarly, for vertices
v with lo +v < r, < R—1/, by Proposition [13|and Proposition [14| part , the total volume
of these vertices, using the formula for the sum of a geometric series, is w.e.p.,

Z O(n “Dez(R-0) = 2(1=a)) Z el = (ne’(o"%)’/):o(n).

(= Z10W+I/ l= Elow+u

For the remaining volume, we may at the expense of a factor 2 assume that all remaining
edges are incident to pairs of vertices in Bo(R)\ Bo(R—1'). Fix integers R—v/ <i < j <R
and assume v € P; and w € P;. Partition Bp(R) into N := (913@—1]1)1 sectors denoted (in
clockwise order) by ®;,®,, ..., ®y. Observe that if vw is an edge of G then (v, w) besides
belonging to P; x P; also belongs to ®; x &y for some k, k' € [N] where |k — k'| < 1. For
given 1, j, let pJ; = %E]le and ) = %E|PZ| For an integer ¢ > 1, for either b = i and
a=j,orb=jand a =i, say O, NPy is c-reqular if 2°u¢ < |®) NPy| < 271 ud. Note that
(e = O(n21-eele=3)b=30) and by Theorem NP, is c-regular with probability e =2(¢2°#5)
For any ordered pair (7, 7) and any a, b as before we have (@)O(l) < pf < (logn)®W. Hence,
w.e.p., for every b and every k, |®; NP,| = (logn)°M.

Let ¢,¢ > 1 be integers. In expectation, for ¢ < j, there are N e~ i+ e2w5) pairs
of sectors (@, Pys) with |k — k'| < 1 such that &, N P; is c-regular and &y N P; is ¢-
regular. Clearly, for a fixed value of k — k' € {—1,0, 1}, disjoint pairs of sectors (P, Px) are
independent. Hence, if this expectation is w(logn), by Theorem [10] for i < j, w.e.p. there

are 2N e A +E2U)) gch pairs of sectors (P, @y ), and this also holds after taking a union
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bound over the three possible values of k—k’. Otherwise, if the expectation is O(logn), then
w.e.p., by Theorem [I0] the number of such pairs is at most v log n, and since for every k and
b, we have w.e.p. |®r N Py| = (logn)®W, the total number of edges between such pairs of
sectors is w.e.p. (logn)°M. Similarly, w.e.p., there are 2Ne~{2°#) pairs of sectors (®y,, Oy
with |k — k'] < 1 such that ®, NP; is c-regular and [®p NP;| < 25 or the expected number
of such pairs of sectors is O(logn), and as before, the number of edges between such pairs
of sectors is w.e.p. (logn)®1. A similar argument suffices for handling the case of pairs of
sectors (P, @y ) with [k — k| < 1 such that |® N P;| < 2u) and Oy N P; is c-regular. For
the remaining pairs of sectors (@, ®p) we have [, NP;| < 2u! and [P NP;| < 241). Hence,
for the number of edges between P; and P;, we obtain that w.e.p.,

E(PL P < > |E(@ NP, dp NP

(e
“uj 22+Z 2c+2 —Q(c2%w _|_Z 2c+2 —Q(E2°pt) +Z 2c+c+2 —Q(c2¢ J+c2“,u] )+(1ogn)0(1)
c>1 =1 c>1,6>1
O(Nn( —(1-a) H—J) ZQC —Q(c2¢u?) 22(: —Q(@2¢, 1) (1Ogn)0(1)'

c>0

Now, for i < j, observe that since a < 1, i} = (1), and hence ). 9= UEH;) O(1).
On the other hand, let ¢* = ¢*(4,j) := min{c € N : 24 > 1}, Observe that we may ignore
values of ¢ smaller than ¢*, as for such pairs of sectors (P, (IDk/) no vertices in ®,, N P; are
present, and hence no edges are counted. Then, 3 . . 2¢e~ 2w ) < 9¢" om0 9¢ =S 2)
O ((2(1 = 46))<") for some § > 0. Thus, w.e.p.,

[E(P, P))] = Ol DEn=19) (2(1 — §))° + (log ).

The same calculations can also be applied for i = j and k # k. For i = j and k = K/, edges
within the same sector are counted. Hence, since pf = Q(1) and thus )., 22"~ =

O(1), we obtain w.e.p. |E(P;, P;)| = O(e*~Vin3=42) 4 (logn)°M). Hence, w.e.p.,

> EPLP) = (logn)?W 3T Ol Dt 21 - ).

R—V'<i<j<R R—V'<i<j<R

.

Now, in order to bound the second right hand side term, write : = R —7, j =

* 1. 1y, 1y 1-=
0 <7 <17 <. Observe that since 2 = O(1 + n~20-¥ex7=(@=2))) = Q(1 + el@~2)27),
Consider first pairs (7, j) with ¢* = O(1). For such pairs,

3o Z pla=3)+i) — O(n) Z ela=3)(=7-7) _ O(n),

R—1'<i<j<R 0<7<i<v!

where we used the formula for a geometric series. Consider then pairs (i, j) 1th c=w(l).
1
—3)

For such a pair, 2°° = ©(e®2)27) we have (2(1 — §))* = O(e’~ o)((a=g)i- )) for some
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0 < ¢ < 1. Hence,

p3—a Z 0((2(1_5))6*6(0“5)(””):O(n) Z o090 ((a=3)i=37)

R—v/'<i<j<R 0<7<a<v’
v ’
= O(n) Z 6_5/(0‘_%)52 et )I = O(n) Z e Ve = O(n),
o<z’ 7=0 0<zv’

where we again used the formula for a geometric series, thus finishing the proof of the first
part of the claimed result.

Now, consider the second part of the lemma, and let v € P, with £ = AR < (1 — )R
for some arbitrarily small £ > 0. Since ¢ = Q(n™"), we may partition T into ¢t = O(-Zs)
subsectors 71, . .., T} of angle ©(n~*) and bound the volume of each subsector T} separately.
Let A be such that 1 — A — 2a(1 — A) = —¢’ for sufficiently small &’ = &'(a) > 0. Note

that since o > 1. for ¢’ small enough, we have 1 > X > \. For a fixed T}, consider first

9

vertices w € PNT, with ¢ < r, < 0= LXRJ Since the expected number of vertices of
such radius inside T}, by Lemma [7| and the choice of angle for defining T}, is O(n=¢"), by
the same reasoning as in the first part of the lemma, w.e.p. there are O(1) such vertices,
and their total volume is, by Proposition |13, w.e.p. O(lA)e%(R_é) = O(n'™). Next, let \ be

such that 1 — A — 2a(1 — \) = &’. Note that 1 > X\ > X and consider vertices w € P N T}

with £ < r, < 7 := |AR]. As in the first part of the lemma, the total contribution of these
vertices to the volume of T} is, w.e.p.,

O(G%(R—?)nl—Ae—a(R—Z)> _ O(nl—/)\\—&-e’) _ O(n%;d—i—a’) _ O(nl—A),

where the last equality follows by choosing ¢’ = &'(a) sufficiently small.
Next, let us consider vertices w € P NT}, with £ < r, < R — /. By the same argument
as in the first part of the lemma, the total volume of such vertices is w.e.p.,

R—V'

Z O(nl—Ae—a(R—Z/))eé(R—Z’) _ 0<n1—>\).

0=t

As before, we may assume that the remaining edges are incident to pairs of vertices in
Bo(R) \ Bo(R — V'), with at least one vertex inside Tj. Since most vertices indeed have all
its neighbors inside T}, we may in fact also consider only pairs of vertices in T}, \ Bo(R —1/').
For these pairs, the argument is as before, we fix integers R — 1/ < i < j < R, and partition
T}, into (W’;]_l)} sectors of equal angle. Since A < 1, the same argument as in the first
part, replacing the number of sectors N by O(Nn~"), shows that the number of such edges is
w.e.p. O(n'™*). Hence, since vol(T) = >, vol(T}), and for each k, w.e.p. vol(T}) = O(n'™),
we have w.e.p. vol(T) = O(tn*=*) = O(¢n), and the second part of the lemma is finished as
well. O

Recall that a w-sector is a ¢-sector with angle 7, that is a half disk. Next, we combine our
previous lemma with known facts about the giant component of random hyperbolic graphs
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in order to observe that both the volume and the size of their center component are linear in
n, and that this holds even if one considers only the vertices that belong to a fixed m-sector
of Bo(R)

Theorem 16. [Theorem 1.4 of [BFMI15]] Let H = (U, F') be the center component of G =

(V,E) chosen according to Poiac(n). Let 11 is a m-sector, then w.e.p. |U NII| = Q(n).
Moreover, w.e.p. H is the giant component of G.

Proof. A close inspection of Theorem 1.4 part (i) of [BEMI5| shows that it can also be
performed in the model Poi, ¢(n). Moreover, after suitably adapting the value of C' and
thus of T as defined in Section 4.2 of [BEMI5|, equation (4.21) and then also Lemma 4.2
of [BEM15] in fact hold w.e.p., and thus, the proof given there shows that w.e.p. |U| = Q(n).
The same proof holds also when restricting to one half of Bo(R), and hence w.e.p. |UNII| =
Q(n). For the second part of the corollary, once more a close inspection of the same theorem
(Lemma 4.1, equations (4.3) and (4.21) of Theorem 1.4 of [BEMI5]) show that the claimed
result holds in the Poisson model, and it holds w.e.p. O

An immediate consequence of Lemma [15| and Theorem [16]is the following:

Corollary 17. Let H = (U, F') be the center component of G = (V, E) chosen according to
Poiy c(n). Then, w.e.p. vol(U) = ©(n). Moreover, if 11 is a m-sector, then w.e.p. vol(U N
M) > |UNTI| = Q(n).

Regarding the diameter of the center component, we have the following result:

Theorem 18. [Theorem 1 and Theorem 3 of [FK15]] Let H = (U, F) be the center compo-
nent of G = (V, E) chosen according to Poi, c(n) and let D = D(H) denote its diameter.
Then, w.e.p.,

D = Q(logn) N O((logn) ™).
Proof. Again, the results stated in [FK15] are stated with smaller probability, but a close
inspection of them shows that they hold w.e.p. The original results are stated in the uniform
model, but again, they hold in the Poissonized model as well. O]

The following lemma is implicit in [BEMI5], we make it explicit here.

Lemma 19. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poiyc(n). If © is a ¢-sector with ¢ = w(%(logn)%), then, w.e.p. vol(UN®) > |[UNP| =
Q(¢n(logn)” =),

Proof. Let lnq, := |R — Qllofgfj. Since d(v) > 1 for any v € U, the inequality vol(U N
®) > |U N @ is trivial. In order to show that (U N ®| = Q(gbn(logn)l%), note that,
using the lower bound on ¢, by Lemma [7] and Lemma the number of vertices in ® N
P, 1s w.e.p. @(qﬁn(logn)_l%). Note also that for every vertex v € P, with £ < ¢ <

lrar, by Remark [6] and Corollary [8] the expected number of neighbors of v inside Py_; is
O(ne~B0e2(B-20) — ((log’n), and hence, by Lemma (12| this holds w.e.p. Thus, all
vertices v € P, connect through consecutive layers to vertices that belong to Bo(g) and

thus are part of the center component H. Hence, |U N ®| = Q(¢n(log n)_l%) O
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To conclude this section, we make a final important observation that simplifies arguing
about the center component (and thus the giant component) of random hyperbolic graphs.

Remark 20. The previous lemma shows that w.e.p. all vertices in PN Bo(R — QIICLgQR) mn fact

belong to the center component, and hence, for each { < R — Q;igaR, w.e.p. Po(G) = Po(H).

We will use this without further mention throughout the paper.

4 Spectral gap

The purpose of this section is to bound from below the spectral gap of the center compo-
nent H of a random hyperbolic graph, i.e., proving Theorem [T As we show next, this result
is essentially tight. Indeed, we first prove Lemma [2| by showing a simple upper bound for
A1(H) obtained via Cheeger’s inequality, that is, via an upper bound on the graph conduc-
tance of H. We include the bound mainly for completeness sake.

Proof of Lemma @ Let II be a 7-sector. We have to show that h(II) < vn~*=Dlogn.
Let P be the set of vertices (points) if G is chosen according to Poi,c(n), and let U be
the set of vertices (points) if G is chosen according to Unf, o(n). First, observe that by
Corollary [17] w.e.p. vol(II) = ©(n), vol(P \ II) = ©O(n). Since Corollary |17 holds w.e.p.,
the same results clearly hold in the uniform model as well. Hence, it suffices to show that
a.as. [E(ILU\T)|,|EALP\ )| = n2=90(logn). Define Uy as a uniformly distributed
set of N points in the hyperbolic disk of radius R = 2logn+C, i.e., Uy equals P conditioned
on |P| = N. We first determine the expected value of |E(II,Uy \ II)|. Clearly,

(| E(IL, Uy \ T1)]) = 2(];)13@ €100 € Uy \ T, dy(ro, 7o, O — 0,) < R).

We divide the computation of the latter probability into two cases depending on whether or
not r, + r, < R, and denote the corresponding probabilities by P’ and P”. Recalling that
C(a, R) = cosh(aR) — 1 and since 2 sinh x sinh y = cosh(z + y) — cosh(z — y),

ry) f(ry)drydr, = / / sinh(ar,,) sinh(ar,)dr,dr,
//7“u+rU<R ) (C a, R rut+ro<R ( ) ( )

5 Rsinh(aR) — ! = O(R)e " =n=2*O(logn).

- 8(C(a,R)) 1C(o, R)

Now, in order to compute P”, observe that if for u € II, v € Uy \ Il with r, + 7, > R, we
have uv € F, then either 0, + (2r — 0,) < Or(ry,7,) or 0, — 0, < Og(ry, 1), Wwhere Og(-,-) is
as defined in (4]). Clearly, for (0,,6,) € [0,7) X [, 27) the area of both triangles defined by
the aforestated two inequalities is 0z(ry,7,), and hence the probability that (6,,6,) satisfies
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one of the two inequalities is %Qé(ru, Ty). Thus, by Lemma ,

A2 // 92 (Tus 7o) f () f (1) drydry
47T ru—i-'m,>R

N (C’(T //TU+TU>R efmru=re (1 4 (e 7)) sinh(avr,, ) sinh(ar, ) drydr,

™

Oé 6
_ —(1—a)(rut+ry) (1 ‘l‘O( R—ry—ry +e 2ary +e—2o¢m)>drudrv
47T2(C( //T1L+7'1)>R

= O(R)e ™ = n72*O(logn).

Summarizing, for N = n and the model Unf,, o(n), we have E(|E(IL,U\I)|) = O(n*1=* logn).
For the model Poi, ¢(n),

N
B(EIL P\ ) = 3 B(E(LU \I))P(P| = V) = O logn) 3 ( )eri
N>0 N>
nN-2
= O(n2(1_a) 10g n) Z €_nm = O(nQ(l_O‘) 10g n)
N>2
In either case, the desired statement follows by Markov’s inequality. O]

We now undertake the more challenging task of establishing a lower bound on the spectral
gap of the center component of random hyperbolic graphs. By Theorem w.e.p. the
diameter of the giant component of a graph chosen according to Unf, «(n) is O((log n)ﬁ)
when % < a < 1. A well known relation between the spectral gap and the diameter of
graphs (see for example [Chu97, Lemma 1.9]) establishes that for a connected graph G
with diameter D it holds that A;(G) > 1/(Dvol(V(G))). Thus, since by Corollary [17]
w.e.p. vol(V(H)) = O(n), we get that \j(H) = Q(%(logn)_ﬁ). Since by Lemma [2| we
have h(H) < vn~*"Ylogn, the lower bound on A\(H) > $h*(H) obtained from Cheeger’s
inequality (see (3))) cannot be asymptotically tight when o > 2. Below, we prove a lower
bound on A\; (H) which in fact establishes that up to polylogarithmic (in n) factors, the upper

bound given by Cheeger’s inequality is asymptotically tight.

In order to bound A;(H) from below we rely on the multicommodity flow technique
developed in [DS91], Sin92]. The basic idea is to consider a multicommodity flow problem
in the graph and obtain lower bounds on A;(H) in terms of a measure of flows. Formally,
a flow in H is a function f mapping a collection of (oriented) simple paths Q := Q(H) in
H = (U, F) to the positive reals which satisfies, for all s,t € U, s # t, the following flow

demand constraint: ($)d()
Z fla Vol )’ (M)

qEQe t

where Qg is the set of all (oriented) paths ¢ € Q from s to t. Clearly, an extension of f to
a function on oriented edges of H is obtained by setting f(e) equal to the total flow routed
by f through the oriented edge e, i.e., f(e) :=>_ ., f(q)-
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In order to measure the quality of the flow f a function on oriented edges, denoted f, is

defined by
fle)=Y_ f@ld, (8)

qeQ:q3e

where |g| is the length (number of edges) of the path q. The term f(e) is referred to as the
elongated flow through e. The flow’s quality is captured by the quantity p(f) := max, f(e),
where the maximum is taken over oriented edges. The following result is the cornerstone of
the multicommodity flow method. We include the claim’s proof for several reasons; (i)- for
concreteness sake, (ii)- due to its elegance and conciseness, and (iii)- for clarity of exposition,
because in all instances known to us, the result is stated in the language of reversible Markov
chains, and its interpretation in graph theoretic terms might not be straightforward for the

reader.

Theorem 21 (Sinclair [Sin92]). If f is a flow in a connected graph H = (U, F), then
M(H) > —

1 2 =

p(f)

Proof. Recall (see e.g. [Chu97, Eqn. (1.5)]) the following characterization of

Zs,t:steF(w(s) - ¢(t))2

it 2d(>)d(1)

v Y ser(W(s) =¥ (1) <5

where the infimum is taken over all non-constant functions ¢ : U — R.

For an oriented edge e, let ¢~ and e denote its start- and endvertices. Note now that for

any ¢ and any flow f in H, the denominator of the last displayed equation can be bounded
from above as follows:

S (0~ 0P T = 5 5 (e - vie)
s,teU s,telU qeQs,t e€q
<3 Halal S wle) — v = T0le) - (et )T
qeQ e€q e
<N T W)~ vl =7 Y Wl — w0

e s,t:stel

where the first inequality is by Cauchy-Schwarz, and the second one by definition of p(f).
(Note that the first equality in the preceding displayed derivation requires that Q; is non-
empty for all s,¢ € U, which is indeed the case given that H is connected.) O

A particular version of the multicommodity flow method, referred to as the canonical
path method, consists in routing, for every pair of distinct vertices s,t € U, the required
d(s)d(t)/vol(U) flow demand via a single oriented path going from s to t. This simplified
method cannot deliver as strong bounds on A\;(H) as the ones we claim. Indeed, for the
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canonical path method, the elongated flow on any edge used by a path carrying flow from
s to t must be at least d(s)d(t)/vol(U). Taking s and t as the maximum degree vertices
in H, known results on the maximum degree of hyperbolic random graphs (see [GPP12|
Theorem 2.4]) lead to bounds on elongated flows not smaller than Q(né_l), and thence to
bounds on A;(H) no better than O(n'~%), which would be worse than the claimed lower
bound of Q(n=(*=V /D) if a < f (with some effort maybe one might be able to show that
the method does not provide strong bounds even for larger values of ).

To simplify the exposition, we will use Theorem in a slightly easily derived variant
stated below. First, say that {Q’, Q"} is a path consistent partition of Q := Q(H) provided
there is a path oriented from s to ¢ in Q' if and only if no such path is found in Q”, i.e.,
for all s,t € U, s # t, the set Q. , is non-empty if and only if Q7, is empty. Moreover, for
QC Q wesay f:Q— R, is a O-flow provided f(q) = 0if ¢ € O and for every s,t € U,
s # t such that és,t is non-empty, the following holds:

> fo =iy )

qus t

We extend to @ flows, in the natural way, the notions of elongated flow and maximum
elongated flow. In order to more easily apply Theorem [21] we will construct a flow satisfying
its hypothesis as a sum of Q flows. Our next result validates such an approach.

Corollary 22. Let H = (U, F') be a connected graph and {Q', Q"} a path consistent partition
of @ := Q(H). Let ', f": Q — Ry be such that " is a Q'-flow and " is a Q"-flow, then
f + f"is a flowin H and

p(f + ") < p(f") +p(f").
Proof. The result follows since p(f' + f”) = max. (f'(e) + f"(e)) < p(f") + p(f"). O

Key to our approach is the fact that w.e.p. random hyperbolic graphs admit multicom-
modity flows of moderate maximum elongated flow. To prove this assertion we associate
to the center component H of G chosen according to Poi, ¢(n) a path consistent partition
{Q,Q"} of Q:= Q(H). The collection Q" will consist of paths whose endvertices are both
“sufficiently close” to the origin O. In contrast, Q" will consist of the collection of paths one
of whose endvertices is not “sufficiently close” to the origin O. We will fix the flow for path
g with endvertices s and t, so that it satisfies while distributing an equal amount of flow
among all paths in Q.

In addition to the already defined quantities 1o, = [(1—5-)R] and v/ = 2log R+w(1) N
o(log R), the following quantities will also play an important role in the construction of Q’
and 9Q”:

Uin = [(@ = $)R+ V'], (10)
) o
lrax 1= L(% —a)R — I//J (12)



Observe that £, + max = R. For sufficiently large n, it always holds that £, < fmid < fmax
and Cin < low + 7 < fmia. From now on, we assume without further mention that n is large
enough so that these inequalities hold. Henceforth, for an integer ¢ < 0,,.,, we let

Emax, if ¢ < gmina
{= 2£mid —(+ 17 if gmin S 14 S Emid7
lnid, if £ > g

Note that % > lmid = % + O(1) and g < ¢ < lmax- Moreover, observe that ¢ < fq if

and only if 0> liq. As before, often we shall ignore the floors/ceilings in the preceding
definitions, since it only introduces low order term approximations in our derivations. Recall
that whenever referring to expressions such as R — % or the like, when needed, we will
also assume that these are integers.

Details concerning Q' as well as an associated Q'-flow are provided in the next section,
and in the subsequent one analogous results concerning Q" are discussed.

4.1 A Q-flow

For s € Py and t € Py with k, k' < lax, let Q' be the collection of length 3 oriented paths
from s to ¢ whose first internal vertex belongs to P; and the other internal vertex is in Pg.
Also, let Q' be the union of all such Q ;’s. We classify paths in Q" as follows (see Figure :

e Type I: both endvertices belong to Bo(lmiq)
e Type II: both endvertices belong to Bo(max) \ Bo(lmia)
e Type III: one endvertex is in Bo({miq) and the other one in Bo(limax) \ Bo(lmid)

Next, we relate the size of the Qs to the size of certain collections of edges of H =
(U, F'). This will be useful for estimating their size.

Proposition 23. If v, € P, and v, € P, with g < h < lpax, then

’E(P§7Pﬁ)|7 ngah S gmid;
|Q;gﬂ)h| = ’E(P@ Npemid (Uh))‘7 if 9 < lmia < h,
[Np,,, (W)l - NP, (0n)]if g, 7> lrnia-
Proof. The claim holds for g,h < 4 because for each edge e € E(Pj, P;) there is a path

in Q, ,, with node set {vg,e™,e*,v;} and the middle edge of any path in @, belongs to
E(Pg,P;). The remaining cases are handled similarly. O

As already mentioned, we will evenly split the flow that needs to be sent from a vertex s
to another vertex ¢t among all oriented paths connecting s to t. This partly explains, at least
when s,t € U N Bo(fmax), Why we next estimate the number of paths in Q ;.
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(a) Path types. (b) Edge classes.

Figure 3: Illustration of path types and edge classes. Inner shaded rings correspond to
Bo(lmia) \ Bo(lmia — 1), outer shaded rings to Bo(lmax) \ Bo(lmax — 1) for a = 5/8.

Proposition 24. W.e.p., For g, h < lp.x where g > lnq the following hold:
(i).- If vy € Py, then |Np_(v,)] = O(e @ DFNez(R-0)) = g(e= =D FENd(y,)). In

1

particular, [Np, (vg)| = O(n~ (= 2e2(B-9) = O(n=(@=2)d(v,)).
(i)~ |E(P,, P5)| = O(ne (@ DR (R-0).

(iii).- If S C Pe,ys then |E(P,, S)| = O(]S|y/ne~ (@~ 2)1=9)),

mid 7
Proof. Consider the first part of the claim. If h = g = lmiq, since Py, induces a clique
in H, then N;(vy) = Pj. Since by definition £ = R + ©(1) and Proposition (13| implies
that d(vy) = O(y/n), the claim trivially holds by Proposition [14] part (). Assume that
h+g > 2{q > R. Note that if a vertex in P; is a neighbor of v, € P, in H, then the small
relative angle (in the interval [0, 7)) between such a vertex and v, is O(Ar(g,h)), which by
Lemma , equals @(e%(R’Q*E)). Applying Lemma , we infer that u(Bo(h) \ Bo(h — 1)) =
e*a(Rj‘)(l —e ) (14 o0(1)). Thus, for a sector ® of Bp(R) of angle ¢ = @(e%(R_g_E)),

u(® N Bo(h) \ Bo(h— 1)) = éu(Bo(h) \ Bo(h — 1)) = ©(4)e(emDE-Rezt=a),

Since g < lax, h > lmiq and because v/ = 2log R 4+ w(1), recalling the definition of ¢,,;q and
lrmax, We deduce that

3 (B0 ~(a= DR > (3Bt ~(0=3)(R—tuia) — O(c'5) = w(log ).
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We have established that ;(® N Bo(h) \ Bo(h — 1)) = w(loin), so the desired conclusions
follow by Proposition (13| and Lemma The second part of ({ij) follows immediately since
Umia = & 4+ O(1).

Consider now the second part of the claim. Note that |E(Py, P;)| = 3 cp, [Np; (v)]-
Since g > lniq, the claim follows immediately from the first part by a union bound and by
Proposition |14| part .

For the last part of the claim, observe that |E(P,, S)| = Y., cq|Np, (w)|. By part (i),
a union bound over the elements of P, ., yield that w.e.p., for all w € S it holds that
|Np, )| = O(e @ 2)E=9)e5(F=tmia)) . The conclusion follows by definition of £id. O

Next, we establish the main result of this section.

Proposition 25. Let H = (U, F') be the center component of G = (V, E) chosen according
to Poigc(n). For all g € Q's4, let

d(s)d(t) 1
vol(U) Q4|

Then, w.e.p. @' C Q(H), f' is a well defined Q'-flow and p(f') = O(n*).

Proof. For s,t € Bo(lmax), Proposition [23] and Proposition , imply that [Qf,] # 0.
Thus, f"is well defined. Moreover, by the way in which f’ is prescribed, > e (q) =
d(s)d(t)/vol(U), so f’is a flow. Y

We need to bound the elongated flow in the edges traversed by paths in Q'. First, we
identify which edges e of H are traversed. Paths in Q' traverse edges of H whose endvertices
are in Bo({yax). Moreover, the endvertices of e are not both in Bo ({9 — 1), and a path in
Q' either starts or ends with e if and only if at least one of the endvertices of e is in Bo(lmiq)-
If follows that an edge e traversed by a path in @' can belong to one of four edge classes
described forthwith. An upper bound on the elongated flow of the members of each of these
classes is separately derived below (recall that for an oriented edge e, the expressions e~ and
e denote its start- and endvertices).

Since Q7, = Q/, for every distinct s,t € U, the clongated flow f” is the same for both
orientations of a given edge. Thus, in our ensuing discussion we fix (arbitrarily) one of the
two possible orientations of e when bounding its elongated flow.

fq) =

Spread out edges (one endvertex of e is in Bo(fmiq) and the other one in Bo(fmax) \
Bo(lmia)): The only possibility is that for some k < £,;4, the edge e is incident to a vertex in
Py and to another one in P;. Fix the orientation of e so e~ € P;, and et € P;. Necessarily,
e is the first edge of a Type I path in Q' that traverses it. Also,

(e d(e 4
B A (X S g+ >

£<£m1d tePy mld <U<Lmax tEP,

& t|rE (") N, (1))

Let S; and S5 be the first and second summands inside the parenthesis of the right hand
side above.

22



First, we bound S;. Assume ¢ < /.4 and t € P,. By Proposition , |Q’e,7t| =
|E(Pg, P;)|. Since k> lmia, part of Proposition applies, implying that w.e.p.,
|NP€~(€+)’/|E(PE7 )| = ( (R~ k)) Hence, w.e.p.,

Si = O(Le2 @ 1) S vol(Py),

e<£mld

We now bound S, from above. Assume lia < € < lnax and t € Pp. By Proposition
Q.- .| = [E(Pr, Np,__ (t))|. Moreover, since k > lpmiq, Proposition [2 part (iil) yields that

we.p., |Q. | = O(Np,  (t)]y/ne *-2)F= MY, By part () of the same proposition, we

et that w.ep. d(t)/|Q. | = O(n~(- a>e<a—*><R—E>>>. Also, Tyep, [E({et}, No_ (1))] =
|[E(Np, ("), Pg)| SO by Proposmonpart () and part (i . w.e.p. |[E(Np, (e $),Pg>| —
O(nt~e (=) (B-0e3(R-k)) Recalling that by Proposition |14 , we know that w.e.p. vol(P,) =
@(ne_(a_%)(R_@) for Emid < ¥ < L.y, it follows that w.e.p.,

S5 = O~ (TVleTDED) N E(Np, | (€F),Po)] = 05 F ) 3T vol(Py).

gmid <Ll<lmax Zmid <l<lmax

Summarizing, f”(e) = jéﬁ;))@(%eo‘(R_E) > o<t VOI(Pr)). Since the summation in this last
expression is clearly at most vol(U) and observing that by Proposition 13| w.e.p. d(e”) =
@(ne’%), we conclude that w.e.p. F7(e) = O(e~2T(Ek))  Finally, recall that k < fy;q and
a> 1, 50 a(R—Fk)— 3k < max{(a— $)k, a(R — lyax)} < @(R — lax). By definition of £yax

and since a < 1, we infer that w.e.p. f”(e) = O(e*Ftmax)) = Q(noRa—Near"y = g(p2e~1).

Belt edges (both endvertices of e in Bo(fmiqa) \ Bo(fmia — 1)): The only possibility is that
e is the middle edge of a path in Q' of Type II. In particular,

f'(e) 1 d(s)d(t)
3 vol(U) 2. 2. 2 [/

Cinid <l <lmax SENPg ) tGNpZ, (6+)

By Proposition , if s € Prand t € Py with liiq < €, 0" < lipax, then |Q[ | = |Np, (s)]-
|Np, (t)]. By P oposmon 4 part (i), for w € P, U Py, expressions like d( )/’Npemid (w)]

equal, w.e.p., ©(n® ) Since a vertex cannot have more neighbors than its degree, w.e.p.,
— O(n? 1) O(n21)
T(0) — Nop (e~ Np (e < —=——2d(e7)d(eT).
@ =@y 2 Wl D INe(eh)] < 7 (e )d(e)
Emid<£§zmax emid<£,§[max

By Proposition , w.e.p. d(e”),d(e") = O(y/n), so by Lemma , w.e.p., f'(e) = O(n21).

Middle edges (both endvertices of € in Bo(fmax) \ Bo(fmia)): Now, e can only appear as the
middle edge of a path in Q" of Type I. Say e~ € P; and et € Py for k, k" < ly,4. Note that
if e is traversed by some path in Qf,, then it must be the case that s € P, for some ¢ such
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that ¢ = k (if k # Umax there is only one such ¢, otherwise ¢ < /). A similar statement
holds for t. By Proposition 23] for s € Py and t € Py, we have that |Q. ;| = |E(P;, Pg)l,
and hence

/ ] )
f( _VolU Z Z ZZ Q’ | :vol( ) E(P..P kl,ZVOlP[ Z/VOI(P@).

M K 0.0 =k SEP¢ tE€Py 0=

Since E, K > lmia, by Proposition part , recalling that (i, + lmax = R, since (<
low + v (where v = £ log R + w(1) No(log R)) and the way in which k is defined, w.e.p.,

’E(,PE’ P]:/) ’ = @ (nef(aié)(ng)ef(aié)(Rflgl)) — Q (nef(af%)(max{k‘velow+V}+max{kl:‘elow+’/})) .

Also, by Proposition [14] part and definition of f}.y, w.e.p.,

e(a_%)maX{k7elow+V} Z VOI(,]DK) =
0:0=Fk

(2a—1)2

O(n 2a e(a_%)VVOKU)), it b < liow +v.

{O(ne(aé)(R2k))? if & > glow + v,

Since k < fpq < g and % < 1 (given that o < 1), by Lemma w.e.p., the case

that dominates above is when k < f,, + v, which in turn is o(n‘”%). Hence, again using
- 1 n2e e
Lemma , w.e.p., f'(e) = O(ﬁ(U) Lo (net2)?) = O(vol(U)) = o(n?*71).

Belt incident edges (one endvertex of e in P,_,, and the other one in Bo({max) \ Bo(lmid)):
Fix the orientation of e so e~ € Py for lpiq < k < lpay and et € Pp_... Note that e can
be the first edge of either a Type II or Type III path, or the middle edge of a Type III
path. Each alternative gives rise to one of the terms on the right hand side of the following
identity:

o d(l(U) Z ;lg V(") N 1)

DD MDD IR

e<z,md =k SE€Pe bmia <t'<lmax t€Np,, (e*)

Let S; and S5 be the first and second terms on the right hand side above.

First, we bound S;. Let ¢t € P, for £ < l,... By Proposition if ¢ < lpiq, then
Q.- .| = [E(Np,  (e7),Pp)| and Np(t) = P; (in particular, E({e*}, Np.(t)) = Np.(e™)).
Moreover, if £ > {yiq, then |Q [ = |[Np, (e7)|-[Np, (1) and 0 = lna. Since vertices in
Py, induce a clique in H, we have \E({e ‘i Np_(1))] —TN'])Z ()] Thus,

dle”) [ Np(eT)] - vol(Py) 1
~w 2 (B im0 Pl T, @], 2 vol(Py).

mid <Egemax
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By parts () and (iii) of Proposition if £ < lwia, then wep. |E(Np, (e7),Pp| =
|sz (e | - [Np(e¥)]. By part (i) of The same proposition, w.e.p. d(e”)/|Np, (e =

)
O(n~(®=2)). Tt follows that w.c.p.,

5= 2 S~ ).

vol(U) et

Since the Pp’s are disjoint and contained in U, we clearly have ,_,  vol(Py) < vol(U).
Hence, w.e.p. S; = O(n=(@=2)) = o(n21).

Now, we bound S;. Assume t € Bo(lpmax) \ Bo(lmia) and s € Py with ¢ < l,q4. By
Proposition [23} it holds that [Q] ;[ = |[E(Pg; Np,  (1))|. By Propositionpart (i), w.e.p.,
|E(Py, Np, ()] =0O(n' e=(@=2)(R=D(1)). Hence, w.e.p.,

S :L(l(]_;)) S D ®0olR) Y |Ng,(eh)].

vol 2
( egfmidf:k‘ Emid <€l§€max

Since the number of neighbors of a vertex is at most its degree and given that, by Proposi-

tion (13} w.e.p. d(e™) = O(y/n), we infer that w.e.p.,

1 b et
Sy = Vol(U)@(na 2e(072)(R=h) Z vol(F%)

0<bmia:l=k

Clearly, Z£<€ 7 vol(P) < vol(U). Recalling that k > /4, the definition of /.4 and
since o > 3, we conclude that w.e.p. Sy = O(n?*71). O

4.2 A O"-flow

The collection Q" will contain paths between distinct vertices s and ¢ of the center component
H if and only if at most one of s and ¢ belongs to Bo({max). Paths in Q” will have a similar
structure as in @'; we informally describe it first for paths both of whose endvertices s and
t belong to Bo(R) \ Bo(fmax)- Specifically, such paths will consist of three segments. The
first segment connects s to a vertex s’ in Py,,,.. We denote this segment by ¢s . The last
segment, connects a vertex t' in Py, to t. We denote it by ¢v ;. The middle segment will
be a path from s’ to t’ belonging to Q;, . as defined in the previous section. In fact, the
collection of paths from s to ¢, i.e., Q7 will be paths that first traverse ¢; ¢, then a path in
Q, t, and finally the path g ;. For qE Qst, we refer to ¢« and gy, as end segments of g5,
and to ¢y 4 as the middle segment of . If only s belongs to Bo(R) \ Bo(lmax), we let ¢ = t
and ¢y ; be the length 0 path of the single vertex t. We define s' and ¢y s similarly if ¢ is in
BO(R) \ BO (gmax)'

In order to specify how s’ and ¢’ are chosen and paths ¢,y and ¢y, defined, we borrow
from [FK15] the following useful concept of “betweenness” (recall that Ay, ,, denotes the
small relative angle in [0, 7) between pg,p; € H?): say that vertex p’ lies between vertices
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p and p” if A,y + Apy = Ap, . Also, given a finite set S C H? and p,p’ € S we
say that p” follows p in S, if there is no p’ € &\ {p,p"} such that p’ is between p and p”.
Now, let ug,u; € Py, +1 be such that u; follows u, in Py, +1 and s is between ug and ;.
Consider a shortest path in H (ties broken arbitrarily) between s and an element of {ug, u; }
— denote the latter element by u,. We will show that, w.e.p. u, has a neighbor in Py, .. We
denote by ¢« the oriented path that starts at s, traverses the aforementioned shortest path
up to u, and ends in wu,’s closest neighbor, henceforth denoted by s', that belongs to P,
Similarly, define ¢’ and ¢;y. Let gy equal the latter but with the reverse orientation.

An important fact concerning the just described end segments of paths in Q" arises from
a key property of geometric graphs, which depending on the model, precludes the existence
of some vertex-edge configurations. In [FK15], for hyperbolic geometric graphs, two very
simple forbidden configurations are identified (each one obtained as the contrapositive of the
two claims stated in the following result).

max *

Lemma 26 ([FK15, Lemma 9]). Let G = (V, E) be a hyperbolic geometric graph. Let
u,v,w €V be vertices such that v is between u and w, and let uw € F.

(1).- If r, < min{r,,r,}, then {uv,ow} C E.
(i1).- If ry, <1y <71y, then vw € E.

Our two following results establish, first, that w.e.p. ¢+ with the stated properties
does indeed exist in H, and second, show that the end segment of a path in Q" exhibits
a very useful property: it is essentially contained in a small angular sector to which s
belongs to and except for potentially one internal vertex the path is completely contained in

BO (R) \ BO (émax) .

Lemma 27. Let { € {liax, bmax + 1}. W.e.p., for any two points ug,uy € Py such that uy
follows ug in Py it holds that Apy, ., < Ze e B=01ogn. Moreover, w.e.p., every u € Pooet1
has a neighbor v € Py,... such that Ap,, < Zea(R tmax) Jog 1.

max

Proof. Fix ug € Py. Let R,, be the collection of points u € Bo({) \ Bo(¢ — 1) such that
0 <Ay < Ze e F=H1ogn. By Lemma @ and by definition of /,

p(Rug) = Ze D (logm)e P01 — )1+ o(1)) = w(22),
Hence, by Lemma [12| together with a union bound over all uy € P,, w.e.p., R,, is not empty
for each ug € Py.

Consider now the second part of the claim. Let vy, v € Py, be such that v, follows vy in
P and u is between vy and v1. From the first part, we know that w.e.p. Apy, v, APy, <
vea(fi=tmax) |og . By Lemma , we have GR(émaX,KmaX — 1) = O(e2B-2max)) = Q(p2(1-2)),
By definition of £iay it holds that Agp,,, < Le®Ftma)Jogn = vn~ (=)@t ear’ 160 1 Since
2a + 1 > 2, we conclude that w.e.p. Ay, = 0(0r(lmax, lmax — 1)), implying that u and v,
are neighbors in H. O
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The following result establishes the existence of end segments with certain useful char-
acteristics.

Proposition 28. Let H = (U, F) be the center component of a graph chosen according to
Poi c(n). Let D be the diameter of H. W.e.p. for every vertex s € Bo(R) \ Bo(lmax) of H,
there is a path in H of length at most D + 1 with endvertices s and s € Py, all of whose
internal vertices, except for at most one, lie outside Bo({max) and determine together with s’
an angle at the origin which is at most Pmax = (1 + %)%ea(R_emx) log n.

Proof. Let uy and u; be as described in the beginning of this section, i.e., ug,u; € Py, 11
such that uy follows wuy in Py, . +1 and s is between uy and u,. Consider a shortest path in
H between s and an element of {ug,u;}, say q. Clearly, ¢ exists because H is connected.
The length of ¢ is at most D. Suppose that some internal vertex of ¢ belongs to Bo({iax)-
Say w is the first such vertex one encounters when moving along ¢ beginning at s. Assume
first that w is between uy and u;. By Lemma we know that ugu; is an edge of H, so by
Lemma [26] part (), wus is an edge of G (and thus of H) for any b € {0,1}. Assume then
that w is not between wy and u; (in particular w ¢ {ug,u1}). Let w be the vertex right
before w when moving along ¢ from s to w. Note that by the choice of w, we have that
W & Bo(lmax). Moreover, we may assume that w and all other vertices before w when moving
along ¢ beginning at s are between ug and wuq, as otherwise, in the path ¢, instead of moving
to the first vertex not between ug and u;, one could by Lemma [26| part (i) directly move to
up, for some b € {0, 1}, contradicting the fact that ¢ is a shortest path. Let b € {0, 1} be such
that uy is between w and w. By Lemma [26| part , the edge wuy, belongs to G, hence also
to H. In summary, all but at most one of ¢’s internal vertices lie outside Bo({max) and in
between ug and u;. By Lemma it follows that all but one of the vertices of ¢ determine
an angle at the origin with wu, which is at most %ea(R_emax) logn. Again by Lemma, if
we concatenate ¢ with the edge u,v where v € Py, is as in the statement of Lemma [27] we
obtain a path ¢, with the desired properties. O

An immediate consequence of the previous result is that every path in Q" has length at
most 2D + 5 where D is the diameter of H.

For future reference, we next derive some useful volume estimates, one of which involves
a natural extension of our neighborhood definition. Specifically, for w € U consider the set of
neighbors W that belong to P, i.e., W = Np,(w). Denote by Np, (W) the set of neighbors
of vertices in W that belong to Py, i.e., Np, (W) := U, ew Np, (w).
Lemma 29. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poiy.c(n). Then the following holds w.e.p.:

(i).- If w e Py,,., then Z d(t) = O(ve®FEtma) Jog ).

teU\Bo (bmax )t =w

max /

(it).- If w € Py for some g < g < lmax, then
2 a(t) — { O/, i W = {w} and g = b,
W) O(yne2H9) if W = Np, (w).

tEU\BO (fmax):tleNpgmax
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Proof. For the first part, assume ¢ € U \ Bo(lmax) is such that ¢ = w. By Proposition
(for ¢max as defined there), w.e.p. the angle at the origin determined by ¢ and w is at most
® = Gmax- Thus, w.e.p. t must belong to the ¢-sector centered at w, henceforth denoted
by ®, and thence to the truncated sector ® \ Bo({yax). By Lemma |15 we conclude that
w.e.p.,

> d(t) < > d(t) = 6(¢n) = O(ve* " =tm) Jog n).

tEU\BO (fmax ):t/ =w tEUND\ Bo (fmax)

For the second part, let ¢y = inf{¢ : there is a ¢-sector ® O W}. We proceed as in the
first part. Consider ¢ € U \ Bo({max) such that ¢’ is a neighbor of a vertex in W. Note that
the angle between a vertex in W and one of its neighbors in Py, i O(0g(lmid, lmax))- As in
the first part, the angle at the origin determined by t € U \ Bo(fax) and ¢’ is at most ¢pmax-
Hence, the angle at the origin determined by ¢ and w is ¢ := O(Pmax + dw +Or (Cmid; lmax))- If
W = {w}, then ¢y = 0, and hence ¢ = O(Op(limid, lmax)), and the first result of the second
part follows as before. Similarly, if W = Np, (w), then ¢, = ©(0r(lmia; 9)), and hence in
this case, ¢ = O(0g(lmia, g)). The argument is once again as in the first part. O]

The main result of this section is the following:

Proposition 30. Let H = (U, F) be the center component of G = (V, E) chosen according
to Poia,c(n). For all g € QY,, let

o) 1
F@="aw Ter

Then, w.e.p. Q" C Q(H), f" is a well defined Q"-flow and p(f") = O(D'n**71).

Proof. Since |Q | = |Q /|, when at most one of s and ¢ belongs to Bo({max), Proposition
and Proposition [24] imply that |QY,| # 0. Thus, f” is well defined. Moreover, by definition

> qeqr, (@) = d(s)d(t)/vol(U), so f" is a flow.

We next bound 5(f”), i.e., the elongated flow f”(e) for each oriented edge e traversed
by some path in @”. To facilitate the argument, we classify oriented edges e of H used
by paths in @” and bound their elongated flows separately. The edges traversed by middle
segments of paths in Q" are grouped as in the proof of Proposition [25] i.e., into spread out,
belt and belt incident edges (so called middle edges, i.e., edges with both endvertices in
Bo(Umax) \ Bo(fmia), are ignored because they are not traversed by paths in Q”). The edges
traversed by end segments of paths in @” will be referred to as remote edges. These edges
have at least one endvertex in Bo(R) \ Bo({max)-

For bounding elongated flows we use a trivial bound on the length of paths in Q".
Specifically, we note that by construction end segments of paths in @” have length at most
D+ 1 where D is the diameter of the center component H. Since every path in Q' has length
3, it follows that, every path in Q" has length at most D' := 2D + 5.
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Let e be an edge of H. Since QF, = QJ, for every distinct s, € U, the elongated flow

f" is the same for both orientations of e. Thus, in our ensuing discussion we fix arbitrarily
one of the two possible orientations of e.

Spread out edges (one endvertex of e in Bo(¢miq) and the other one in Bo(max) \ Bo (¢mia)):
Fix the orientation of e so e~ € Bo(lmia) and €™ &€ Bo(fmia). The only paths ¢ € Q" that
could traverse e are those whose middle segment traverses e. This can happen only when
q is of Type I and its first edge is e~ (in particular, the initial end segment of ¢ is the
length 0 path {e~}). Assume now that s and ¢ are start- and endvertices of ¢. Observe that
t & Bo(lmax) since otherwise s,t € Bo({max) contradicting the fact that ¢ € Q”. Moreover, it
must be that (i).- s = e~ € Py, for some k < lyiq, (ii).- ¢’s middle segment must be a length
3 path with e~ and #' as endvertices, and (iii).- one internal vertex of ¢’s middle segment is
e and the other internal vertex belongs to Np, (e™) N Np, (t'). Hence, there are at most
|Np, (e")NNp, ()] <[Np, ()| feasible middle segments of g. Thence,

— D'd(e” d(t
oS, X X i
Vo teU\Bo (fmax) qGQ’e’i’t:qae et
Dld(e) a(t)
< 25" )
( )

[o/n
et

tEU\BO (Emax)zaqe Qle/_ t ,qoe

Assume t € U\ Bo(max)- The way we built Q", Proposition [23|and Proposition [24| part (i),
imply that Q| = Q.- ,[ = [E(P;, Np, ()] = O(|Np, (t’)|e‘(a_%)(R_k)\/ﬁ). Now,
observe that if ¢ € Q7_, traverses e, then ¢’ is a neighbor of some vertex in W := Np, . (e™).
It follows that, w.e.p.,

—_ ’ e~ Oé—l _“’
f”(e) — 9(13/005%[])) . \/Lﬁe( ) (R—k) Z d(t))

te U\BO (zmax)ltleNPémax (W)

Also, by Proposition w.e.p. d(e”) = @(e%(R_k)), so applying Lemma [29 we deduce that
w.ep. f/(e) = Q(Vol';(;])ne’geam_k)). Furthermore, by definition of £y, and since a > 3,
we have a(R — k) — £ < max{(a — 1)k, a(R — limax)} = @(R — limax). Since by Lemma ,
w.e.p. vol(U) = O(n), recalling that a < 1 and the definition of y.x, we conclude that

w.e.p. f//<e> — O(D/ea(R—ﬁmax)) — O(D/na(Qa—l)eaV’> — O(D’n%‘_l).

Belt edges (both endvertices of e in Py_,,): The only paths ¢ € Q" that could traverse
e are those whose middle segment have e as a middle edge. This can happen only if ¢ is
a Type II path. Assume ¢ € QF, traverses e. Then, s’ must be a neighbor of e= € Py,
(in particular, s & Bo(lmia)). Similarly, it must be that ¢’ is a neighbor of e € P, (in
particular, ¢t € Bo({mia)). By definition of Q” and Proposition , we have |Qf,| = [Q} .| =
|Np, (s')]+[Np, (t')]. Applying Proposition 24| part (i) and recalling the definition of £,

mid mid
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we get that w.e.p. |Q7,| = O(n~(*~d(s')d(t')). Hence, w.e.p.,

Fosdy ¥y o

$,t€U\Bo (Umiq) 4€Q":q3e

D' 2a-1 d(s d(t
S @(vol(U)n ) Z d((8/>) Z d(<t’))'

s€U\BO (biq):s'e~ €F teU\BO (bmia):eTt/€F

Note that s’ = s if s € UN Bo(lmax) and s € Py, . otherwise. Assume s € U \ Bo(lmax)
is such that s’ is a neighbor of e~ in H. By Proposition [13| w.e.p. d(e”) = ©(y/n) and
d(s') = O(e2Btma)) By definition of fpay and considering the cases s = §' and s # ¢
separately (applying Lemma [29]in the latter), it follows that w.e.p.,

Z d(s) <d(e) + @(e*%(R*@max)) Z d(s) = O(v/n).

d(s")
SEU\BO (miq):s'e"€F $€U\Bo (fmax):s'e” €F

The same argument shows that w.e.p. ZteU\BO (los) e t/EF d t, = O(y/n). Applying Lemma ,
w.e.p. vol(U) = O(n), we conclude that w.e.p. f”(e) = O(D'n?*1).

Belt incident edges (one endvertex of e in P,_,, and the other one in Bo({max) \ Bo(lmid)):
Let us fix the orientation of e so et € Py_,,. Let k > (4 be such that e” € Py.

Let ¢ € Q" be a path that traverses e. Since e has both its endvertices in Bo(fmax), €
must belong to the middle segment of ¢. By definition of @’, one of the following must hold:
(i).- e is the first edge of a Type II path, or (ii).- e is the first edge of a Type III path, or
(iii).- e is the middle edge of a Type III path. Assume g € QF, where s,t € U. We make the
following observations concerning each one of the three situations just identified:

(i).- It must hold that s’ = e~ and t &€ Bo({mia) (otherwise, ¢ can not be of Type II). By
Proposﬂuon 23 we have Q[ [ = [Q- ,| = |[Np, (e7)|-|Np, (t')]. Notealso, that the
paths in Qf, that traverse e are in one to one correspondence with E({e*}, Np, ('),

so there are |sz L (#)] of them (since Py, induces a clique in H). By Proposi-
tion [24] part (), we infer that, w.e.p. the fraction of paths in QF, that traverse e is

O(no2e-2(B-h),

(ii).- It must hold that s’ = e~ and ¢t € P, for some ¢ < l,;q. In fact, s € Bo(lmax) SO
e~ must belong to Py, .. (since otherwise both s,t € Bo(fmax) contradicting the fact
that ¢ € Q"). By Proposition 23, we now have |Q[,| = |Q,- ;| = [E(Np, (e7),Pp)|-

So, by Proposition part (i) and (i), w.e.p. |QY,| = @(nl_ae_(a_%)(R_z)e%(R_emx)).
Note also that the paths in QF, that traverse e are in one to one correspondence with

sz(eJr), so by Proposition [24| part (i), w.e.p., there are @(\/ﬁe_(o‘_%)(R_z)) of them.

(iii).- Now, it must hold that s € P, for some ¢ < {4 such that { =kandt € U\
Bo(lmax) (since otherwise both s,t € Bo(fmax) contradicting the fact that ¢ € Q).

30



by Proposition 24| part and part (i), w.e.p. |Q),] = O(n'—e~(e=DE=R) (1Y),

By Proposition |23 we have that w.e.p. |Q],| = |Q, /| = [E(Pk, Np, (t'))|. Hence,
Moreover, if t'e™ € F, then there is exactly one path in QF, that traverses e.

The contribution of case (i) to f”(e) is, w.e.p.,

_ S Ao
Sy = VOI(U) Z d( ) Z ‘Q;,,t’ |Npemid (t )|

SEU\BO(emid)zsl:67 teU\BO(Emid)
D’ 11
_ a—s —5(R—k)
= vol(U)O(n 272 E d(s) E d(t)).

SEUN\BO (bmid):s'=e~ teU\Bo (bmid)

Clearly, > icin ot 4t) < vol(U). If e & Py,,,, by Proposition w.e.p. we have that
D sel\ Bo(tyna)s'—e— A(8) = d(e7) = O(e2 k). Hence, in this case, S; = O(D'n®"2) =
o(n?*1), since a > L. Otherwise, that is, if e~ € P, (thence, k = fn.y), by Propo-
sition Lemma and given that @ > 1, w.ep. D s€U\Bo (ba)isi—e— A(8) = d(e™) +

mid /-
D 5el\ Bo(fanan)-s'—e— AU(S) = O(ve®(F~tma) Jog ). Hence, in this case, using that 1 < o < 1,
w.e.p.,

S, = O(D’n“_%e(“_%)(R_ém")vlog n) = O(D'no‘(zo‘_l)e(o‘_%)”/v logn) = o(D'n**1).

The contribution of case to f(e) is, w.e.p.,
Sy 1= D O(na’%e’%(R’Zma") Z vol(Py) Z d(s))
2 vol(U) ¢ '

demid SGU\BO(Emax):S,:67

Clearly, ..,  vol(Py) < vol(U). By definition of £y and Lemma , we get that w.e.p.
Sy = O(D'n® 2vel@2)(B-tmax) 1o5 1) = O(D'vn®*Vele=2)" 10 ).

Since 3 < o < 1, we conclude that w.e.p. So = o(D'n**1).
The contribution of case to f(e) is, w.e.p.,

L D' —(1—a afé R—Ek d(t>
S, = V01<U>O<n ()l bE-R) 3™ yol(py) > d(t’))'

EZZIC teU\BO (Zmax):e+t,€F

By Proposition 7 w.e.p. d(t') = @(e%(R_fmax)). So, by Lemma , it follows that w.e.p.,

tGU\BO (6111ax):e+t/€F

Clearly, >~ ,7_, vol(P;) < vol(U). Since k > lyq, we conclude that w.e.p. Sz = O(D'n**™1).
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Remote edges (at least one endvertex of e belongs to Bo(R) \ Bo({max)): Assume g € Q"
traverses e. Since no path in Q' uses a vertex not in Bo({yax), edge e must be traversed
by one of the end segments of q. Note that there is an endvertex in P,_, , say v, which is
common to all end segments of paths in Q" that traverse e. Since for s € U \ Bo({max) and
t € U, the fraction of paths in Qf, that traverse e is trivially at most 1, we infer that w.e.p.,

— 2D’ ,
f//(e) < VOI(U) Z Z Z |Q// ‘ < 2D Z d(S).

s€U\Bo (bmax) t€U ¢€QY ;:q3e S€EU\Bo (bmax):8'=v

(The factor 2 above follows from the fact that v belongs to either the start- or end segment
of a @"-path that traverses e. By Lemma , the definition of /., and since % <a<l,it
follows that w.e.p. f”(e) = O(D've® n*?*=Vlogn) = o(D'n?>*1). O

4.3 A O-flow of moderate elongated length

Below we derive the main theorem and a corollary that follows easily from the results of the
previous sections and some results found in the literature.

Proof of Theorem[]] Let H = (U, F) be the center component of G = (V, E) chosen according
to Poiyc(n). By Corollary (17, w.e.p. vol(U) = (n), so the stated lower bound is a direct
consequence of Corollary Proposition [25 and Proposition [30] O

By Theorem [1| and Theorem [18 we immediately obtain the following:

Corollary 31. If J is the giant component of G chosen according to Poi, (n), then w.e.p.,

M () = Q(n D /(logn) T=).

5 Lower bound on the conductance

In this section we will establish that the lower bound on the conductance obtained in Sec-
tion [4] can only be attained by relatively large sets. In other words, our goal is to show
Theorem [3] In order to derive the theorem, we first prove a few auxiliary lemmas. We begin
by establishing that if for a fixed set S C U there are two bands, both being relatively far
from the boundary of Bo(R), one of them having a large fraction of S, and the other having
a large fraction of S, then |0S| must be fairly large.

Henceforth, for b € {0,1} and S C U, denote S and S by S° and S*, respectively. We
fix the following parameter:

gbdr — LR 2logRJ

Recall that Remark 20| guarantees that all vertices in Bo({pq,) are, w.e.p., part of the center
component.
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Lemma 32. Let H = (U, F) be the center component of G = (V, E) chosen according to

Poi, c(n).

Let wy be a function tending to infinity so that wy = e°1°81°8™) hut also wy = w(v) and
14+ +a

define € := wio(logn)fﬁ. Let ® be a sector of Bo(R) of angle ¢ > = = %(logn)}fa, and

€wo

let Uy := [%R+ logé —2]. Let by < * < bygy. If for some b € {0,1},

15PN ® NPy
E|® N Py

ISP NO NPy,
E@NP,|

then w.e.p. |E(S*N®, SN d)| = Q((gbn)Q(l*a)wio(log n)fﬁ) The same conclusion holds
if in the hypothesis the roles of {4y and €* are interchanged.

Proof. Define € := . First, for some ¢ with {3 < ¢ < f,4;, we bound from below |E(S° N
®, 5" N ®)| under the assumption

1S NdNP|  |SPNPNP | g

- . 13
E[® NPy E@NP, | (13)
Consider an angle equipartition ®4,..., Py of & where N := (W%U‘l log nw Since
IE(S°N®, SN ®)| > |E(S*N®N(PriUPy), SN d N (P UPy))|
>3 |E(S"N®N (Pt UP), SN ®;N (Pee UPY)) |, (14)

1€[N]

it suffices to bound from below the summation in the latter expression.

For i € [N], let m; := |®; N Py_y|. Also, let m be the expected number of elements of
Pi—1 that belong to a given QFW—SeCtOI of ®. Define m/ and m' similarly but replacing ¢ — 1
by ¢. By Remark [6] Corollary [§] and Lemma [I2] and our upper bound on ¢, since

Em,; = @(%”e_a(R_Z“)) = @(@e(l_"‘)m_@) = Q(vlogn) = w(logn)
for every i, w.e.p., m; = (1 4+ o(1))m and m/ = (14 o(1))m’. Also, let J; denote the fraction
of vertices in S® that belong to ®; NPy_y, i.e., §; = m%_|Sb N®; N Pr_4|, and define 6] similarly
again replacing £ — 1 by £. Since each ®; is a sector of angle ZW” < Or(¢,0), if a pair of vertices
belongs to ®; N (P,_1 UPy), then they must be neighbors in G (and thus also in H). Hence,
w.e.p., the i-th term of the summation in is (1+o0(1))(6;m~+0m’) (1 —6;)m—~+(1—0d,)m’).
Moreover, observe that the constraint in is equivalent to

ZzE[N] it ZzG[N] > ¢

E|® NPy E|®NPey| — ’

IThe condition of wy = e°°81°8™) while at the same time wy = w(v) clearly implies a corresponding

upper bound on v. Nevertheless, all previous results still hold.
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and w.e.p. it is stricter than the constraint > iciv (07 — 6;) = (1 + o(1)). Thus, a lower
bound as the one we seek can be derived by bounding from below the optimum of the
following problem:

min Y (§m + o) (1 = 6;)m + (1 = 6))m/)

ie[N]

st — Z (8 —6;) > &(1 + o(1)).

ze [N]

The minimum of a concave function over a bounded polyhedral domain is attained at a
vertex of the polytope. It is not hard to see that any vertex of the polytope obtained by
intersecting the hypercube and a half-space has all its coordinates equal to 0 or 1, except for
at most one coordinate. It follows that the minimization problem stated above attains its
minimum when at most one among d1,...,0x,d],...,dy is distinct from 0 or 1.

Now, if éN > 2, there must exist at least €N —1 indices 7 such that for these indices 9; is set
to 1 and ¢} is equal to 0. If EN < 2, there exists one index ¢ such that §; —d; > (1+o0(1))éN/2.
Since the function to be optimized is concave in each ¢; and 6], under this restriction the
minimum is attained when for this index ¢ we have §; = (1 + o(1))éN/2 and §, = 0, or
d; = 1land 8 = 1 — (1 + o(1))éN/2. In all cases, the value of the optimization problem
is Q(émm’'N). To conclude, note that N = ©(¢nv—re"FHlogn). By Corollary , we
have m'N = O(¢pne~*FE=9). Moreover, m = O(m’). Thus, w.e.p., |E(S*N®, St Nd)| =
Q(épne~a-D(H=0) &) The conclusion of the lemma then follows from noting that ¢* —¢, <
R = O(logn), and hence there must exist two consecutive values of ¢ — 1 and ¢ whose
difference in terms of the fractions of S’ is at least €. Recalling that ¢ > ¢, and that our
lower bound on |E(S® N ®, S17° N ®)] is increasing in ¢, we are done for the first part. To
conclude, observe that the roles of ¢4 and ¢* can be interchanged in the proof above. O

We extend the definition of h(S) as follows: for a region R C Bp(R) and a set S with
vol(S) = O(n'~¢) for some ¢ > 0, we set
[E(SNR,S)|+|E(SNR,S)|
vol(SNR) '

hr(S) =

Suppose now that given a fixed set S C U we could find a collection A of regions of
Bo(R) such that (i).- hr(.S) is moderately large for all R € A, (ii).- vol(S N UreaR) is a
reasonably large fraction of vol(S), and (iii).- no edge in 0S5 is counted more than O(1) times
in Y r4(|E(SNR,S)|+ |E(SNR,S)|).Then, since w.e.p. vol(S) < vol(S) (note that by
Corollary [17, vol(U) = Q(n), and by assumption vol(S) = O(n?)), and noting that for any
positive numbers a, b, ¢, d we have ‘”b > min{ %, £}, it will then follow that

10| S reaVOl(SNR)\ Yrea [E(SNR,S)|+ |E(SNR,S)|)
MS) = Solrs) =9 ol(9) ) = S e vol(SNR) (15)
Y reaVOl(SNR)
= 0(=EAT ) minhn(S).
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If we can do as above for an arbitrary set S such that vol(S) = O(n'~¢), then we would be
done. Below, we develop such an approach.

Next, we show that if there is a sufficient quantity of vertices of a fixed set S in a certain
sector @ of Bp(R), and all such vertices are relatively close to the boundary of Bo(R)
(henceforth referred to as simply the boundary), then there must be a large (relative to
vol(S)) number of edges between S N ® and S N ®. The intuitive reason for this is the
following: in most small angles inside the sector there must exist some vertex a bit further
away from the boundary belonging to S, and therefore within every such angle we find
already one cut edge, therefore yielding a large total number of cut edges.

Lemma 33. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poigc(n). Let € and ¢ be as in Lemma |33 If S C U and a ¢-sector ® of Bo(R) are such
that |S®N®| = QE|PNPy,,.|) and |S*NO NPy, | < €E|P NPy, | for some b e {0,1}, then
w.e.p. |E(S*N®, S0 = Q(eE|® NPy, |)-

Proof. Recall that we say that v follows w in Py, if v,w € P, and there is no other vertex
in Py, ,. between v and w. Our first goal is to find sufficiently many pairs v,w € ® NPy, .
such that v follows w, and moreover, v and w are in S'~°. Note that w.e.p. (again by
Corollary |8/ and Lemma we have Ay, < Or(lpar — 1, bpar — 1) < Z(log n)lzfaaﬂ. Thus,
yimatl =

w.e.p., by Lemma , the number of vertices in P\ P, ,, between v and w is v(logn
v(log n)%i = - Hence, since by hypothesis 1SN ® NPy, | <eE®NP,, |, wep. there
are O(eE|® NPy,,.|) pairs v, w in ® NPy, so that v follows w and moreover both v, w € S?,
each pair defining a region of Bp(R) corresponding to a sector with v, w on its boundary.
Thus, by our choice of € (recall that wy = w(v)), the number of vertices that belong to
P N & which are between two vertices in S® N ® NPy, is o(E|® NPy, |). The same holds
also for those pairs v,w where one belongs to S® and the other to S'~*. However, since
1SP N ®| = Q(E|® N Py,,.|), most of the vertices in S® N ® must be in regions between two
vertices belonging to ST N® NPy, .

Note also that, since by Lemma , Or(loar, loar) = @(%(log n)%), and Ap,, < Z(log n)i%g =
o(+(log n)ﬁ), w.e.p. vertices v and w are neighbors in G and thus also in H.

Assume now that v and w belong to S'=*N®NP,,, . Suppose there exists u € S between
v and w with r,, r, < r, so that one of the following happens: (i).- u is adjacent to a vertex
in S'7° (ii).- u is adjacent to a vertex z € SN Bo(fpar — 1) between v and w, in which case,
since v and w are adjacent, by Lemma [26| part , the edges vz and wz must also be present,
or (iii).- u is adjacent to a vertex z € S® N Bo(f,q, — 1) with 0, & [0, 60,] (since we assume
v follows w, we assume 6, > 6,,), in which case, by Lemma 26| part , the edge wz or the
edge vz also has to be present. In all cases, for each of the aforementioned pair of vertices
v, w we obtain at least one edge going from S°® N ® to S'~°, and since, w.e.p., there are at

least “2E|® NPy, .| regions and every edge between S° and S~ is counted at most twice,
w.ep. [E(S*N®, S0 = “LE[d NPy, | = QUeE|P N Py,,.|) O

The next lemma shows that if for a fixed choice of S, in a certain sector there is an
important quantity of both S and S, then the sector’s conductance is large. Intuitively, this
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can occur either because there exists one band having both large fractions of S and S, or
there are two bands, one having a large fraction of S, the other having a large fraction of S,
or because most of S is relatively close to the center, and most of S is concentrated close to
the boundary, in which case we can apply Lemma [33]

Lemma 34. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poigc(n). Let wy, €, ¢ and Ly be as in Lemma [34 Let & be a (2¢)-sector of Bo(R).
If S C U is such that |S N P'[,|S NP = QE|D N Py,l), then for some b € {0,1},
w.e.p. |E(S* N &, 1) = Q((logn) T (¢n)20-2).,

Proof. Note that by Remark@ every vertex v € Py, is adjacent to every other vertex v' € Py,
satisfying Ag, . < Or(lg,ly). Thus, since Or(ly, ly) > (2 + o(1))ep > 2¢, in particular
any two vertices in Py, N @ are adjacent. By choice of /4 and the lower bound on ¢,
w.ep. [® NPyl = (1 +0(1))E|[®" NPyl Thus, if for both b = 0 and b = 1 it holds
that [S* N @' NPy| > €eE|D NPy, then w.ep. |[E(S* NP, S0 = Q((E[D N Py,|)?).
Otherwise, for some b € {0,1} we have [S* N @' NPy, | < €E|D' NPy, |. If there exists some
by < 0 < by with |[S®N @' NPyl > 2¢E[®’ N P,|, by Lemma 32| (applied with ¢* = (), we get
that w.e.p. |[E(S*N®' SN P)| = Q((qﬁn)Q(l*a)wﬁo(log n) o) = Q((log n)_ﬁ(qﬁn)ﬂl*a)).
If not, then [ST™PN® NPy, | > (1 —26)E[®' NPy, |. We apply Lemma [33| (which we may
since |SN®'| = Q(E|®' NPy, |)), we obtain that w.e.p. |[E(S° NP, S170)| = Q(eE|®' NPy, |).

To conclude, observe that by our choice of ¢4 and Corollary , we have (eE|®' NPy, |)?* =

Q(e*(¢n)? =) = Q(L (log n)_Q(ll—T) (¢m)20=9)) = Q((log n)_ﬁ(¢n)2(1*°‘)), where the latter
equality holds by our é;ssumption on wy. Also, again by Corollary B, our choice of fp,q, and e,
we infer that eE|®' NPy, | = Q(L(¢n)(logn) ™= ) = Q((logn) ™™= (¢n)*1~)), where the
latter equality follows from the fact that % < a < 1 and by our assumption on wy. O

A very similar lemma is the following:

Lemma 35. Let H = (U, F) be the center component of G = (V, E) chosen according to
Poiyc(n). Let wy, ¢, £y, € be as in Lemma and let ® be a ¢-sector of Bo. There is a
sufficiently large Cy; = C1(«) such that if S C U satisfies

vol(S N ®) > CLE|® NPy, [(logn)T=, and [SN®| =QE|S NP,

)
then for some b € {0,1}, w.e.p. |E(S® N @, S1%)| = Q((log )~ 75 (¢n)21-2).

Proof. As in the proof of Lemma , if for both b = 0 and b = 1 it holds that [S"N® NPy, | =
€E|® NPy, then we.p. [E(S*N®, 5| = Q((eE|® NPy, ])?) = Q((log n)fﬁ(qbn)m*o‘)).
Otherwise, suppose that for some b € {0,1} we have [S® N ® NPy, | < €E|® NPy, |. If
there exists some £y < ¢ < 4, such that |[S® N ® NPyl > 2¢E|® N P,|, by Lemma ,
w.e.p. |E(S* N ®, S10)| = Q((logn) 7 (¢n)21=). If not and b = 1, then Lemma [33] can
be applied and hence, w.e.p. |E(S*N®, S17)| = Q(¢E|® NPy, |). So, assume |SNENP,| <
€E|® NPyl for all {, < € < lyg, and [SN O NPy, | < 2eE|P NPy, | If there exists a
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vesSNndén Bo(210gé + R — lpqr), then by Lemma , the vertex v is adjacent to every
vertex in P N ® N Bo(fpa:). By just counting edges between v and S N ® N Bo(fpqa:) we
obtain for b = 0 w.e.p. |[E(S*N®,S'%)| > [SN® N Bo(lpa)| > (1 — 2¢)E[® NP, | If no
such vertex v exists, then by Lemma [7] Lemma 2| and Proposition [13] w.e.p. the volume of
SN®NBo(lpar) is at most L én(log n)Jl o < ZE|®NP,,, |(logn)i== for C; large enough:
indeed, by Lemma [12] and Proposition [I3] the volume is, w.e.p., at most

Loar
Z max{v logn, O(¢n€*a(R*€))}@(e%(R4)).

(=21log §+R—ebdr

Using max{z,y} < = +y, a < 1 and the formula for a geometric series, we obtain a
O(¢n(log n)% + vpn(logn) Ta) = O(pn(logn) o = ) bound on the Volume Since every
other vertex, once more by Proposition |13, w.e.p. has degree O((logn) ™= e ), by our assump-
tion on vol(S N ®), w.e.p. |S N ®| = Qvol(S N &) (logn) =) = QE|® NP, |). Applying
Lemma [33| with b = 0 we get that w.e.p. |E(S*N®, S17)| = Q(eE|® NPy, |). The previous
discussion and similar observations as those in the last paragraph of the proof of Lemma
yield the claim. ]

We use the previous lemma in roughly the following way: for a fixed S C U, we start by
applying the lemma with ® a sector with a relatively large angle so that inside it we cannot
have only S (the existence of such an angle follows from the fact that we are interested solely
in the cases where vol(S) is sublinear in n), and then, in case we have not found dense spots
of S, we half the previous sector, and continue recursively. Thus, we either detect subsectors
of S, in which case the previous lemmas imply a large conductance, or conclude that there
is no relatively large angle containing only S.

Lemma 36. Let H = (U, F') be the center component of G = (V, E) chosen according to
Poi, c(n). Let @ be a sector of Bo(R) of angle ¢ with ¢ > ¢ = (log n)l «. Let 7 >0 be
the largest integer such that 277¢ > ¢g and, for 0 < i < j, let <I>1 o ) be an angular
equipartition of ®. Then, there is a constant 0 < Cy < 1 such that w.e.p. [U N <I> | >

02 “(logn)~ = for every 1 < k < 2. Moreover, let C; > 0 be as in Lemma and
conszder S C U such that |SN®| < LE|® NPy, | and vol(S N @) < Cién. Then, w.e.p.,

for each <I>k one of the following holds:
(i).- there is 0 < i < j and a k' for which hq)(z (S) = Q((log n)_ﬁ(;—;)%‘_l) and ®Y) C
<I>,(f,) or

(ii).- 1S N 0| < QE[B NPy, .

Proof. The existence of (5 is a direct consequence of Lemma and the fact that, by
] y 2a
Corollary |8 and Lemma , we have E|U N cp’(j)\ > E|(I>§j) NPyl = @(%(log n) i-a).

37



We show, by induction on 7, 0 < ¢ < j, that at recursion depth ¢ we have for all
1 < k < 2 cither [SN &Y < ZE[@ NPy, | and vol(S N @) < 20142, or @) C @

1975
and hq)g,')(s) = Q(log n)fﬁ(i—i)m_l) for some 0 <4 < i and 1 < & < 2”. By hypothesis
and since q)( ) = @, the claim holds for i = 0. Assume it is true for i — 1. Let &',k be
such that <1>’) C <1>§j, Ywith [SN @V < LE[@L Y NPy, | and vol(S N @y V) < 202
If SN el > %E@,(j N Py,.|, then also [S N @' = Qo™ NP, |), and hence
by Lemma |34] applied With P = <I),(f,71) we get that for some b € {0,1} w.e.p. |[E(S° N
o™ 51-0)| = O((logn) T (22)20-9). Since vol(S N ®L ") < 201 2%, it follows that,
w.e.p. hq)(i »(S) = Q((logn)™ T a(w ~)20- ). Otherwise, if it happens that [S N <I>§f)| <

on
|, W P,...| and also vol(S N qD(l ) > 2C1 2, then first note that still vol(S N @ i))
vol(S N (ID,(;, 2 ) < 4C’1 must hold. In this case, applying Lemma |35 to q)() we get that for
some b € {O 1} wep. |[E(S"N <I>k ) 10| = Q((logn) T a(¢") (1700} and thus hyw(S) =
k

Q((logn)™ = (;;)20‘_1). This completes the induction since the only remaining possibility
is that [S N @[ < 2E[® NPy, | and vol(S N &) < 20,22, 0

Now we are ready to prove Theorem . We show that every set S C U with vol(S) =
O(n®) has the desired conductance. Roughly speaking, the argument goes as follows. We
start with sufficiently large angles that cannot contain only S. Either we find the desired
number of cut edges for subsectors of these sectors via Lemmapart , or for the remaining
vertices we will find in a not too small angle around them sufficiently many vertices in S
and in S, and hence we can also find relatively many edges between S and S.

Proof of Theorem [3: We will show that w.e.p. for all sets S with vol(S) = O(n?) for some
0 < e < 1 we have h(S) = Q(n~(GaDete)) We will consider an arbitrary, but fixed set S
and only at the very end of the proof take into account all possible sets S.

Let ¢y = (1 — &)R for some £ = £(n) tending to 0 sufficiently slowly with n. Consider
C7 and (5 as in Lemma |35 and Lemma , respectively (recall that Cy should be thought
of as a sufficiently large and C5 as a small constant). Fix a set S such that vol(S) = O(n?).
Hence, there exists a sufﬁciently large C” > 0 so that we can partition Bo(R) into ¢-sectors,

¢ :=0Cn" (logn)l & s0 that w.e.p. in each such sector ® we have [S N ®| < 1|U N |,
|SN®| < CQE|(DﬂPgbd | and vol(SN®) < Cy¢n. To each of these sectors, we apply Lemma
with ¢ := 0r(ly, ). Thus, w.e.p., every sector ® of angle 277¢, ¢y < 277¢ < 2¢, arising
from the apphcation of the lemma is accounted for, i.e., he(S) = Q((log n)_%wn)1 2oy =
Q(n~Ge=Dete)) or |SNP| < 2|®NPy,, |- Let O be the collection of all sectors ® associated
to S which are accounted for. Slmllarly, we say that a truncated sector T, centered at v € S
is accounted for, if Ay, (S) = Q(n~-(Ga-Detoll)),

Next, we iteratively build two additional collections of regions, denoted by A and C:
A will be the set of sectors (truncated or not) that are accounted for, and C will be the
set of regions that are “compensated”, i.e., these regions will not be accounted for, but we
will show that their total volume is only slightly larger than the volume of the collection of
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regions that is accounted for. Initially, A = O, ie., R € A if and only if R is a <I>,(€j) for
which the conditions of part (i) hold and C = (). The iterative process that updates A and
C proceeds as described next:

SECTOR-ACCOUNTING

(i).- Stop if S\ UgeaucR = 0. Otherwise, let v be the vertex in S\ UgeaucR closest to
the origin and assume / is such that v € P,.

(ii).- If £ < ¢y, then let T, be the sector truncated and centered at v of angle 20z (¢, R)

a) If (T, NUgeaR) < Lu(Y,), then add T, to A and go to Step ().
2

b) If u(Ty NUgeaR) > 2u(Y,) and vol(S N Y, NUgreaR) = o((logn “Tavol(S N
2

c) If u(Ty NUreaR) > 2u(Y,) and vol(S N T, NUgecaR) = Q((logn) =avol(SN
2

(
(
TU)), then add T, to A and go to Step ().
( (&3
), then add T, to C and go to Step (f).

(iii).- If £ > g, then let T, be the sector truncated and centered at v of angle 20r (¢, {p).

(a) If T, NUreaR =0, then add T, to A and go to Step .
(b) If T, NUgeaR # 0, then add T, to C and go to Step ().

We claim that if a region R ends up in A, then it is accounted for. The claim holds at
the start of the process by definition of O.

Now, if v is such that T, was added to A in Step , then at the moment T, was added,
at least a constant fraction of the sectors of angle 277¢ intersecting Y, did not belong to O.
For each such sector @7 ¢ O, by Lemmapart (i), we have 1SnoY| < %E]@,&J)ﬂpgbdrl <
sE|®NPy, . |. Note that v is adjacent to every vertex in Py, , Y, (since O (¢, foar) > Or((, R))
and at least a constant fraction of these belong to S. Hence, w.e.p. we obtain |E({v},S)| =
Q(nbr(¢, R)(log n)_l%) Also, since by Lemma , w.e.p. vol(SNT,) = O(nbr(¢, R)), we
obtain w.e.p. hy,(S) > (log n)_l%, and T, is accounted for.

Similarly, consider a vertex v such that YT, was added to A in Step . Let A, be the
collection of regions belonging to A just before T, was added to it. Since by Lemma (19,
w.ep. [UNT, NUgea,R| = Q((logn)fl%né’R(E, R)) and by assumption together with
Lemma [15] vol(S N T, N Ugrea,R) = o(log n)fl%vol(s NT,)) = o((log 71)71277&&7193(67 R)),
at least a constant fraction of the vertices in U N'Y, NUge4R must belong to S. Since these
are all adjacent to v, by counting the edges from v to these, by analogous calculations as in
the previous case, we obtain w.e.p. hy,(S) = w(1), and T, is accounted for.

Next, consider a vertex v such that T, was added to A in Step . Again, let A, be
the collection of regions belonging to A just before T, was added to it. Consider all vertices
in Py, NY,. Recall that Og(lpar, lhar) = @(%(log n)%) The expected number of vertices in
Py, .. in a sector of angle ¢ = U%(log n)l%anrl is vlogn, and by Theorem this holds w.e.p.
Hence, w.e.p. the maximal angular distance between any two vertices v, w € P, such that
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v follows w in Py, is at most ¢;. Since ¢1 < Or(Char, lbar), W.€.p. any pair of such vertices
is adjacent. Moreover, by Remark w.e.p., every vertex in P, . belongs to U. Thus,
Pi... MY, induces a connected component in H. Also, since the expected number of vertices
in Py, NY, is O(Or(lo, o)E|Py,,.|) = w(logn), this holds w.e.p. By assumption of this case,
T, NUgrea,R = 0, and by Lemma [36] part , at least a constant fraction of the vertices in
Pr,.. N T, belongs to S. If at least one of the vertices in P, , N T, belongs to S, w.e.p. we
have that Py, N7, induces a connected component in A with vertices both in S and S and
|E(SNTY,,S)| > 1, and since by Lemma , w.e.p. vol(S NY,) = O(ndgr(ly, lo)) = O(n?),
we obtain hy,(S) = Q(n=%). The same argument applies if v is adjacent to a vertex in
S. If P, N, C S and r, < lpqr, by Lemma part , given that T, is centered at
v, w.e.p., v lies between a pair of vertices of the connected component of H induced by
PNY,N Bo(l)\ Bo(l — 1), so v is adjacent to a vertex in S NP, N T, as well, and the
same conclusion holds. If r, > f,q,, then since v is in U, it must be connected by a path
to a vertex in S, and either we find on this path, by Lemma [26| part (in case the path
uses only vertices with radius larger than #,4,) or by Lemma [26| part otherwise, an edge
between vertices in S N Y, and S or between vertices in S and S N Y,. In both cases we
have w.e.p. hy,(S) = Q(n=%) = Q(n~a=Dsto)) by our assumption on ¢ tending to 0, and
in all cases T, is accounted for.

To conclude, note that each edge is counted at most six times for the conductance of
different regions in A: in order for an edge to be counted for the conductance of a region
R belonging to A, by definition of h(S) and hgx(S) (see and (7)), at least one of its
endpoints must belong to it. First, since the sectors ® which are accounted for by Lemma
are disjoint, each point p € Bp(R) can appear in at most one such sector. Next, let R € A
be the first region in which p appears in ACCOUNTING-SECTORS: since R is connected, it
has a bisector, and we may assume without loss of generality that p is to the left of the
bisector of R (here and below “to the left” is understood as preceding in a counter-clockwise
ordering; “to the right” is defined analogously). Since no vertex v with v € R is chosen in
the algorithm after having added R to A4, and since the measures of the regions added to A
are non-increasing during the algorithm (and hence at any radial distance the width of the
next region is at most as big as the previous one), no region T, added to A after R, and
with v to the right of R can contain p. If v is to the left of R, then T, can contain p, but p
is now to the right of the bisector of T,. Hence, any region to the left of T, cannot contain
p anymore. Summarizing, we may associate each point p € Bp(R) to at most 1 region in O
and 2 regions in A\ O, i.e., to at most 3 regions R € A, and hence a cut edge is counted at
most six times.

Next, let C’ be the collection of regions added to C in Step . By definition, for every
region R’ € C" we have vol(SNR’) = O((log n)l% > rea VOI(SNR)). By the same argument
as above, each point p € Bo(R) can be contained in at most two regions R’ € C’. Thus, in
particular any point p € R for R € A is contained in at most two regions R’ € C’, and we
obtain vol(SNUgreeR’) = O((log n)l% Y rea VOI(SNR)). The same argument also applies
when adding regions to C in Step : as before, every point p € R for R € A is contained
in at most two regions R’ € C. Since for every such region R’ we have vol(SNR’) = O(n*),
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and since ¢ tends to 0 slowly enough so that n* > (log n)l%, we obtain

vol(S) < Y~ (O((log )5 )vol(S N'R) + O(n*)) = O(n*) Y vol(SNR).

ReA ReA

Hence, by (L5), since hg(S) = Q(n~-Ge=Dete) for R € A, and since n® = n°V) by our
assumption on &, we are done for this set S.

So far we have considered one single fixed set S. A close inspection of all probabilistic
events in Lemma |32 through Lemma [36[ shows that they depend either on the angle chosen,
or on single vertices or pairs of vertices, but not on the whole set of vertices belonging to S.
The starting angles chosen in Lemma [36] can also be chosen to be the same for all S, so that
altogether for all S only polynomially many angles are used. Hence, only a union bound
over polynomially many events is needed, and all properties given in all lemmata for one S
hold simultaneously for all choices of S. The proof of the theorem is finished. m

6 Bisections and cuts

In this section we derive some consequences of the previous sections’ results.

Proof of Corollaryly. Let H = (U, F) be the giant component of G = (V, E) chosen according
to Polq,c(n). First, note that by Corollary[17, w.e.p. |[U| = ©(n), and hence for any bisection
of {S,U\ S}, w.e.p. we have vol(S) = O(n),vol(U\ S) = O(n). By definition of conductance
(see (2)) we have h(S) = ©(2]0(S)]). Recalling Cheeger’s inequality (see (3)), for any graph
G its conductance h(G) satisfies h(G) > 1\ (G). Therefore, by Corollary for any bisection
{S,U\ S}, w.e.p.,

0(5)]

n

and hence for any S with |S| = [1|U[] we must have [9(S)| = Q(n*1=%) /D), so the first part
of the claimed result follows.

For the second part, observe that since by Lemma [15, w.e.p. vol(U) = O(n), clearly
B(H) = O(n). On the other hand, consider the bisection {S, U\ S} with S consisting of those
[|U]] vertices of H with minimal radial coordinate r,. By Lemma and Lemma , there
exists a large constant C such that the number of vertices in Bo(R — C) is w.e.p. smaller
than en < 1|U| for small enough . Thus, there exists C] < C; such that w.e.p. all vertices
v € S belong to Bo(R—C1). Moreover, for every fixed 0 < § < 3, by Corollary , w.e.p. there
exists a constant ¢; = ¢1(9) with C; > ¢; > C] such that a d-fraction of the vertices in S
belong to Bo(R) \ Bo(R — ¢1).

Let now B:=PNBo(R—C1)\ Bo(R—C;—1) and B := PN Bo(R—C7)\ Bo(R —¢1).
Recall that lpq, == |R — 2110_—gaRJ. By Lemma 7 of [KMI15], for each vertex u € B there is
a positive probability to be connected through a path of vertices of decreasing radii (with
all internal vertices of the path belonging to Bo(R — C — 1)) to a vertex in P N Bo(fbay),
and moreover, by Remark 20| w.e.p. every vertex in P N Bo(fha,) belongs to H. W.e.p.,
|IB| = ©(n), and so E|U N B| = ©(n), and since for any two vertices at angular distance

—am(m) = o L),

n2a—1
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1(logn)“™) the events of having such a path to a vertex in P N Bo({pa,) are independent,
V|UNB| = n(logn)“™M and hence, by Chebyshev’s inequality, with probability 1 —O(n~1*¢)
for any small constant £ > 0, we have |U N B| = ©(n).

Next, for each vertex u € B, by Lemma [9 there exists a non-zero probability P that u
has at least one neighbor in P N Bo(R — C4). By applying Lemma [J] one more time, there is
positive probability P’ < P that it has at least one neighbor in P N Bo(R — ¢1), and hence,
for each w € B, there is positive probability (at least P — P’) to have at least one neighbor
in B’. For any two vertices u,u € B such that Ay, ., > % with Cy sufficiently large, the
corresponding events of having at least one neighbor in B’ are independent. Therefore, by the
same argument as before, by Chebyshev’s inequality, with probability at least 1 — O(n~1+¢),
we have |E(B, B')| = Q(n). Moreover, since C; > ¢; > C1, for every vertex u € B, the events
of having a path of vertices of decreasing radii starting from u to PN B (fpq,) with all internal
vertices of the path inside Bo(R — C} — 1) and of having an edge between u and a vertex in
B’ are independent. Hence, recalling that we have already shown that |[U N B| = ©(n) with
probability at least 1 —O(n~1%¢) for any small constant & > 0, we obtain with probability at
least 1 — O(n~'7¢) that |E(U N B,B')| = Q(n), and thus B(H) = Q(n), so the second part

of the statement follows. O

The related questions regarding the minimum and maximum cut size of H (i.e., minimum
and maximum number of edges between the two parts of a non-trivial partition of the vertex
set of H, respectively) follow easily from results proved here and in the literature. For the
minimum cut, by the proof of Theorem 3 of [FK15|, w.e.p. there exists a path of length
O(logn) starting at a vertex u having no other neighbor. Hence, w.e.p. there will be a
leaf w in H, and therefore, by considering the cut set {u}, we obtain mc¢(H) = 1. For the
maximum cut, note that by Lemma [15 w.e.p. vol(U) = O(n), and hence MC(H) = O(n).
For a maximum bisection, as shown above, the bound is attained, and hence MC(H) = O(n).

7 Conclusion and outlook

In this paper we have, up to a polylogarithmic factor, shown that the conductance of the
giant component of a random hyperbolic graph is ©(n~(*=1) and the same holds for the
spectral gap of the normalized Laplacian of the giant component of such a graph. We
have established that there are relatively small bottlenecks that disconnect large fractions of
vertices of the graph’s giant component, and we also showed that for smaller sets of vertices,
the conductance of such sets, is compared to larger sets, bigger.

Given the fundamental nature of the two parameters studied in this paper, i.e., spectral
gap and conductance, their determination should contribute to the understanding of the
random hyperbolic graph model, and in particular, to the understanding of issues concerning
well known related topics such as the spread of information, mixing time of random walks,
and similar phenomena in such a model. It is widely believed that social networks are fast
mixing (see for example the discussion in [MYKI0]) and that rumors spread fast in such
networks. Given the interest in random hyperbolic graphs as a model of networks that
exhibit common properties of social networks, it is natural to ask whether fast mixing and
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rumor spreading does indeed occur. The low conductance and the spectral gap we establish
do not give evidence that it is so.
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