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Abstract

In this short note, we prove a conjecture of Benjamini, Shinkar, and Tsur on
the acquaintance time AC(G) of a random graph G ∈ G(n, p). It is shown that
asymptotically almost surely AC(G) = O(log n/p) for G ∈ G(n, p), provided that
pn−log n−log log n→∞ (that is, above the threshold for Hamiltonicity). Moreover,
we show a matching lower bound for dense random graphs, which also implies
that asymptotically almost surely Kn cannot be covered with o(log n/p) copies of
a random graph G ∈ G(n, p), provided that pn > n1/2+ε and p < 1 − ε for some
ε > 0. We conclude the paper with a small improvement on the general upper
bound showing that for any n-vertex graph G, we have AC(G) = O(n2/ log n).

Keywords: random graphs; vertex-pursuit games; acquaintance time

1 Introduction

In this paper, we study the following graph process, which was recently introduced by
Benjamini, Shinkar, and Tsur [3]. Let G = (V,E) be a finite connected graph. We start
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the process by placing one agent on each vertex of G. Every pair of agents sharing an
edge is declared to be acquainted, and remains so throughout the process. In each round
of the process, we choose some matching M in G. (M need not be maximal; perhaps it
is a single edge.) For each edge of M , we swap the agents occupying its endpoints, which
may cause more agents to become acquainted. The acquaintance time of G, denoted by
AC(G), is the minimum number of rounds required for all agents to become acquainted
with one another.

It is clear that

AC(G) >

(|V |
2

)
|E|
− 1, (1)

since |E| pairs are acquainted initially, and at most |E| new pairs become acquainted in
each round. In [3], it was shown that always AC(G) = O( n2

logn/ log logn
), where n = |V |.

Moreover, for all functions f : N → N with 1 6 f(n) 6 n1.5, the authors constructed
families {Gn} of graphs with |V (Gn)| = n for all n such that AC(Gn) = Θ(fn). The
problem is similar in flavour to the problems of Routing Permutations on Graphs via
Matchings [1], Gossiping and Broadcasting [6], and Target Set Selection [8, 5, 10].

In this paper, we consider the acquaintance time of binomial random graphs. The
random graph G(n, p) consists of the probability space (Ω,F ,P), where Ω is the set of
all graphs with vertex set [n] = {1, 2, . . . , n}, F is the family of all subsets of Ω, and for
every G ∈ Ω,

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

This space may be viewed as the set of outcomes of
(
n
2

)
independent coin flips, one for

each pair (u, v) of vertices, where the probability of success (that is, adding edge uv) is p.
Note that p = p(n) may tend to zero as n tends to infinity. All asymptotics throughout
are as n→∞ (we emphasize that the notations o(·) and O(·) refer to functions of n, not
necessarily positive, whose growth is bounded). We say that an event in a probability
space holds asymptotically almost surely (or a.a.s.) if the probability that it holds tends
to 1 as n goes to infinity.

For constant p, observe that log 1
1−p

n = Θ(log n), but for p = o(1) we have

log 1
1−p

n =
log n

− log(1− p)
= (1 + o(1))

log n

p
.

Let G ∈ G(n, p) with p = p(n) > (1 + ε) log n/n for some ε > 0. (Recall that AC(G)
is defined only for connected graphs, and log n/n is the threshold for connectivity in
G(n, p)—see, for example, [4, 7] for more.) Since a.a.s. |E(G)| = (1 + o(1))

(
n
2

)
p, it follows

immediately from the trivial lower bound (1) that a.a.s. AC(G) = Ω(1/p). On the other
hand, it is known that a.a.s. G has a Hamiltonian path, which implies that a.a.s. AC(G) =
O(n) (see [3] or Lemma 5 below). Despite the fact that no non-trivial upper bound on
AC(G) was known, it was conjectured in [3] that a.a.s. AC(G) = O(poly log(n)/p). We
confirm this conjecture.
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Theorem 1. Let ε > 0 and (1 + ε) log n/n 6 p = p(n) 6 1− ε. For G ∈ G(n, p), a.a.s.

AC(G) = O

(
log n

p

)
.

In fact, note the following: whenever G2 is a subgraph of G1 on the same vertex
set, AC(G1) 6 AC(G2), since the agents in G1 have more edges to use. Hence, for any
p > 0.99 (possibly p → 1) and G1 ∈ G(n, p), we have that AC(G1) 6 AC(G2), where
G2 ∈ G(n, 0.99). Since a.a.s. AC(G2) = O(log n), a.a.s. AC(G1) = O(log n), and so the
condition p < 1 − ε in the theorem can be eliminated. Clearly, for denser graphs, this
upper bound might not be tight; in particular, for the extreme case p = 1, we trivially
have AC(G2) = AC(Kn) = 0. Moreover, since the threshold for Hamiltonicity in G(n, p)
is p = (log n + log log n)/n (see, for example, [4]), and for a Hamiltonian graph we have
AC(G) = O(n), it follows that a.a.s. AC(G) = O(n), provided that pn−log n−log log n→
∞. So the desired bound for the acquaintance time holds at the time a random graph
becomes Hamiltonian. We get the following corollary.

Corollary 2. Suppose that p = p(n) is such that pn − log n − log log n → ∞. For
G ∈ G(n, p), a.a.s.

AC(G) = O

(
log n

p

)
.

In hopes of improving the trivial lower bound on the acquaintance time of G(n, p), we
consider a variant of the original process. Suppose that each agent has a helicopter and
can, on each round, move to any vertex she wants. (We retain the requirement that no
two agents can occupy a single vertex simultaneously.) In other words, in every step of the
process, the agents choose some permutation π of the vertices, and the agent occupying
vertex v flies directly to vertex π(v), regardless of whether there is an edge or even a path
between v and π(v). (In fact, it is no longer necessary that the graph be connected.)
Let AC(G) be the counterpart of AC(G) under this new model, that is, the minimum
number of rounds required for all agents to become acquainted with one another. Since
helicopters make it easier for agents to get acquainted, we immediately get that for every
graph G,

AC(G) 6 AC(G). (2)

On the other hand, AC(G) also represents the minimum number of copies of a graph G
needed to cover all edges of a complete graph of the same order. Thus inequality (1) can
be strengthened to AC(G) >

(|V |
2

)
/|E| − 1.

We prove the following lower bound on AC(G) (and hence on AC(G)). This result
also implies that a.a.s. Kn cannot be covered with o(log n/p) copies of a dense random
graph G ∈ G(n, p).

Theorem 3. Let ε > 0, p = p(n) > n−1/2+ε and p 6 1− ε. For G ∈ G(n, p), a.a.s.

AC(G) > AC(G) >
ε

2
log1/(1−p) n = Ω

(
log n

p

)
.
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Theorem 1 and Theorem 3 together determine the order of growth for the acquaintance
time of dense random graphs (in particular, random graphs with average degree at least
n1/2+ε for some ε > 0).

Corollary 4. Let ε > 0, p = p(n) > n−1/2+ε and p 6 1− ε. For G ∈ G(n, p), a.a.s.

AC(G) = Θ
(
AC(G)

)
= Θ

(
log n

p

)
.

The behaviours ofAC(G) andAC(G) for sparser random graphs remain undetermined.
We conclude the paper with a small improvement on the general upper bound, showing

that for every n-vertex graph we have AC(G) = O(n2/ log n), a bound that is smaller than
the previously known upper bound by a multiplicative factor of log log n.

2 Proofs

2.1 Proof of Theorem 1

We will use the fact, observed in [3], that for any graph G on n vertices with a Hamiltonian
path, we have AC(G) = O(n). We need a slightly stronger statement, so we provide a
different argument.

Lemma 5. Let G be a graph on n vertices. If G has a Hamiltonian path, then there
exists a strategy ensuring that within 2n rounds every pair of agents gets acquainted (in
particular, AC(G) = O(n)) and, moreover, that every agent visits every vertex.

Proof. Index the vertices of G as v1, v2, . . . , vn so that P = (v1, v2, . . . , vn) is a Hamiltonian
path. For 1 6 i 6 n − 1, let ei = vivi+1. On odd-numbered rounds, swap agents on all
odd-indexed edges; on even-numbered rounds, swap agents on all even-indexed edges.
This has the following effect. Agents that begin on odd-indexed vertices move “forward”
in the vertex ordering, pause for one round at vn, move “backward”, pause again at v1,
and repeat; agents that begin on even-indexed vertices move backward, pause at v1, move
forward, pause at vn, and repeat. After 2n rounds, each agent has traversed the entire
path; in doing so, she has necessarily passed by every other agent.

We are now ready to prove Theorem 1.

Proof of Theorem 1. In order to avoid technical problems with events not being indepen-
dent, we use a classic technique known as two-round exposure. The observation is that
a random graph G ∈ G(n, p) can be viewed as a union of two independently generated
random graphs G1 ∈ G(n, p1) and G2 ∈ G(n, p2), provided that p = p1 + p2 − p1p2 (see,
for example, [4, 7] for more information).

Let p1 := (1 + ε/2) log n/n and

p2 :=
p− p1
1− p1

> p− p1 >
ε/2

1 + ε
p
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(recall that p > (1 + ε) log n/n). Fix G1 ∈ G(n, p1) and G2 ∈ G(n, p2), with V (G1) =
V (G2) = {v1, v2, . . . , vn}, and view G as the union of G1 and G2. It is known that a.a.s.
G1 has a Hamiltonian path (as usual, see [4, 7] for more). Hence we may suppose that
P = (v1, v2, . . . , vn) is a Hamiltonian path of G1 (and thus also of G).

Now let k = k(n) = 2.5 log1/(1−p2) n. We partition the path P into many paths,
each on k vertices. This partition also divides the agents into dn/ke teams, each team
consisting of k agents (except for the “last” team, which may be smaller). Every team
performs (independently and simultaneously) the strategy from Lemma 5. It follows that
the length of the full process is at most 2k = 5 log1/(1−p2) n, which is asymptotic to

5
log n

p2
6 10

(1 + ε)

ε

log n

p
= O

(
log n

p

)
provided that p = o(1); if instead p = Ω(1), then the number of rounds needed is clearly
O(log n). Moreover, every pair of agents from the same team gets acquainted.

It remains to show that a.a.s. every pair of agents from different teams gets acquainted.
Let us focus on one such pair. It follows from Lemma 5 that each agent, excepting those
in the “last” team, visits k distinct vertices. Since the agents belong to different teams,
at least one belongs to a team of size k, so the two agents occupy at least k distinct pairs
of vertices during the process. Considering only those edges in G2, the probability that
the two agents never got acquainted is at most

(1− p2)k = o(n−2).

Since there are at most
(
n
2

)
pairs of agents, the result holds by the union bound.

We now turn to Theorem 3 and the helicopter variant of the acquaintance process.

2.2 Proof of Theorem 3

The first inequality in the statement of the theorem is (2). It remains to show the desired
lower bound for AC(G).

Proof of Theorem 3. Let a1, a2, . . . , an denote the n agents, and let A = {a1, a2, . . . , an}.
Take k = ε

2
log1/(1−p) n and fix k bijections πi : A → V (G), for i ∈ {0, 1, . . . k − 1}.

This corresponds to fixing a (k− 1)-round strategy for the agents; in particular, agent aj
occupies vertex πi(aj) in round i. We aim to show that at the end of the process (that is,
after k− 1 rounds) the probability that all agents are acquainted is only o((1/n!)k). This
completes the proof: the number of choices for π0, π1, . . . , πk−1 is (n!)k, so by the union
bound, a.a.s. no strategy makes all pairs of agents acquainted.

To estimate the probability in question, we consider the following analysis, which
iteratively exposes edges of a random graph G ∈ G(n, p). For any pair r = {ax, ay}
of agents, we consider all pairs of vertices visited by this pair of agents throughout the
process:

S(r) = {{πi(ax), πi(ay)} : i ∈ {0, 1, . . . k − 1}}.
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Clearly, 1 6 |S(r)| 6 k. Take any pair r1 of agents and expose the edges of G in S(r1),
one by one. If we expose all of S(r1) without discovering an edge, then we discard r1
and proceed. (In fact we have just learned that the pair r1 never gets acquainted, so
we could choose to halt the process immediately. However, to simplify the analysis, we
continue normally.) If instead we do discover some edge e of G, then we discard all pairs
of agents that ever occupy this edge (that is, we discard all pairs r such that e ∈ S(r)).
In either case, we shift our attention to another pair r2 of agents (chosen arbitrarily from
among the pairs not yet discarded). It may happen that some of the pairs of vertices in
S(r2) have already been exposed, but the analysis guarantees that no edge has yet been
discovered. Let T (r2) ⊆ S(r2) be the set of edges in S(r2) not yet exposed. As before,
we expose these edges one by one, until either we discover an edge or we run out of edges
to expose. If an edge is discovered, then we again discard all pairs that ever occupy that
edge.

We continue this process until all available pairs of agents have been investigated.
Since one pair of agents can force us to discard at most k pairs (including the original
pair), the process investigates at least

(
n
2

)
/k pairs of agents. Moreover, among these pairs,

the probability P(rt) that pair rt gets acquainted is

P(rt) = 1− (1− p)|T (rt)| 6 1− (1− p)|S(rt)| 6 1− (1− p)k.

Hence, the probability that all pairs get acquainted is at most

(n
2)/k∏
t=1

P(rt) 6
(
1− (1− p)k

)(n
2)/k 6 exp

(
−(1− p)k

(
n

2

)
/k

)
6 exp

(
−n−ε/2

(
n

2

)
3n−1/2+ε/2

)
6 exp

(
−n3/2

)
6 exp

(
−n1+ε/2k

)
= o (exp (−kn log n))

= o
(

(1/n!)k
)
,

since k = Θ(log n/p) 6 n1/2−ε/2/3. As mentioned earlier, it follows that a.a.s. AC(G) > k,
and the proof is finished.

3 General Upper Bound

We conclude this note with a small improvement to another result of Benjamini, Shinkar,
and Tsur. They proved the following ([3], Theorem 5.5):

Theorem 6 ([3]). For every n-vertex graph G, we have that AC(G) = O
(

n2

logn/ log logn

)
.

However, they ask whether in fact this bound can be improved to O(n1.5). While we
are unable to resolve this question, we do provide the following minor improvement:
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Theorem 7. For every n-vertex graph G, we have that AC(G) = O
(

n2

logn

)
.

We use the following result from [3] (Claim 2.1 in that paper).

Claim 8 ([3]). Let G = (V,E) be a tree. Let S, T ⊆ V be two subsets of the vertices of
equal size k = |S| = |T |, and let ` = maxv∈S,u∈T dist(v, u) be the maximal distance between
a vertex in S and a vertex in T . Then, there is a strategy of `+ 2(k − 1) matchings that
routes all agents from S to T .

Before proving the main result, we present two simple propositions. A caterpillar is a
tree in which all vertices are either on or adjacent to a single path (known as the spine of
the caterpillar).

Proposition 9. If T is an n-vertex caterpillar, then AC(T ) = O(n).

Proof. Let k denote the number of vertices in the spine of T , and note that the diameter
of T is O(k). Partition the n agents into dn/ke teams, each of size at most k. We
iteratively route a team onto the spine, apply the strategy in Lemma 5, and repeat until
all teams have traversed the spine. When a team traverses the spine, all team members
meet all other agents in the graph, so this strategy suffices to acquaint all pairs of agents.
By Claim 8 and Lemma 5, each iteration can be completed in O(k) rounds, so the total
number of rounds needed is O(n).

Proposition 10. If T is an n-vertex tree, then T contains a caterpillar on at least log2 n
vertices.

Proof. We use induction on n to prove the following stronger statement: for every vertex
r, the tree T contains a caterpillar on at least log2 n vertices, in which r is an endpoint
of the spine. When n 6 2 the claim is trivial, so suppose otherwise. View T as being
rooted at r. Let d = deg(r), and consider the d subtrees rooted at the children of r.
The largest of these subtrees, say T ′, contains at least (n− 1)/d vertices. The induction
hypothesis guarantees a caterpillar in T ′ having at least log2[(n− 1)/d] vertices, in which
one endpoint of the spine is adjacent to r. Appending r and its other children to this
caterpillar yields a caterpillar of the desired form in T with at least log2[(n − 1)/d] + d
vertices; as log2[(n− 1)/d] + d > log2 n, this completes the proof.

Theorem 7 now follows easily, using the same approach as in [3], Theorem 5.5.

Proof of Theorem 7. By monotonicity of AC(G), we may suppose G is a tree. Let T be
the largest caterpillar contained in G, and let k = |V (T )|. (Note that G has diameter
O(k).) Partition the agents into d2n/ke teams, each of size at most k/2. For each pair
of distinct teams, route both teams onto T and apply the strategy in Proposition 9; this
ensures that any two agents become acquainted. There are O(n2/k2) pairs of teams, and
(by Claim 8 and Proposition 9) we spend O(k) rounds for each pair, so the entire process
lasts for O(n2/k) rounds. By Proposition 10 we have k > log2 n, which completes the
proof.
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4 Addendum

There have been several developments on this problem since the submission of this paper.
In this note, we proved a conjecture from [3] on the acquaintance time AC(G) of the
random graph G ∈ G(n, p). Moreover, we showed that for any n-vertex graph G, we have
AC(G) = O(n2/ log n). This general upper bound was recently improved in [2]: they show
that AC(G) = O(n3/2), which was conjectured in [3] and is tight up to a multiplicative
constant.

In [9], the acquaintance time of a random subgraph of a random geometric graph
G ∈ G(n, r, p) is studied. (In G ∈ G(n, r, p), n vertices are chosen uniformly at random
and independently from [0, 1]2, and two vertices are adjacent with probability p if the
Euclidean distance between them is at most r.) Asymptotic results for the acquaintance
time of G ∈ G(n, r, p) for a wide range of p = p(n) and r = r(n) are presented. In
particular, it is shown that with high probability AC(G) = Θ(r−2) for G ∈ G(n, r, 1),
the classic random geometric graph, provided that πnr2 − lnn → ∞ (that is, above the
connectivity threshold). For the percolated random geometric graph G ∈ G(n, r, p), it
follows that with high probability AC(G) = O(r−2p−1 lnn), provided that πnr2p > K lnn
for some large constant K > 0. Moreover, a matching lower bound for dense random
percolated graphs is presented, which also implies that with high probability Kn cannot
be covered with o(r−2p−1 lnn) copies of a random geometric graphG ∈ G(n, r, p), provided
that pr > n−1/2+ε and p < 1− ε for some ε > 0.
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