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Abstract. We consider the number of independent sets in hypergraphs, which
allows us to define the independence density of countable hypergraphs. Hypergraph
independence densities include a broad family of densities over graphs and relational
structures, such as F -free densities of graphs for a given graph F. In the case of k-
uniform hypergraphs, we prove that the independence density is always rational. In
the case of finite but unbounded hyperedges, we show that the independence density
can be any real number in [0, 1]. Finally, we extend the notion of independence
density via independence polynomials.

1. Introduction

Densities of graphs and hypergraphs are well studied parameters in graph theory,
and they can provide a convenient tool for measuring properties of infinite graphs.
Examples of graph densities are the upper density [5], homomorphism density [10],
Turán density [8], cop density [2] and co-degree density [11] (see also [6, 12, 13, 17]).
In [3] we considered the independence and chromatic densities of graphs, and we focus
on a generalization of the former density in this paper. The independence density of
a graph G of order n, where n is a positive integer, is the number of independent
sets of G, divided by 2n, the total number of subsets of V (G). For countable graphs,
independence densities are defined as the limits of independence densities of chains
of finite subgraphs; it was shown in [3] that the limit was independent of the chain
used. A key result proved in [3] was that the independence density of a countable
graph is rational.

Independence may be viewed as the property of being K2-free; that is, not contain-
ing a complete graph of order 2. A more general density, therefore, may be defined
in the following way. Given a finite connected graph F , a graph G is F -free if G does
not contain F as an induced subgraph. Define F (G) to be the number of subsets S
in V (G) (including the empty set) so that the subgraph induced by S in G is F -free.
Define the F -free density of G by F (G)/2n, where n = |V (G)|. We may extend this
notion even further by considering the F -free density, where F is a (possibly infinite)
set of finite graphs. This gives rise to the notion of acyclic density, where F is the
set of all cycles, and bipartite-free density, where F is the set of all odd cycles.

All of these extensions fit into the broad context of independence densities of
hypergraphs. To be more precise, let H be a finite hypergraph (or set system) of
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order n, where n ≥ 1 is an integer. Hence, H consists of vertex set V = V (H) of
cardinality n and some collection E = E(H) of subsets of V , called the hyperedge set
of H. We write H = (V (H), E(H)), or H = (V,E) if H is clear from context. An
independent set of H is a subset of vertices of H that does not contain a hyperedge
of H. Just as in the case for graphs, the independence density of H, written id(H),
is defined to be i(H)/2n, where i(H) is the number of independent sets of H and n
is the number of vertices of H.

For example, consider a hypergraph whose vertices are those of some fixed graph
G along with E being the set of subsets of V (G) containing a copy of K2. In this
case, i(H) is the independence density of G. Further, if we replace K2 by a set of
finite graphs F , then define a hypergraph HG,F on the vertices of G whose edges
correspond to subsets of V (G) which induce a subgraph in F (note that hyperedges
for this hypergraph are finite). In this setting the independence density of HG,F is
the F -free density of G. We may also naturally extend F -free densities to relational
structures. Independence densities of hypergraphs H = (V,E) therefore, include a
vast class of F -free densities over structures such as graphs, hypergraphs, directed
graphs, or ordered sets.

We extend the definition of independence density of finite hypergraphs in the natu-
ral way to countable hypergraphs (which we define to be on a countable set of vertices
but with edges of finite cardinality) as limits of densities of chains of finite induced
subhypergraphs. We collect some basic properties of the independence density in
the next section. We prove that the independence density does not depend on the
chain used in Theorem 2, and we give bounds via the hypergraph matching number
in Theorem 3. We prove that for k-uniform hypergraphs, the independence density
is always rational in Theorem 4. However, in Section 4 we demonstrate that in hy-
pergraphs with hyperedges of unbounded size, the independence density can be any
fixed real number in [0, 1]. In the final section, we extend the notion of independence
density via independence polynomials and examine limiting values for different values
of their variable x.

All the hypergraphs we consider are countable. A general reference on hypergraphs
is [1], with [16] a more modern reference. See [5] for additional background on graphs.
Let Hk be the set of countable hypergraphs whose hyperedges have cardinality at
most k, and H to be the set of all countable hypergraphs. For hypergraphs H1 and
H2 with disjoint vertex sets, let H1 ∪H2 denote their disjoint union. The notions of
subhypergraph, spanning subhypergraph, and induced subhypergraph are defined in
an analogous manner to the definitions in graphs. If H2 is a proper subhypergraph
of H1, then H1−H2 is the subhypergraph induced by V (H1)\V (H2). The countably
infinite clique is denoted by Kω and its complement by Kω.

We use the notation N for the natural numbers (including 0), and N+ for the set
of positive integers. We use logarithms in the natural base.
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2. Independence density of infinite hypergraphs

We collect some elementary properties of independence densities of hypergraphs
that we will use throughout the paper. The proof of the following lemma is straight-
forward but is included for completeness.

Lemma 1. Let H1 and H2 be finite hypergraphs.

(1) If H1 is a spanning subhypergraph of H2, then i(H2) ≤ i(H1).
(2) If H1 and H2 have disjoint vertex sets, then i(H1 ∪ H2) = i(H1)i(H2) and

id(H1 ∪H2) = id(H1)id(H2).
(3) If H1 is a subhypergraph of H2, then id(H2) ≤ id(H1).

Proof. For (1), independent sets of H2 are also independent sets of H1. For the first
equality of (2), note that the union of independent sets in H1 and H2 is independent
in H1∪H2; the second equality holds by definition. For (3), let the number of vertices
of Hi be ni, so that n1 ≤ n2. Then we have that

id(H2) =
i(H2)

2n2

≤ i(H1 ∪ (H2 −H1))

2n2

=
i(H1)i(H2 −H1)

2n12n2−n1

= id(H1)id(H2 −H1)

≤ id(H1),

where the first inequality holds by item (1), and the second equality holds by (2). �

Let C = (Hn : n ≥ 0) be a family of finite subhypergraphs of H with the properties
that for every integer n ≥ 0, Hn is an induced subhypergraph of Hn+1, and

V (H) =
∞⋃
n=0

V (Hn).

We write limn→∞Hn = H, and say that H is the limit of the chain C. Given a chain
C = (Hn : n ≥ 0) whose limit is H we define the independence density of H relative
to C by

id(H, C) = lim
n→∞

id(Hn).

Theorem 2. Let H be a countable hypergraph.

(1) For all chains C with limit H, id(H, C) exists.
(2) Let C = (Hn : n ≥ 0) and C ′ = (Jn : n ≥ 0) be two chains with the same

limiting hypergraph H. Then

id(H, C) = id(H, C ′).
Proof. Item (1) follows from Lemma 1 (3), as the independence densities of a chain
form a non-increasing, bounded sequence in [0, 1]. For (2), fix ε > 0 a real number.
Let x = id(H, C) and x′ = id(H, C ′). There is an n ≥ 0 such that id(Hn) ≤ x+ ε. We
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have that Hn is an induced subhypergraph of Jk for some k ≥ 0. But then Lemma 1
(3) implies that

x′ ≤ id(Jk) ≤ id(Hn) ≤ x+ ε.

By symmetry, x ≤ x′ + ε. The results follows by letting ε tending to 0. �

Given Theorem 2, without loss of generality we drop reference to chains, and
simplify refer to the independence density of H, written id(H). For an example,
consider the hypergraph H with a single edge of size k and infinitely many isolated
vertices. In this case, id(H) = 1− 1/2k.

We give a generalization of independence density that will be useful in the next
section. For any two finite, disjoint sets A,B ⊆ V (H), denote by ρA,B(H) the density
of independent sets (in all the subsets of H) with the property that these independent
sets contain all vertices from A and no vertex from B. It is straightforward to see that
Theorem 2 can be generalized to this definition, and so ρA,B(H) does not depend on
the chain used. Indeed, consider a chain C = (Hn : n ≥ 0) whose limit is H such that
A ∪ B ⊆ V (H0). Every independent set in Hn under consideration can be extended
in at most 2rn ways, where rn = |V (Hn+1) \ V (Hn)| (by considering all possible
subsets of V (Hn+1) \ V (Hn)). If every extension forms an independent set, then the
density remains the same; otherwise it decreases. This shows that the generalized
independence densities of a chain form a non-increasing, bounded sequence. The
uniqueness of the limit follows by an argument analogous to the one given in the
proof of Theorem 2 (2). Finally, let us note that ρ∅,∅(H) = id(H) and so it is a
natural generalization of independence density.

We now give some bounds on the independence density in terms of the match-
ing number. For a hypergraph H, the matching number of H, written µ(H), is the
supremum of the cardinalities of pairwise non-intersecting hyperedges in H. In Sec-
tion 4 (see Theorem 7) we provide an example of a hypergraph with infinite matching
number, hyperedges of unbounded size, and with id(H) > 0. However, if µ(H) is
infinite and H has hyperedges whose cardinalities are bounded above by a universal
constant k ∈ N+, then it follows from the upper bound of the following theorem that
id(H) = 0.

Theorem 3. Suppose that H is a countable hypergraph whose hyperedges have car-
dinality bounded above by k > 0. If µ(H) is finite, then

0 < 2−kµ(H) ≤ id(H) ≤
(
1− 1/2k

)µ(H)
.

Proof. The upper bound follows by noting that by Lemma 1 (3), id(H) is maximized
when H consists of µ(H) many disjoint hyperedges of cardinality k. As a hypergraph
consisting of a single hyperedge of cardinality k has independence density 1 − 1/2k,
the proof of the upper bound follows by Lemma 1 (2).

For the lower bound, fix a maximum matching M of H. Now fix a chain (Hn :
n ∈ N) with limit H, where H0 is the subhypergraph induced by M. If Hn has order
N , then we have that id(Hn) ≥ 2N−kµ(H)/2N , as the vertices not in M form an
independent set. The lower bound follows. �
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The lower and upper bounds are equal in the case for k = 1 in Theorem 3. For
graphs G (that is, the case k = 2) it was shown in [3] that (µ(G)+1)2−2µ(G) is a lower
bound for the independence density. Note that this bound is sharp for G = K2m+1, if
m > 0 is an integer. It is an open problem to improve the lower bound in Theorem 3
if k > 2.

3. Rationality

In this section, we consider hypergraphs where hyperedges have bounded cardinal-
ity. For k > 0, define

Hk = {x ∈ [0, 1]: for some countable H ∈ Hk, id(H) = x}.

(Recall thatHk is the set of countable hypergraphs whose hyperedges have cardinality
at most k.) One of our main results is that the set of densities is rational, a fact not
obvious a priori. The next theorem generalizes the result in [3] which proved that
independent densities of graphs are rational.

Theorem 4. For all k ≥ 1,

Hk ⊆ Q ∩ [0, 1].

Proof. Fix a countable hypergraph H whose hyperedges have at most k vertices. We
will show that id(H) ∈ Q∩ [0, 1]. In the case k = 1, we leave it to the reader to verify
that id(H) is either 0, 1, or 1/2m, for m ≥ 1 an integer. We assume in the remainder
of the proof, therefore, that k ≥ 2.

Let us recall that for any two finite, disjoint sets A,B ⊆ V (H), we denote by
ρA,B(H) the density of independent sets with the property that these independent
sets contain all vertices from A and no vertex from B. For a given A,B, and any
hyperedge S such that S∩B = ∅, the set S \A will be called the out-set of S relative
to A and B (we drop reference to A and B if they are clear from context). Informally,
the out-set of S corresponds to the part of the hyperedge of S not yet exposed during
the proof. Note that for any A,B, and any x ∈ V (H) \ (A ∪B), we have that

ρA,B(H) = ρA∪{x},B(H) + ρA,B∪{x}(H), (3.1)

as any independent set containing all vertices of A and none of B either contains the
vertex x, in which case this set is counted by ρA∪{x},B(H), or it does not contain it,
in which case this set is counted by ρA,B∪{x}(H). Moreover, (3.1) can be generalized
to obtain that for any finite set W ⊆ V (H) \ (A ∪B)

ρA,B(H) =
∑
C∈2W

ρA∪C,B∪(W\C)(H). (3.2)

We introduce the following useful notation. For a given hypergraph H and disjoint
subsets A and B of V (H), let R(H,A,B) be the size of a largest out-set (with respect
to H, A and B); observe that R(H,A,B) is bounded above by k. We will use the
notation ρrA,B(H) instead of ρA,B(H) to stress the fact that every out-set (relative to
A and B) has at most r vertices, so that implicitly by writing ρrA,B(H) we obtain
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that R(H,A,B) ≤ r. Note that id(H) = ρk∅,∅(H), and so our goal is then to show

that ρk∅,∅(H) is rational.

From now on we focus on given finite, disjoint sets A,B ⊂ V (H). We will prove a
few claims that will cover all possible cases.

Claim 1 : If A is not independent, then ρrA,B(H) = 0.

The first claim is obvious, as there exists no subset containing all vertices of A and
which is independent.

Claim 2 : If A is independent and there is an infinite family of disjoint out-sets,
then ρrA,B(H) = 0.

To prove the second claim, let O1,O2, . . . ,Ot ⊆ V (H) be a finite family of t dis-
joint out-sets corresponding to the hyperedges S1, S2, . . . , St of H which have empty
intersection with B, all of sizes at most r. Since from any set Oi (i ∈ {1, 2, . . . , t})
at least one subset of it (namely the whole set Oi) will produce a hyperedge when
merged with A, we have that

ρrA,B(H) ≤ 2−(|A|+|B|)
t∏
i=1

(
1− 1

2|Oi|

)
≤ 2−(|A|+|B|)

(
1− 1

2r

)t
.

As limt→∞
(
1− 1

2r

)t
= 0 the proof of the claim follows.

Claim 3 : If A is independent, then ρ0A,B(G) = 2−(|A|+|B|).

The third claim is obvious. Since the assumption is that each out-set has size at
most 0 there exists no out-set. This implies that each set containing A that has
empty intersection with B is independent.

Claim 4 : Suppose that A is independent and there is no infinite family of dis-
joint out-sets. If O1,O2, . . . ,Os is a maximal family of disjoint out-sets (finite by
assumption, perhaps empty), then for every r > 0 we have that

ρrA,B(H) =
∑
C∈2W

ρr−1A∪C,B∪(W\C)(H),

where W =
⋃s
i=1Oi.

(Note that, since |W | ≤ sr <∞, the sum contains only finitely many terms.)

In order to prove the fourth claim, we apply (3.2). Since it is assumed that each
out-set has at most r vertices we can modify (3.2) as follows.

ρrA,B(H) =
∑
C∈2W

ρrA∪C,B∪(W\C)(H).

The crucial observation is that in our current setting r on the right hand side can
be (in fact, must be) replaced by r − 1. Note that out-sets which are hyperedges
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that are disjoint with B must have non-empty intersection with some member of the
family {Oi : 1 ≤ i ≤ s} (since the family is maximal). Therefore, for any partition
of W into C and W \ C, every out-set with respect to A ∪ C and B ∪ (W \ C) has
at most r − 1 vertices. The claim follows.

With the claims at hand, we complete the proof of the theorem. Beginning with
the term ρk∅,∅(H), we first fix a maximal family of s disjoint out-sets. It might happen

that s is infinite, but in that case ρk∅,∅(H) = 0 by Claim 2.

Now assume that s is finite. Since A = ∅ and B = ∅, this is just a collection of
disjoint hyperedges O1,O2, . . . ,Os, with W =

⋃s
i=1Oi. We may apply Claim 4 to

derive that
ρk∅,∅(H) =

∑
C∈2W

ρk−1C,W\C(H).

We will apply recursively one of the claims that corresponds to the terms in the sum.
At each step, the term is either a rational number (Claims 1, 2, or 3), or a sum of
finitely many terms which we can deal with independently (Claim 4). The recursive
process ends after k steps. We therefore have that id(H) = ρk∅,∅(H) is rational. �

We now have the following corollary which is not obvious a priori.

Corollary 5. If F is a finite set of finite graphs, then the F-free density of a graph
is rational.

Note that the proof of Theorem 4 actually proves that the independence density
of a hypergraph is a sum of dyadic rationals. However, dyadic rationals form a dense
subset of the real numbers. The closure of the set of graph independence densities is
rational, as proved in [3]. With Theorem 4 at hand, we provide a short alternative
proof of this result. It remains open, however, to determine if the closure of Hk is a
subset of the rationals for k > 2.

Theorem 6. The closure of H2 is a subset of Q ∩ [0, 1].

Proof. Fix q ∈ (0, 1) \Q. We will use the argument used in the proof of Theorem 4
to deduce that q is not in the closure of H2.

Let H = (V,E) ∈ H2 be any graph. If µ(H) is infinite, then, by the observation
before Theorem 3, id(H) = 0. Otherwise, if

µ(H) ≥M = M(q) =

⌈
log(q/2)

log(3/4)

⌉
,

then it follows from Theorem 3 that id(H) ≤ (3/4)µ(H) ≤ q/2. On the other hand,
if µ(H) < M , then we may apply Claim 4 in the proof of Theorem 4 to derive that
there exists W ⊆ V with |W | ≤ 2(M − 1) such that

id(H) = ρ2∅,∅(H) =
∑
C∈2W

ρ1C,W\C(H). (3.3)

The sum on the right hand side of (3.3) has at most 22M−2 terms, each term is
either equal to 0 (when the corresponding set C is not independent or the partition
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(C,W \ C) yields an infinite family of disjoint out-sets) or of the form 1/2i for some
i ∈ N (this happens when the partition (C,W \ C) yields a finite family of out-sets,
with each out-set consisting of one vertex; if there are t such out-sets, then there are
at most 2t terms all of the form 2−(|W |+t)). Combining the two cases together we
obtain that H must either have id(H) ≤ q/2 or have a finite number of ones in the
binary expansion of id(H). This implies that there exists ε = ε(q) > 0 such that
there is no graph with independence density between q − ε and q + ε. �

4. Irrationality in the case of unbounded hyperedges

One major difference between graphs and hypergraphs is that the latter can have
variable hyperedge sizes. For infinite hypergraphs, these sizes can, of course, be
unbounded. In this section we allow hypergraphs H with finite hyperedges with
unbounded (finite) cardinality (including the case of singletons as hyperedges). We
begin by providing (in sharp contrast to Theorem 4 and Corollary 5 where the sizes
of hyperedges are bounded) an explicit example of a countable hypergraph with
irrational independence density.

Let Ĥ ∈ H be the hypergraph with vertices {xi : i ∈ N+} and hyperedges

{{x1}, {x2, x3}, {x4, x5, x6}, {x7, x8, x9, x10}, . . .}.

In particular, if we consider the graph Ĝ which is the disjoint union of the cliques of
order 1 and 2, and cycles of all lengths, then id(Ĥ) equals the acyclic density of Ĝ.

Theorem 7. The following holds.

(1) The independence density of Ĥ is S =
∏

k≥1
(
1− 1

2k

)
.

(2) The number S is irrational.

Before we prove the theorem we make some observations. As log(1−x) = −
∑

n≥1 x
n/n

for −1 ≤ x < 1, we derive that

S = exp

(∑
k≥1

log

(
1− 1

2k

))
= exp

(
−
∑
k≥1

∑
n≥1

2−kn

n

)
.

Since
∑

k≥1
∑

n≥1
2−kn

n
≤
∑

k≥1 21−k ≤ 4, it is evident that − logS is bounded from
above (in fact, it is approximately 1.242062) and so S is bounded away from zero

(and is roughly 0.288788). Note that the fact that id(Ĥ) > 0 is in stark contrast to

the result of Theorem 3, since Ĥ has infinite matching number.
After interchanging sums we obtain another useful equality:

S = exp

(
−
∑
n≥1

1

n

∑
k≥1

(2−n)k

)
= exp

(
−
∑
n≥1

1

n(2n − 1)

)
.

We need also the following theorem, which is often referred to as Euler’s Pentagonal
Number Theorem.
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Theorem 8 ([7]). For |q| < 1 we have that∏
k≥1

(1− qk) =
∞∑

k=−∞

(−1)kqk(3k+1)/2.

Now, we are ready to come back to the proof of Theorem 7.

Proof of Theorem 7. For item (1), note that hyperedges of Ĥ form an infinite family
of disjoint hyperedges; there is exactly one hyperedge of cardinality k for every k ≥ 1.
Consider a chain C = (Hn : n ≥ 0) whose limit is Ĥ, in which Hn is a subhypergraph

of Ĥ induced by the set of edges of cardinality at most n. It follows from Lemma 1 (2)
(applied n− 1 times) that id(Hn) =

∏n
k=1

(
1− 1

2k

)
and the result holds after taking

the limit as n→∞.
For item (2), note that S is the sum at q = 1/2 in Theorem 8. For a contradiction,

suppose that S is rational. Let S = a/b with gcd(a, b) = 1. For sufficiently large N
the tail of the series is bounded as follows:∣∣∣∣∣∣

∑
|k|≥N

(−1)k2(−3k2−k)/2

∣∣∣∣∣∣ ≤
∑
k≥0

(
2−(3(k+N)2−k−N))/2 + 2−(3(k+N)2+k+N)/2

)
= 2−(3N

2−N)/2
∑
k≥0

2−(3k
2+6kN−k)/2(1 + 2−k−N)

< 2−N(3N−1)/2+1,

where the last inequality follows by bounding the final sum by 2. Indeed, for suffi-
ciently large N∑

k≥0

2−(3k
2+6kN−k)/2(1 + 2−k−N) ≤ 1.5

∑
k≥0

2−(3k
2+6kN−k)/2 ≤ 1.5

∑
k≥0

2−3kN < 2.

On the other hand, the partial sum can be calculated as follows:∑
−N+1≤k≤N−1

(−1)k2−k(3k+1)/2 =
x

2(N−1)(3N−2)/2 =
x

2(3N2−5N+2)/2

for some integer x, since the least common multiplier of the denominators is simply
the highest power of 2 in the partial sum. Thus, we obtain the string of inequalities

2−N(3N−1)/2+1 >
∣∣∣S − x

2(3N2−5N+2)/2

∣∣∣ ≥ 1

b2(3N2−5N+2)/2
,

where the last inequality is true, provided that S is not equal to the partial sum. Now,
observe that if |S − x/2(3N2−5N+2)/2| were equal to 0 for some particular N , then for
N + 1 the inequality would hold, as the summands corresponding to k = N + 1 have
nonzero contribution of order 2(−3(N+1)2+(N+1))/2. Therefore, we derive the following
string of inequalities for an infinite sequence of sufficiently large N :

1

b
≤ 2−N(3N−1)/2+12(3N2−5N+2)/2 = 2−2N+2,

contradicting that b is fixed. �
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Define
Hunb = {x ∈ [0, 1] : for some countable H, id(H) = x}.

As the next theorem demonstrates, the set of densities when hyperedges are un-
bounded can be any real number in [0, 1]. This is in contrast to Theorem 4 on the
rationality of values in Hk. Further, the set Hk contains gaps consisting of intervals
such as (1− 1/2k, 1).

Theorem 9. Hunb = [0, 1].

Proof. Fix any r ∈ [0, 1], and write r in binary expansion as r = 0.r1r2 . . ., where
ri ∈ {0, 1} for all i ≥ 1. It is possible that there are two such representations. In such
a case, we will consider the representation with ri = 1 for all i ≥ ir for some ir ≥ 1.
(For example, r = 7/8 will be represented as 0.11011111 . . ., not 0.11100000 . . ..)

First, we construct a hypergraph H(r) which is a function of r. After that, we will
show that its density is equal to r by considering a suitable chain whose densities
converge to r.

The vertex set of H(r) is N+. For i ∈ N+, let

Fi = {j < i such that rj = 1}.
That is, Fi keeps track of the digits j < i which are equal to 1. Informally, the ith
digit in the binary representation of r (that is, ri) corresponds to the vertex i of H(r).
For every i ≥ 1 such that ri = 0 we introduce a hyperedge Fi ∪ {i}. This defines the
hyperedge set of H(r). (For example, H(7/8) consists of one hyperedge only, {1, 2, 3},
whereas H(1/π) has an infinite number of hyperedges.)

For n ∈ N+, let Hn be the hypergraph induced by the set of vertices {1, 2, . . . , n};
H0 is the empty graph. Since (Hn : n ∈ N) forms a chain such that H(r) =
limn→∞Hn), we have that

id(H(r)) = lim
n→∞

id(Hn).

We will prove (by induction) that id(Hn) is the truncation of r at the nth position
rounded up to the nearest rational.

Claim: For all integers n ≥ 0, we have that

id(Hn) = 0.r1r2 . . . rn111 . . . ≥ r.

The claim will finish the proof of the theorem, since the limit of the sequence
(id(Hn) : n ∈ N) tends to r.

Since id(H0) = 1 = 0.111 . . ., the base case holds. Suppose that the claim holds
for all non-negative integers smaller than some i ∈ N. If ri = 1, then the hyperedge
set of Hi−1 is exactly the same as the hyperedge set of Hi. The density remains the
same and the claim holds in this case. If ri = 0, then exactly one more hyperedge is
added to Hi−1 to form Hi; namely, Fi∪{i}: we now show that every independent set
of Hi−1, except for the set Fi, can be extended to form an independent set of Hi by
adding vertex i. Indeed, first note that Fi itself is independent in H(r) (and so in Hi−1
as well) since each hyperedge has the property that the largest vertex corresponds
to zero but all vertices in Fi correspond to one. Moreover, any independent set in
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Hi−1 not containing all of Fi remains independent after adding vertex i. Finally, if
there were a proper superset S of Fi independent in Hi−1, then S would contain a
vertex j < i corresponding to 0. But then the set Fj ∪ {j} is already a hyperedge in
Hi−1, contradicting the fact that S is independent. Thus, we lose exactly one possible
extension, and so we have that

id(Hi) = id(Hi−1)− 1/2i,

which is what we claimed to be the case when ri = 0. �

5. Extensions to Independence Polynomials

The independence polynomial of a hypergraph H of order n is the generating poly-
nomial for the number of independent sets of each cardinality; that is, if H has ik
independent sets of size k, then the independence polynomial of H is defined by

i(H, x) =
∑
k≥0

ikx
k.

Here we take x ≥ 0 (although in other contexts, negative values are allowed). A
trivial observation is that the number of independent sets of H is equal to i(H, 1), so
that the independence density of H is given by

i(H, 1)

2n
.

For more on independence polynomials, see the survey [9].
A natural extension of the definition of independence densities is the following. Let
C be a chain of finite hypergraphs Hm of orders nm with limit H. Then for x ≥ 0, we
define the independence density of H at x with respect to the chain C by

idC(H, x) = lim
m→∞

i(Hm, x)

2nm

provided the limit exists (note that we allow the limit to be infinite). We note
that a similar (but distinct) approach has been used towards limits of chromatic
polynomials, especially the study of thermodynamic limits in the Potts model in
statistical mechanics; see [14, 15].

As proved in Section 2, idC(H, 1) = id(H) exists for any countable graph H, and is
independent of the chain C. Do analogous results hold for idC(H, x) for other values
of x? The next lemma shows that for x ≤ 1, the answer is yes.

Lemma 10. Let C be chain of finite hypergraphs Hm of orders nm with limit H.
Then for x ≤ 1,

idC(H, x) =

{
0 if x < 1
id(H) if x = 1.

Proof. We focus on the case when x < 1 as the remaining case is immediate. Observe
that if F is a spanning subhypergraph of a finite hypergraph H, then for x ≥ 0,
i(H, x) ≤ i(F, x) as every independent set of H is an independent set of F . In
particular, for a hypergraph H of order nm, i(H, x) is at most the independence
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density polynomial for the hypergraph of order nm with no hyperedges, which is in
turn equal to (1 + x)nm . Hence, by dividing by 2nm and taking the limit, we see that
for x ∈ [0, 1),

0 <
i(Hm, x)

2nm
≤
(

1 + x

2

)nm

,

and the right-most term tends to 0. By taking the limit as m tends to∞, we conclude
that idC(H, x) = 0. �

Note that for some countable hypergraphs, the independence density at x is always
0. For example, as i(Kn, x)/2n = (1+nx)/2n, it follows that the independence density
at x of the complete infinite graph Kω is 0 for all x ≥ 0 (and hence, independent
of the chain). We can extend this by the following result which shows that if the
independence numbers are not too large (as a function of the order of the hypergraph),
then the independence density at x is equal to 0 for all x ≥ 0.

Theorem 11. Suppose that for each n, Hn is a hypergraph of order n with indepen-
dence number βn. If βn = o(n), then for every x > 0 we have that

i(Hn, x)

2n
= o(1).

Proof. The result holds for x < 1 by Lemma 10. Fix x ≥ 1. We use the well known
bound that for 1 ≤ k ≤ n, (

n

k

)
≤
(en
k

)k
.

For n sufficiently large so that βn < n/2, we have that

i(Hn, x) ≤
βn∑
k=0

(
n

k

)
xk

≤ (βn + 1)

(
n

βn

)
xβn

≤ (βn + 1)

(
enx

βn

)βn
.

Hence, writing ωn = n/βn, we have that

i(Hn, x)

2n
≤ (βn + 1)

(
enx

βn

)βn
/2n.

= exp
(

log(βn + 1) + βn(1 + log n+ log x− log βn)− n log 2
)

≤ exp
(

log n+
n

ωn
(1 + log x+ logωn)− n log 2

)
= exp

(
− n(log 2− o(1))

)
= o(1),

and the proof is finished. �
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We point out that the result of Theorem 11 is new even for independence densities
of countable hypergraphs (that is, for x = 1), and provides a sufficient condition
for independence densities to be 0 depending only on the independence numbers of
hypergraphs in a chain.

The following theorem provides the limiting behaviour of idC(H, x) as x tends to
infinity.

Theorem 12. For a countable hypergraph which is the limit of the chain C = (Hm :
m ∈ N), we have that

lim
x→∞

idC(H, x) ∈ {0,∞}.

Proof. We note first that idC(H, x) is a non-decreasing function of x, and so its limit
as x tends to ∞ either exists (and is non-negative) or is ∞. Let nm be the order of
Hm. Suppose for a contradiction that limx→∞ idC(H, x) = z ∈ (0,∞). Hence, there
is an x0 such that for all x ≥ x0 we have that

z/2 < idC(H, x) = lim
m→∞

i(Hm, x)

2nm
< 2z. (5.1)

We derive that

idC(H, 4x0) = lim
m→∞

i(Hm, 4x0)

2nm

= lim
m→∞

∑
k≥0 ik(4x0)

k

2nm

= lim
m→∞

∑
k≥1 ik(4x0)

k

2nm

≥ 4 lim
m→∞

∑
k≥1 ikx

k
0

2nm

= 4 lim
m→∞

∑
k≥0 ikx

k
0

2nm

= 4 idC(H, x0) > 2z,

which contradicts (5.1). �

We conclude with some examples (focusing on graphs only) to show that, contrary
to the situation for x = 1, for x > 1 the independence density at x may depend
on the chain, and may give non-dyadic rationals. The infinite path or ray P (either
one- or two-way) is the limit of a chain C of paths Pn of order n (there are other
chains whose limits are the infinite path, but we focus on this particular chain). The
independence polynomials of paths Pn satisfy the recurrence

i(Pn, x) = i(Pn−1, x) + x i(Pn−2, x),
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with initial conditions i(P1, x) = 1 + x and i(P2, x) = 1 + 2x. In [4] the recurrence
was solved to derive

i(Pn, x) =

√
1 + 4x+ (1 + 2x)

2
√

1 + 4x

(
1 +
√

1 + 4x

2

)n
+

√
1 + 4x− (1 + 2x)

2
√

1 + 4x

(
1−
√

1 + 4x

2

)n
,

and thus,

i(Pn, x)

2n
=

√
1 + 4x+ (1 + 2x)

2
√

1 + 4x

(
1 +
√

1 + 4x

4

)n
+

√
1 + 4x− (1 + 2x)

2
√

1 + 4x

(
1−
√

1 + 4x

4

)n
.

(We remark that by setting x = 1, we see that i(Pn, 1) satisfies the same recurrence
as the Fibonacci sequence fn, though the initial terms are f3 and f4. The nth-term
of the Fibonacci sequence is well known to be given by

fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
,

which, after computation, coincides with the formula given above for i(Pn−2, 1).)

For x ≥ 0, clearly the absolute value of 1+
√
1+4x
4

dominates that of 1−
√
1+4x
4

. Now
1+
√
1+4x
4

is an increasing function of x and is equal to 1 when x = 2. It follows that

idC(P, x) =

 0 if 0 ≤ x < 2
4/3 if x = 2
∞ if x > 2.

The example of the graph Kω ∪ Kω is even more enlightening. It is the limit of
chains of graphs (Hn : n ∈ N) of the form Hn = Kan ∪ Kbn , where an and bn both
tend to ∞ as n→∞. Now, for any a, b ∈ N and x ≥ 0 we have that

i(Ka ∪Kb, x)

2a+b
=

(1 + ax)(1 + x)b

2a+b
=

(
1 + x

2

)b
1 + ax

2a
.

It follows that for the chain C where an = bn = n, we see that

i(Kan ∪Kbn , x)

2an+bn
=

(
1 + x

4

)n
(1 + nx)

which tends to 0 if x < 3 and to infinity if x ≥ 3, so we have an example of a chain
where the jump from 0 to infinity occurs with no intermediate point where the value
is positive. But we can do much more with the graph Kω ∪Kω. Given a hypergraph
H with chain C define a jumping point x′ ≥ 1 to be a real number such that idC(H, x

′)
is finite but idC(H, x) =∞ if x > x′. The next theorem shows that any real number
not excluded by Lemma 10 can be a jumping point.
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Theorem 13. For every real number r ∈ (1,∞), there is a chain Cr in Kω ∪Kω for
which r is a jumping point. Moreover, for every chain in Kω, 1 is a jumping point.

Proof. Fix r ∈ (1,∞), and choose C = C(r) > 0 such that 2C+1 = 1 + r. Using the
notation as in the example before the statement of the theorem, consider the chain
Cr defined by bn = n and an = bCnc. For x < r we have that

idCr(Kω ∪Kω, x) = lim
n→∞

(1 + bCncx)(1 + x)n

2bCnc+n

≤ lim
n→∞

(1 + Cnx)(1 + x)n

2Cn−1+n

= lim
n→∞

2(1 + Cnx)

(
1 + x

1 + r

)n
= 0.

On the other hand, for x ≥ r we have that

idCr(Kω ∪Kω, x) = lim
n→∞

(1 + bCncx)(1 + x)n

2bCnc+n

≥ lim
n→∞

(Cnx)(1 + x)n

2Cn+n

= lim
n→∞

(Cnx)

(
1 + x

1 + r

)n
≥ lim

n→∞
(Cnx) =∞.

The second part is straightforward. Any chain (Hn : n ∈ N) with limit Kω is of
the form Hn = Kbn and bn →∞. We have that

i(Kbn , x)

2bn
=

(
1 + x

2

)bn
,

which tends to 0 if x < 1, to 1 if x = 1, and to infinity if x > 1. �

The graph G = Kω ∪ Kω admits chains where, for a given x > 1, idC(G, x) does
not exist. As before, we consider chains of graphs (Gn : n ∈ N) of the form Gn =
Kan ∪ Kbn , and use the notation as in the proof of Theorem 13. Fix x > 1, let
C1 = C((1 + x)/2), C2 = C(2x), and consider chains Ci = (Gi

n : n ∈ N), where
ain = bCinc and bin = n (where i = 1, 2). (Note that C2 > C1, since C = C(x) is an
increasing function of x.) The constants C1, C2 are chosen so that idC1(G, x) = ∞
and idC2(G, x) = 0.

Now consider a chain C3 = (G3
n : n ∈ N), where for even n a graph from C1 is

taken, and for odd n we take a graph from C2. Since both ain and bin tend to infinity
(i = 1, 2), it is always possible to select a graph that has the previous one as an
induced subgraph. Then idC3(G, x) does not exist, since its corresponding sequence
of densities has a subsequence tending to infinity and a subsequence tending to zero.

6. Acknowledgements

We thank O-Yeat Chan for helpful discussions.



16 ANTHONY BONATO, JASON I. BROWN, DIETER MITSCHE, AND PAWE L PRA LAT

References

[1] C. Berge, Graphs and hypergraphs, Second revised edition, American Elsevier Publishing Co.,
Inc., New York, 1976.

[2] A. Bonato, G. Hahn, C. Wang, The cop density of a graph, Contributions to Discrete Mathe-
matics 2 (2007) 133–144.

[3] A. Bonato, J.I. Brown, G. Kemkes, P. Pra lat, Independence and chromatic densities of graphs,
Journal of Combinatorics 2 (2011) 397–411.

[4] J.I. Brown, C.A. Hickman, R.J. Nowakowski, On the location of roots of independence poly-
nomials, J. Algebraic Combin. 19 (2004) 273–282.

[5] R. Diestel, Graph theory, Springer-Verlag, New York, 2005.
[6] D. Eppstein, Densities of minor-closed graph families, Electron. J. Combin. 17 (2010), no. 1,

Research Paper 136, 21 pp.
[7] L. Euler, Observationes analyticae variae de combinationibus, Commentarii academiae scien-

tiarum imperialis Petropolitanae, 13 (1751) 64–93.
[8] G. Katona, T. Nemetz, M. Simonovits, On a problem of Turán in the theory of graphs, Mat.

Lapok 15 (1964) 228–238.
[9] V.E. Levit, E. Mandrescu, The independence polynomial of a graph - a survey, In: Proceedings

of the 1st International Conference on Algebraic Informatics, 233254, Aristotle Univ. Thessa-
loniki, Thessaloniki, 2005.

[10] L. Lovász, B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006)
933–957.

[11] D. Mubayi, Y. Zhao, Co-degree density of hypergraphs, J. Combin. Theory Ser. A 114 (2007)
1118–1132.

[12] A.S. Pedersen, Domination and leaf density in graphs, Discuss. Math. Graph Theory 25 (2005)
251–259.

[13] Y. Peng, On jumping densities of hypergraphs, Graphs Combin. 25 (2009) 759–766.
[14] A. Procacci, B. Scoppola, V. Gerasimov, Potts model on infinite graphs and the limit of chro-

matic polynomials, Communications in Mathematical Physics 235 (2003) 215–231.
[15] R. Shrock, Chromatic polynomials and their zeros and asymptotic limits for families of graphs,

Discrete Math. 231 (2001) 421–446.
[16] V. Voloshin, Introduction to graph and hypergraph theory, Nova Science Publishers, Inc., New

York, 2009.
[17] X. Zhu, Bipartite density of triangle-free subcubic graphs, Discrete Appl. Math. 157 (2009)

710–714.

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: abonato@ryerson.ca

Department of Mathematics and Statistics, Dalhousie University, Halifax, NS,
CANADA B3H 3J5

E-mail address: brown@mathstat.dal.ca

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: dmitsche@ryerson.ca

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: pralat@ryerson.ca


