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Abstract

We give asymptotically exact values for the treewidth tw(G) of a random geometric graph
G € G(n,r) in [0, /n]?. More precisely, let r. denote the threshold radius for the appearance
of the giant component in G(n,r). We then show that for any constant 0 < r < r,
tw(G) = @(logign), and for ¢ being sufficiently large, and r = r(n) > ¢, tw(G) = O(r/n).
Our proofs show that for the corresponding values of r the same asymptotic bounds also

hold for the pathwidth and the treedepth of a random geometric graph.
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1 Introduction

Let V be a set of n points in the square S,, = [0, /n]? and r = 7(n) a nonnegative real number.
This choice of the square is only for convenience; by suitable scaling we could have chosen
the square [0, 1]? and all the results would be still valid. We will identify each point with its
position, that is, v € V refers also to the geometrical position of v in S,,.

The geometric graph G of V with radius r is the graph constructed by connecting two points
of V if their Euclidean distance in §,, is smaller than r. For any two points u,v € &, we will
denote by distg(u,v) their Euclidean distance and by distg(u, v) their distance in the graph G.

Then we define G(n,r) as the probability space of the geometric graphs of order n with
radius 7. A graph G chosen uniformly at random from G(n,r) will be called a random geometric
graph and will be denoted by G € G(n,r). Note that with probability one, no two vertices of
G € G(n,r) are placed in the same position.

Starting with the seminal paper of Gilbert [7], random geometric graphs have in recent
decades received a lot of attention as a model for large communication networks such as sensor
networks. Network agents are represented by the vertices of the graph, and direct connectivity
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is represented by edges. For applications of random geometric graphs, we refer to Chapter 3
of [10], and for a survey of many theoretical results, we refer to Penrose’s monograph [21].

All our stated results are asymptotic as n — oo. We use the usual notation a.a.s. to denote
asymptotically almost surely, i.e. with probability 1 — o(1). It is well known that the property
of the existence of a giant component of order ©(n) undergoes a sharp threshold in G(n,r) (see
e.g. [8]), this is, there exists a constant value r. such that for any € > 0, a.a.s. the largest
component of G € G(n,r. — €) is of order O(logn), whereas in G € G(n,r. + €), a single
component of order O(n) is present, while the others have order O(logn) (see [21, Chapter 10]).
The exact value of r. is not yet determined, but is known that ¢~ < r. < ¢*, where ¢~ ~ 0.834
and ¢t ~ 1.836 (see [21], p.189). Moreover, simulation studies suggest that the exact value of
re ~ 1.2 (see again [21], p.189).

Since random geometric graphs have been heavily used for modeling communication net-
works, it is natural to analyze the expected complexity of different algorithms applied to this
class. Courcelle’s Theorem [4] states that any problem that can be expressed in monadic sec-
ond order logic, can be solved in linear time for the class of graphs with bounded treewidth.
This motivates the study of this parameter and other tree-like parameters on random geometric
graphs. In this paper, we study the behavior of the treewidth and the treedepth on random
geometric graphs.

The treewidth was introduced independently by Halin in [9] and by Robertson and Seymour
in [25].

For a graph G = (V, E) on n vertices, we call (T, W) a tree decomposition of G, where W is

a set of vertex subsets Wy, ..., W, C V, called bags, and T is a forest with vertices in W, such
that
L. U_ w,i=V.

2. For any e = uv € F there exists a set W; € W such that u,v € W;.
3. For any v € V, the subgraph induced by the W; > v is connected as a subgraph of T'.

The width of a tree-decomposition is w(T, W) = max |Wi| — 1, and the treewidth of a graph G
<i<s

can be defined as
tw(G) = min w(T, W).
(W)

Observe that if G is a graph with connected components Hi, ..., Hy,, then

tw(G) = 1%1%);1tw(Hi) . (1)
The concept of treedepth has been introduced under different names in the literature. In
this paper we follow the definition given by NesSetfil and Ossona de Mendez as a tree-like
parameter in the scope of homomorphism theory, where it provides an alternative definition of
bounded expansion classes [18]. For the sake of completeness, we note that the treedepth is
also equivalent to the height of an elimination tree (used for instance in the parallel Cholesky
decomposition [23]). Furthermore, analogous definitions can be found using the terminology of
rank function [17], vertex ranking number (or ordered coloring) [6] or weak coloring number [11].
We now give the precise definition of treedepth. Let T be a rooted tree. The height of T' is
defined as the number of vertices of the longest rooted path. The closure of T' is the graph that
has the same set of vertices and a pair of vertices is connected by an edge if one is an ancestor
of the other in T'. We say that the tree 1" is an elimination tree of a connected graph G if G is
a subgraph of the closure of T'. The treedepth of a connected graph G, td(G), is defined to be
the minimum height of an elimination tree of G.



The definition of treedepth can also be extended to nonconnected graphs. If G is a graph
with connected components Hy, ..., Hy,,

td(G) = max td(H;) . (2)

1<i<m
Hence, if S C V(G) separates G into two subsets A and B, we have
td(G) < |S| + max{td(A),td(B)} . (3)
Observe that if H is a subgraph of GG, then
td(H) < td(G) and tw(H) < tw(G) . (4)

Both parameters are closely connected: while the treewidth of a graph G is a parameter
that measures the similarity between G and the class of trees in general, the treedepth of G
measures how close G is to a star. In other words, the treedepth also takes into account the
diameter of the tree we are comparing the graph with. The two parameters are related by the
following inequalities:

tw(G) < td(G) < (tw(G) + 1) logy n,

both bounds being sharp (see [18]). Note also that tw(G) > w(G) — 1, where w(G) denotes the
size of the largest clique in G.

Results of the paper. In this paper we study the values of tw(G) and td(G) of a random
geometric graph G € G(n, r) for different values of r = r(n). In particular, we prove the following
two main theorems:

Theorem 1. Let 0 < r < 1. and let G € G(n,r). Then, a.a.s., tw(G) = @(lolgoign), and also
a.a.s., td(G) = (81 ),

loglogn

Theorem 2. Let ¢ be a sufficiently large constant. Let r = r(n) > ¢ and G € G(n,r), A.a.s.,
tw(G) = O(ry/n), and also a.a.s., td(G) = O(ry/n).

Remark 3. For G € G(n,r) with r constant, but r > ¢, by the results of [5], many problems
such as STEINER TREE, FEEDBACK VERTEX SET, CONNECTED VERTEX COVER can be solved
in time O(poly(n)3V™), while others like CONNECTED DOMINATING SET, CONNECTED FEED-
BACK VERTEX SET, MIN CYCLE COVER, LONGEST PATH, LONGEST CYCLE, GRAPH METRIC
TRAVELLING SALESMAN PROBLEM can be solved in time O(poly(n)4v™).

Remark 4. Other width parameters that are sandwiched between the trecwidth and the treedepth
clearly then also have the same asymptotic behavior in G(n,r). For instance, the pathwidth of
a graph, introduced by Robertson and Seymour [24], measures the similarity between a graph
and a path. Since the pathwidth is well known to be bounded from below by the treewidth and
bounded from above by the treedepth (see Theorem 5.3 and Theorem 5.11 of [26]), the former
theorems imply that for those values of r = r(n) the pathwidth of the graph is of the same order.

Remark 5. Whereas intuitively it might be clear that around the threshold of the existence of a
giant component there should be a jump for parameters like treewidth or treedepth in G(n,r), the
orders of magnitude of these parameters are not so obvious (for us). Moreover, we point out that
there are differences between G(n,r) and G(n,p): it is known that in the Erddés-Rényi random
graph model G(n,p), as soon as the giant component appears, the graph has linear treewidth
(see [14]). In contrast to this, Theorem 2 shows that a random geometric graph with a linear
number of edges containing a giant component only has treewidth ©(y/n). This different behavior
of the two models can be explained by their different expansion properties and the connection
between balanced separators and treewidth (see Lemma 19 below). Classical random graphs have
very good expansion properties, and thus it is difficult to find small separators of large sets of



vertices. The geometric properties of the model G(n,r) imply the lack of large expanders. For
this reason, in the latter case one can construct a tree decomposition with smaller bags. On the
other hand, in the subcritical regime (with a linear number of edges, but before the existence of
a giant component) the treedepth of G(n,p) is O(loglogn) (see [22]), whereas by Theorem 1,
for random geometric graphs it is already @(log’lgogn). (In fact, a lower bound of this order is
very easy, since the largest clique is of that order, and an upper bound of O(logn) is also easy,
since O(logn) is an upper bound for the size of the largest component). Furthermore, in this
range, in classical random graphs the treewidth is bounded by a constant (see [22]), whereas our
theorems show that in G(n,r) both treewidth and treedepth are asymptotically of the same order
for a wide range of parameters r. The fact that for random geometric graphs the treedepth and
treewidth are always asymptotically of the same order implies that G(n,r) is more similar to a
star—shaped tree than to a path—shaped tree, which in general is not true for random graphs.

Poissonization. In order to simplify calculations, we will use the well-known idea of Pois-
sonization (see [21, Section 1.7]): let V' be a set of points obtained as a homogeneous Poisson
point process G(P1,r) of intensity 1 in S,,. In other words, V' consists of N points in the square
Sy, chosen independently and uniformly at random, where N is a Poisson random variable of
mean n. Exactly as in G(n,r), two points u,v € V are connected by an edge if their Euclidean
distance in &, is at most . The main advantage of the Poisson point process is that the number
of points of V' that lie in any region A C §,, of area a has a Poisson distribution with mean a;
and the number of points of V' in disjoint regions of S, are independently distributed. Moreover,
by conditioning G(Py,r) upon the event N = n, we recover the original distribution of G(n,r).
Therefore, since Pr(N = n) = ©(1/4/n), any event holding in G(Py,r) with probability at least
1 — o(fn) must hold in G(n,r) with probability at least 1 — o(f,+/n). In particular, an event
holding with probability 1 — o(n~'/2) in G(Py,r) holds a.a.s. in G(n,r). We make use of this
property throughout the article, and perform the proofs of Theorem 1 and Theorem 2 for a
graph G € G(Py,r).

The paper is organized as follows. In Section 2 we define the cell graph of a geometric graph
and give some properties of it. The proof of Theorem 1 is presented in Section 3. Whereas the
lower bound follows from a standard argument using the clique number of G(n,r), the proof of
the upper bound is more involved. In Section 4 we continue by proving Theorem 2. Finally, in
Section 5 we conclude by mentioning some open problems.

2 Properties of Deterministic Geometric Graphs

2.1 The cell graph of a geometric graph

For any constant ¢ > 0, we tessellate S,, into squares of sidelength ¢ called cells. For the sake of
simplicity of the presentation, we assume that y/n /¢ is an integer for the values of ¢ considered
in this paper. We use this tessellation to construct the cell graph Cg(€) of G: each nonempty
cell will be represented by a verter and two different vertices of C(¢) will be joined if there
exist two points of G in the corresponding cells that share an edge (see Figure 1, where the
tessellation is omitted for clarity).

From now on, unless otherwise stated, we will call points the vertices of the geometric graph
G and use the word vertex for the cells of C(¢). The cell-graph Cg(¢) simplifies the original
geometric graph G while preserving the same structure. For any subgraph H of G we will
denote its cell graph by Cg(¢).

Remark 6. Notice that Cy(£) is always a subgraph of Cg(£). Observe that, for any £ < r/\/2,
each nonempty cell contains points from exactly one connected component of G, since all the
points inside a cell are connected. Thus, if £ < r/\/2 there exists a natural bijection between the
connected components of G and the connected components of Cg({).
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Figure 1: A random geometric graph and its corresponding cell graph

We need another auxiliary graph, the grid graph La »» defined as follows: its vertex set is
V(LE )y ={(,7): 1<i<a,1<j<b},and (i,7)(,j') € E(LF,) if and only if (4, ) # (7, j')
and max{|i — ¢'|,|j — 7|} < k. Note that by construction, for a geometric graph G in S, with
radius r we have the following relation (as subgraphs):

[r/€]

Call) S L mnmye (5)

The following lemma bounds the maximal number of different connected subgraphs of a
given size in L§7b.

Lemma 7. The number of connected subgraphs of size s in L¥, is at most O(ab(2k + 1)%°).

Proof. A connected subgraph is determined by a root v and any of its spanning trees, rooted
at v. Observe that there are ab many ways to choose v € V(L];b). Moreover, the degree of a
vertex in L¥ a.p 18 at most (2k + 1)2, since for any cell (4, j) there are at most (2k 4 1)2 cells (', 5)
such that max{]z —i'l,l7 =7} < k.

One can construct at most ((2k + 1)2)2573 < (2k 4 1)** walks of length 2s — 2 that have
both start and end points at v. In particular, these walks contain all the possible spanning trees
rooted at v since a spanning tree has s — 1 edges and each edge is traversed twice. Thus, the
lemma follows. O

Remark 8. Lemma 7 is certainly not tight. For the same problem on the integer lattice (each
cell is connected to the four closest ones) the asymptotic growth is poly(s)\®. However the exact
value of A is not yet known. The best known lower and upper bounds for A are 3.980137 and
4.65, respectively (see [2, 12]).

The following proposition bounds the treedepth of a strong product of a graph and a clique.
Given two graphs G and G, the strong product G = G; X Gy is defined as V(G) = V(G1) x
V(G2) and (u1,uz)(v1,v2) € E(G) iff for i = 1,2, either u; = v; or u;v; € E(G;). Denote by K;
the complete graph on t vertices.

Lemma 9. Let G = G1 K K;. Then

td(G) < ttd(Gy) .



Proof. Let T} be a tree of height td(G1) that embeds G in its closure. Note also that K is
contained in the closure of a rooted path of order ¢, P;. Observe that T7 X P, is not a tree, but
it contains a tree 7', in whose closure 77 X P; is contained (see Figure 2). Indeed, T' can be
constructed in the following way: each vertex u € V(T}) is replaced by a path of order ¢ (call
these new vertices u1,...,u;), and if there is an edge uwv € E(T}), such that u is ancestor of v,
then in T, u; is connected by an edge to v (the depth of vy in T is exactly one more than the
depth of u;), see Figure 2. Note that T is a tree and its closure contains G as a subgraph. Since
each vertex of G is replaced by t vertices, td(G) < ttd(G1). O

G K, ( G X K,

Figure 2: Embedding of the strong product.

Observe also that for a geometric graph G,

where t is the maximum number of points inside a cell of the tessellation of length £.
Since we can express the treedepth of G in terms of the treedepth of its cell graph and the
latter one is a subgraph of L'g p» the following proposition will be useful.

Proposition 10. Let L’;’b the grid graph defined as above and suppose that a < b. Then
td(LE ) < O(kaloghb).

Proof. We present an elimination tree for L’; p in a recursive way. First, note that td(L'(j k) =
O(ka), since the treedepth of a graph is always smaller than its order. Let us compute now
the treedepth of L’; »- By removing the central copy of L’; ) in L’; »» We disconnect the original

graph and we get two copies of L’; (b—k) /2" Applying this recursively and using (3), we obtain

td(Ls,) < O(ka) +td(Ly ) gy ) < -+ < O(ka) + - + O(ka) + td(Ly ) = O(kalogh).

logb

O]

The following proposition will be very useful in the proof of Theorem 1, but can be applied
to any sparse geometric graph.



Proposition 11. Let H be a geometric graph of order m such that there are no more than t
points inside each cell of length £ = r//2.
Then, we have

td(H) = O <max {logﬂ,t(log m)3}> .

Proof. Throughout this proof all cells will have length £ = r/4/2. Notice that by Remark 6
the connected components of the cell graph Cp(¢) are in one to one correspondence with the
connected components in H. Thus, we may assume that H is connected. We will show an upper
bound on td(H) by providing an elimination scheme for C'y which then induces an elimination
scheme for H.

Fix a vertex v € V(Cp) corresponding to a cell of the tessellation. For any integer d > 0,
denote by V; the set of vertices in the cell graph, which are at L., distance d in the underlying
grid graph from v (see Figure 3).

Analogously, we define P; to be the set of points of H inside the cells of V.

For the sake of convenience, we define

m

(logm)?

The idea of the proof is to find a separator S of H that contains at most O(K) points. This
separator will split the graph into some smaller subgraphs. Using (3) and applying the same
procedure recursively to the remaining parts, we will get an upper bound on td(H).

Let f be the largest integer for which

f-1 m
D 1Pl < (7)
d=0

Let fi be the largest integer for which fi; < f and [Py, | < K and fy be the smallest integer
for which fo > f and |Py,| < K. Since H contains m points, fo — fi < 2 = (log m)2.

Given a graph G and S C V(G), we will denote by G[S] the subgraph of G induced by S.
We decompose of C into the following subgraphs (see Figure 3):

fi—1 fo—1
Cs=CulVpUVs], Ca=Ch||JVa|l, Co=Cu| |J Va| andCs=Cx| |J Va
d=0 d=f1+1 d>fa+1
and we define accordingly
Ji—1 fa—1
Hs = H[P;,UP;,], Ha=H Upd ., H =H U P;| and Hgp=H U Py
d=0 d=f1+1 d> fa+1

In the case |Pf| < K, we have fi = fo and Cr and Hp, are graphs on zero vertices. Thus,
suppose that this is not the case, and focus on C7.
Since ¢ = r/v/2, by (5) we know that Cy, is a subgraph of at most 4 copies of L2, (see

Figure 3), where a = (logm)? and b = m, since fo — fi < (logm)? and |P;| < m for any d.
By (3) and Proposition 10, we get

td(Cr) < O(4a) + td(Lz’b) =0 ((logm)?) .
Moreover, Hy, C C;, X K;. Hence, by Lemma 9,

td(Hr) = O (t(logm)®) .



Figure 3: Decomposition of C'y

By (3), now applied to H and the separator S = Vy, UV}, we have

td(H) < |S|+ max{td(Ha),td(H.),td(Hp)}
< 2K +max{td(Ha),O (t(logm)?*) ,td(Hp)}, (8)

since |S| < 2K by definition of f; and fs.

We recursively repeat this procedure for the two subgraphs H4 and Hp. By the choice of f
in (7), both subgraphs contain at most m/2 points. Hence, the recursion depth of our procedure
is at most logy m = O(logm). This implies that

td(H) = O (max { K logm, t(logm)®}) = O (max {IOTger,t(log m)3}> .

2.2 Separators and cells

During the rest of the section we will consider a tessellation of length ¢ = r/4.

Given § C S, a set of positive measure, we denote by vol(S) the area of S and by 0§ its
boundary in the euclidean topology. We also use vol(9S) to refer to the length of dS. We only
consider sets S that are finite unions of discs, so that the length of the boundary is well defined.

For any set A C V(H), let .A = {z € &, : minyeadistp(z,v) < 5} € Sy, and notice that
0A = {a:ES : minge 4 distg(x, v) 2}

We will use the fact that for any cell D and for any two elements u,v € D

distg(u,v) < ok 9)

Also, we make use of the following isoperimetric inequality (see [19], Theorem 1.6.1): for
any connected set of positive measure S C R?,

vol(S) > Q(y/vol(S)) . (10)

This inequality can be extended to a nonconnected set S as follows: suppose that S is a
union of disjoint connected sets Si,...,Sp,. Then, for each i = 1,...,m, we have vol(9S;) =
Q(y/vol(S;)), and thus

vol(dS) = Zvol (0S;) Z (v/vol(S;)) = Q(y/vol(S)), (11)



where the last inequality follows from concavity of the square root function, that is for any
x,y > 0, we have /z + \/y > /x +y.

Denote by S,, the interior of S,,. We have the following lemma:

Lemma 12. Let S C S, be a connected set. Then,
vol(8S N S,,) = Q(min{vol(dS), vol(9(S, \ S))}) .

Proof. Consider the complement of S, U = S, \S. Let Uy, ... ,U,, denote the disjoint connected
sets of U.

Let us focus on U; for some i € [m]. Let V; = S, \ U; denote its complement. We will
show that vol(dU; N §n) = Q(min(vol(dl;), vol(0V;))). Since U; and V; are connected sets that
partition S, either oU; N 80n = JU; and we are done. Otherwise, there exist two points  and
y in OU; N OS,, such that OU; = C1 U Csy, where C; is a connected simple curve with endpoints x
and y, C; € 0S,, and Co N IS,, = {x,y}. Let C3 = 39S, \ C1 and notice that dV; = Cy U Cs and
that C; UC3 = 9S,,.

Let W; = U; if vol(Cy) < vol(C3) and W; = V; otherwise. This implies that vol(Ca) >
|z —yll2 = Q(min{vol(C;), vol(Cs)}). Using that vol(0W;) = vol(C2) + min{vol(C;), vol(Cs)}, we
have vol(OW; N §n) = vol(Cq) = Q(min{vol(dl;), vol(OV;)}).

Since each point in dS,, belongs to at most one set U;, there is at most one set U« such that
vol(OU,+) > vol(0V;«). If this is not the case, then we have Vol(aSﬂgn) =y, vol(dl; ﬁ§n) =
Yo, Q(vol(dU;)) = Q(vol(oU)). Otherwise,

vol(S N S,) = vol(AUN S,,) = i vol(aU; N S,) = Y Q(min{vol(h), vol(9V:)})

i=1 i=1

= Q | vol(dVie) + > vol(lh;) | = Q(vol(9S))
i

where the last equality follows from

vol(AVir) + Y vol(3lh;) = vol(S) + Y vol(dU; M S,,) -
i£i* i£i*

O]

The following lemma shows that for any separator S of a geometric graph H, we can find
a large number of cells of length ¢ = r/4, whose points are entirely contained in S (see also
Figure 4, left).

Lemma 13. Let H be a connected geometric graph of order m and S C V(H) be a separator
of H. Fiz a connected component Hy of H\ S and denote by A =V (Hy).

Consider a tessellation with side length £ = r/4. If vol(A) < cn for some ¢ < 1, then there
exists a set of cells Dg of size dg, such that all points inside Dg belong to S and

ds = (7“71 V01(A)> :

Proof. Define B = V(H) \ (S U A), that is, B is the set of vertices of H that are contained
neither in S nor in A.

Observe that for any pair of points v € A and w € B, we have distg(v,w) > r, since v and
w belong to different connected components of H \ S. Let C = 0. A denote the boundary of A.
By definition, all points in C lie at distance exactly r/2 from some point in A. Thus, they lie
at distance at least r/2 from any point in B.



Let Dg be the union of cells that have nonempty intersection with C. Let us point out
that some of these cells may not contain any point of V(H). We will now show that dg =
Q(r~—1y/vol(A)).

By hypothesis of Lemma 13, vol(.A) < ¢n for some constant ¢ < 1, and thus by (10),

vol(C) = vol(0A) = Q(/vol(A)) . (12)

For any cell D € Dg we denote by Cp = CN D, the restriction of C to D. We will show that

the length of Cp is not too large by projecting the elements of Cp onto 0D, in such a way that
the length of Cp does not decrease by too much.

Let p : Cp — 0D the application that sends an element ¢ € Cp C C being at distance r/2

from a point v € A to the intersection of 9D and the segment that joins ¢ and v (see Figure 4,

right). In case where there is more than one point of A at the same distance from ¢, p(c) chooses
one of them arbitrarily.

Sy
oy

LT 1]

7/

C D¢,

Figure 4: Cells of Dg and the projection of Cp.

Note that p is injective, since no two elements of Cp can have the same image: indeed,
suppose that there exist two different ¢, € Cp with corresponding points v,v" € A such that
p(c) = p(¢). Then, the segments cv and ¢/v' would intersect at p(c), and either distg(c,v’) < r/2
or distg(c/,v) < r/2 holds, contradicting the definition of C.

Let us show that the application does not contract Cp too much. Recall that distg(c,v) =

r/2. Since ¢, p(c) € D, by (9) we have distg(c,p(c)) < ===, and therefore distg(p(c),v) > V2L,

22 2v2
by the triangle inequality.
A simple geometric argument shows that
r
vol(p(S)) > \/5_21 vol(S).
3z T

Since p is injective and vol(0D) = 4¢ = r,
vol(Cp) = O(vol(0D)) = O(r) .
Using this upper bound for all cells D € Dg, we obtain

vol(C)
maxpepg VOI(CD)

dg > o (r—l vol(A)) .

Moreover, all points contained in Dg belong to S: by (9), any point u contained in Dg lies
at distance at most r/(2v/2) from some element ¢ € C. However, all points of AU B lie at
distance at least r/2 from all the elements of C. Thus, u ¢ AU B, implying that u € S.

O

10



We finish with some properties of the tessellation when choosing ¢ = r/4.

Lemma 14. Let H be a geometric graph with connected components Hy, ..., H;. Define A; =
V(H;) and consider a tessellation with ¢ = r/4. Then, for any cell D we have the following:

1. if there exists a point v € A; such that v € D, then D C A;.
2. there are at most 24 curves C; = 0A; that intersect the cell.

Proof. For the first part, by (9), for any v € D,

distg(u,v) <

)

N3

and thus u € A;.

For the second part, observe that if C; intersects D, then there must exist a point of v € A;
at distance at most r/2 from some point in D. There are at most 24 cells satisfying this
criterion, namely the ones in the first and second neighborhood of D. Since all points of a cell
belong to the same component (they are all connected), there are at most 24 different curves C;
intersecting D. U

3 Subcritical regime

In this section we compute the treedepth of a random geometric graph with 0 < r < r,, that
is, below the existence of a giant component. By Theorem 10.3 of [21], a.a.s. the order of each
component is at most O(logn). In fact, by looking at Theorem 10.3 of [21], it is easily seen that
with probability at least 1 — o(n~3/2) the order of each component is O(logn).

We will use the following result several times: McDiarmid in [15] proved that for any r =

©(1) and G € G(n,r), a.a.s.
B logn
w(G)=06 <log logn> . (13)

In fact, by looking at the proof of Lemma 5.3 in [15], by choosing (in the notation of the proof
given there) k1 = k1(r) to be sufficiently large and ko = ka(r) to be sufficiently small, we can
also easily see that with probability at least 1 — o(n~/2) we have

Ww(G) =06 (log”) , (14)

loglogn

and by looking at Lemma 4.4 and 5.3 in [15], the same result holds for G(Py,r) as well (in fact,
for Lemma 5.3, either the number of points of G(Py,r) is not in the set {n — Cy/nlogn,n +
C+/nlogn} for C large enough, which happens with probability o(n_l/ 2), or the respective
lower and upper bounds for the number of points can be used in the calculations of Lemma 5.3,
again by choosing ki large enough and ko small enough).

By (2), the order of the largest connected component implies a coarse upper bound, namely

td(G) = O(logn) .

In order to find a better upper bound, more work is needed. First, we need the following simple
lemma, whose proof is included for completeness.

Lemma 15. Let X be a random wvariable that follows a Poisson distribution with parameter X.
Then, for any k > 2\,
Pr(X > k) <2Pr(X =k).

11



Proof.

Pr(X > k) = Y Pr(X=i)= Ze*”,—i

7!

i>k i>k
_ N R a +
B k! E+1  (k+1)(k+2) 7
k i k

< O E) -

k! = k k'1— 2

)\k
< 2e*Aﬁ =2Pr(X = k),

where the last inequality follows from the assumption k£ > 2. ]

Let v = v(r) be a sufficiently large constant. For the sake of convenience, we define

vlogn v2logn
max = ———— and =—.
log logn log logn

From now on, we consider in this section the cell graph Cg(¢) of G € G(Py,r) with £ = r//2
and write simply C¢ for C(¢). Notice that all points inside a cell of C¢ form a clique. Hence,
by (14), by choosing v = v(r) sufficiently large, each cell contains less than Tj,ax points a.a.s.
For this particular tessellation, we call a cell sparse if it contains less than 1" points, and dense
otherwise.

Proposition 16. Let 0 < r < r. and let G € G(Py,r). With probability at least 1 — o(n_l/z),
every connected component H of G contains at most O(Tinax) points in dense cells.

Proof. For any connected component H of G we will show that the probability that the number
of points in dense cells of H is at least 2Tj,ax 1 o(n*3/ 2). Since there are clearly at most n
connected components in G, by taking a union bound over all them, with probability 1—o(n~'/?)
no component will have more than 27;,,x points in dense cells.

Let A; be the number of points in the cell i. Since we are using a Poisson point process of
intensity 1, A; follows a Poisson distribution with parameter A = r2/2. Denote by p = Pr(A; >
T') the probability that cell A; is dense.

By Lemma 15,

(1-0(T™Y)) ‘;;T <6TA>T —Pr(A; =T) <p=Pr(4A; >T) <2Pr(4; =T) < 2¢7 <€A)T (15)

where we have used Stirling’s formula 7! = (1 + O(T~1))v 27T (%)T .
To count the number of points lying in dense cells, we define the following random variable
for each cell i € V(Cq):

t if 7 is dense and has ¢ points inside,
Yi = :
0 otherwise.

Our aim is to show that Yy = Ziev(oH) Y; is at most O(Tiax)-
Notice that the probability that the cell i is sparse is 1 — p, while the probability of having
T + 7 points is
—A —A

: N o \TH o eh e
Pr(4; =T +j)=(1-0(T+/) 1))m (T.;-\j) < ()" —(5),

!
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for any integer j > 0. Using (15) we have
Pr(A; =T +35) < 2p(2) .

These observations lead to the definition of the following independent random variable R; for
each cell i € V(Cg):

0 with probability 1 — 2p,
Ri={ T+ with probability 2p (e)‘)j for any j > 1,
T with probability 2p (1 — e)\)

First of all, observe that R; is a probability distribution. The random variables Y; and
R; have similar distributions. In particular, each variable R; stochastically dominates the
corresponding random variable Y;. Analogously, we define R = ZiGV(CH) R;. Then,

Pr(R > j) = Pr(Y = j), (16)

for any 7 > 0. In particular, this also holds, if j = O(Tax)-

Therefore, it is enough to compute an upper bound for Pr(R > 2T},.x). Clearly, since r < r,
and all connected components are of order O(logn) with probability at least 1 —o(n~3/2), with
the same probability in the cell graph Cg the graph diameter of each component C'y is at most
K logn for some sufficiently large constant K = K (r). For the case where the graph diameter
is bigger than K logn, Pr(R > 2T.y) can be easily bounded by o(n~=3/2). For the case where
it is smaller than K logn, we observe the following: given a cell from Cpz, all points that belong
to H are contained in the box of cells of size (2K logn + 1) x (2K logn + 1) centered on the
first cell. Let 7 > 0 such that (2K logn + 1)? < nlog®n.

Hence we have

(2K logn+1)?
Pr(R > 2Tmax) < o(n™3/%)+ Z > > Pr <ﬂ R; = cl-) , (17)

nlog2n ¢ €S €S
SG( m )Zieslcizszax

where m counts the number of dense cells in the distribution given by the R;, S is the set
of dense cells and ¢; is the number of points inside the dense cell i € S. There are at most
7™ (logn)?™ ways to choose the set S of size m and at most (Tjax)™ < (logn)™ possible values
for the ¢;. ,

Recall that the variables R; are independent and that Pr(R; = T + j) = 2p (%)j for any

j > 1. Therefore,
Pr (ﬂ R; = c-) = ﬁ2 <6A)Ci_T
‘ 1T T ™ - J p T
€S i=1

On the one hand, if m < 2y/logn, using (15),

i (2) <Fl i (2)" <1 ()" <o <oy

=1 =1

(18)
On the other hand, if m = 2+/logn + j for some integer j > 1,

m c;,—T
T2 (5) <@ = e ™= ey
=1

13



Therefore, by splitting the second part of (17) into two sums, we obtain

s
Pr(R > 2Thay) < o(n™3/?) Z ™ (log n)®™(2e*V 21T p)? Viogn
=1

2\/10 n j
(217(10gn) & Z 2n logn) )j
7>1

From the bounds on p in (15), one can derive that n(logn)3p < 1/2, and the infinite sum of
the second term above is bounded from above by one. Thus,

2y/logn
Pr(R > 2Thax) < o(n3/%) 4 <2 log n) (n(log n)*p(2eM 21T + 2)) ¢

= o(n73?) +exp {log logn/2 + 2+/logn (3loglogn + log p + O(log T))} .

Moreover, by (15), we also have p < \2/27 (%‘) , and hence logp < —(1 4 0(1))T'logT <

—+/logn. Thus,
Pr(R > 2Thmax) < 0(n™3/%) + exp {—(1 + 0(1))2logn} = o(n~3/?). (19)

By (16), this also implies that Pr(Y > 2T.x) = o(n~%/2), and by taking a union bound over
all components, this implies that the probability of having a connected component with more
than 27T.x points inside dense cells is o(n_l/ 2). O

Proof of Theorem 1. The lower bound on tw(G) follows easily from (14), which yields

logn
td(G) > tw(G) > w(G)—1=Q ———— ).
(©) 2 tw(6) 2 (@) - 1= (20 )

For the upper bound, we construct an elimination tree for G. By (2) it suffices to bound
from above the treedepth of each connected component. Let H be a connected component of
G.

From Proposition 16, there are at most O(Ty,ax) points in dense cells of H. We temporarily
remove all these points, and add them at the end. Let H’ be the subgraph of H that remains
after removing the points in the dense cells.

Observe that now, by definition of sparse, every cell of C'y: contains at most 7" points.
Denoting by m = |V(H’)|, by Proposition 11 we have

td(H') = O (max {b;n,T(log m)3}> .

Since, with probability at least 1 — o(n=3/2), m = O(logn), we have that for every component
H of G, td(H') = O(Timax) with probability at least 1 — o(n~1/2).

Recall that adding a new point to H can increase the treedepth by at most one unit. Thus,
td(H) < td(H') + O(Tmax) = O(Tmax), and therefore, using (1), we have

td(G) = O <1°g”)

loglogn

with probability at least 1 — o(n~1/2). O
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4 Supercritical regime

Fix now r = r(n) > ¢, for some sufficiently large constant c. Recall that for any subset
S C S, = [0,/n]? of positive measure, we denote by vol(S) the area of S. We need the following
standard lemma (which is a simple application of Chernoff bounds for Poisson variables, see for
example Theorem A.1.15 of [1]):

Lemma 17. For any S C S,, and any 6 > 0, let |S| denote the number of points inside S.
Then, we have:

2
1. With probability at least 1 — (e®(1 4 §)~(1+3))vol(S) > 1 e_%""l(s), |S| < (14 0) vol(S).

2
2. With probability at least 1 — e_%"d(s), |S] > (1 —6)vol(S).
We will use this lemma to show that there exist separating sets with few points, and conse-
quently, give an upper bound on td(G).

Proposition 18. Let ¢ be a sufficiently large constant, let r = r(n) > ¢ and let G € G(Py,r).
With probability 1 — e~ V™ td(GQ) < O(ry/n).

Proof. Consider the tessellation of S, into square cells of side length £ = r. Denote by Dy; ;
the j-th cell in the i-th row, where 1 < i, < a=+/n/r.

Define
a a
X{ = (U D(a/2,i)) U (U D(i,a/2)) ;
=1 =1

and consider the set Y;! C V(G), containing the points inside X{. Observe that Y;! is a separator,
since ¢ = r, and it splits the graph into 4 components (some of them might be empty), G3, G3,
G3 and Gj.
By (3), we have .
< |y D}
t(G) < Y]] + max {td(G}))

We then define analogously the sets Xg, for all Gé, and using (3), we continue iteratively.
Let ¢ denote the step where all sets X; have size one (see Figure 5).

X1 X}

16
X3

Figure 5: Construction of the sets Xf .
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The treedepth of G will be bounded from above by the maximum number of points inside
any of the possible sets of cells
Xijijo.je = X{d U X§2 U---u tht7

where 1 < j; < 4"’1.'
Observe that |X7| < a27(=2) . The sets X j,.j,
but they all have the same size

]1]2 ]t‘ Z|XJZ|<ZCL2 i-2) <4a

Let Y}, j,...j, denote the set of points in X, .. g Thus, |Y},j,...j,| is a random variable following
a Poisson distribution with mean at most 4ar?.
By part 1 of Lemma 17 applied with § = 1,

= X' UXPU---UXJ are not disjoint,

Pr (|Y}1j2--~jt| > 8&7"2) < 6—4ar2/3 _ e—Q(T\/’E«) .

Moreover, there are at most
H4Z 1 O(t2

sets of the form Xj j,. j,. Observe also that, by construction, ¢t = O(loga) = O(logn).
Now, by a union bound over all sets,

PI‘ (3 jl,jQ, ce ,jt : ’EljZ---jt’ > 80,7“2) S 60(10g2 n)—ﬂ(r\/ﬁ) = eiﬂ(r\/ﬁ) .
Thus, we have that the treedepth of G is at most

td(G) < 8ar? = O(rv/n)

with probability at least 1 — e~ 2"V finishing the proof.
O

For a lower bound on tw(G), we need the following link between the treewidth of a graph
and the existence of a vertex separator with special properties. A vertex partition V' = (A, S, B)
is a balanced k-partition if |S| = k + 1, S separates A and B, and § (n —k — 1) < |A[,|B| <
% (n — k —1). In this case, S is also called a balanced separator. The following result connecting

balanced partitions and treewidth is due to Kloks [13].

Lemma 19 ([13]). Let G be a graph on n vertices, and suppose that tw(G) < k for some
n >k —4. Then G has a balanced k-partition.

From now on and until the end of the section, we consider the tessellation of S, into square
cells of side length ¢ = r/4.

Recall that for any set A C V(H), we define A = {z € S,, : minyea distg(z,v) < r/2}.
Observe that in a geometric graph, no direct relation exists between the size of A and the
volume of A. In the case of a random geometric graph and for a set A of linear size, however,
vol(.A) can be bounded from below using the size of A, as the following lemma shows.

Lemma 20. Let ¢ be a sufficiently large constant and let r = r(n) > c. Let G € G(P1,7) and
let a € (0,1). Then, with probability 1 — e=*™) for any set A C V(G) with |A| > an, there
exists c(a) > 0, such that

vol(A) > c(a)n .
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Proof. Set m = m(«a) to be the smallest constant such that mA is integer,

< m + " <2 andm > 4e
Im!\m—-1" (m—-1)2) ~ 8 -

which exists for any « > 0, since the left-hand side of the first condition tends to zero, when
m — +00.

Recall that the number of points inside a cell D follows a Poisson distribution with mean
A = r2/16. Suppose that D contains ¢ > 0 points. Define then Zp to be the following random

variable:
gt ift=mA,
P~ 0  otherwise,

and let Z =) Zp be the sum of these random variables over all cells of the tessellation.
We may consider r > 4, since by hypothesis r > ¢, for some ¢ large enough. This implies
that A > 1. By Stirling bounds and by calculating the derivative one can see that for any m > 1

the function f(\) = e_)‘()‘mL;)! is decreasing for A € [1,00), and thus

)\)\m)\ 671
Pr(Zp =mA) =e” <
2(Zp =mA) =€ TN S Tl
Also
At AmAH(—1) A 1
Pr(Zp =m\+i)=e *—— = : < —Pr(Zp=mi+(i—1
1(Zp=mA+i)=e o D) ma i S m r(Zp =mA+(i—1)),

for any ¢ > 1. Hence,

el et/ m2A m a\
E(Zp)= ) tPr(Zp=10< 5D (mA+im™ < oy (m—l * (m—1)2) =
t>mA 120

where the last inequality follows from the definition of m. Since A = r2/16 and there are 16n /1>

cells in the tessellation, we have
an

E(Z) <=

By Hoeffding bounds for unbounded random variables (the precise version we use here is Theo-
rem 1 of [3], applied with Xp =ep = Zp, and thus S =T = Z, Y = Po(\), mpy =m =E (Zp)
for any k, and b = m\ — 1, so that m(b) = m and the measure ™ is exactly our probability
distribution of Zp, and x = 2E (Z))

Pr(Z > 2E(2)) < inf e MFAE (ehz) < e EDE () |
<z

Now, observe that
)\m)\
GQE(ZD) > e2mA PI‘(ZD = m)\) > e(2m—1))\m

and

mA i
E (e?P) = Pr(Zp :0)+ZemA+iPr(ZD — mA+i) < 1+ em=DA A Z (3) .

i>0 T >0

Since by assumption on m, e/m < 1/4, we have

E(eZD) <1+
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The random variables Zp are mutually independent. Thus,

16n

A\mA 2
2E(Z) _ 2E(Zp) > (2m—1)A
‘ [[e = <<mA>!e )

16n

3 AmA 2
=) < (3 ™)

and

and therefore

16n

3 2
Pr(Z > 2B (Z)) < e VR () < <26_m> — O,

Thus, with probability at least 1 — e~ there are at most an/2 points of G contained in cells
with at least mA points, and thus with the same probability there are at least an/2 points of
A contained in cells with less than mA points.

Therefore, with this probability, there are at least

an/2  8an
m\  mr?

different cells D that contain at least one point from A. By part 1 of Lemma 14, D C A, and

vol(A) > % -vol(D) = ¢(a)n

with probability at least 1 — e (%), ]
Using the previous lemmata, we are able to provide a lower bound for tw(G).

Theorem 21. Let ¢ be a sufficiently large constant, and let r = r(n) > c¢. Let also G € G(Py,T).
Then, tw(G) = Q(ry/n) with probability at least 1 — e~ Hrvn),

Before proving the theorem we sketch its proof. We are going to show that any balanced
separator S of the giant component contains many points. Observe that if vol(.S) is large then
the probability of containing few points is exponentially small. We show that in general, any
such separator has a large volume. Here we strongly use the condition that S is balanced.
The conclusion will then follow by taking a union bound over all possible sets of cells that are
candidates for a separator.

Proof. Fix v > 0 to be a sufficiently small constant. Let H be the largest component of G.
Note that for r > ¢ with ¢ sufficiently large, by Theorem 3.3 of [20],

[V(H)| =(n) (20)
with probability at least 1 — e~("), We will for now assume deterministically that |V (H)| =
Q(n) holds and only in the end add the probability e=*") that |V (H)| = o(n) holds. By
choosing c¢ sufficiently large, to simplify calculations, we may even assume |V (H)| > 0.9n. We
will show that there exists no balanced separator of size yry/n for H. Then, by Lemma 19, this
implies that tw(H) > yry/n = Q(ry/n), and by (1), tw(G) > tw(H) = Q(ry/n).

For any balanced separator S C V(H) of H, denote by ¢ be the number of connected
components of the graph induced by S and let S, ..., .S denote the subsets inducing connected
components within H. We may assume that S is minimal, and hence each component of S
contains at least one point of H. Therefore we can assume that ¢ < yry/n, as otherwise there
is nothing to prove. We may assume that r < 24/n, since for r = 2,/n, G(Py,r) is already the
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complete graph. If S is a balanced separator of size at most yry/n < 2yn, there exist two not
necessarily connected sets A, B C V(H) of size %W(Hﬂ < |A|,|B] < MH/(H)L such
that H \ S contains no edges from A to B.

Since 7 is a sufficiently small constant and |V (H)| > 0.9n, |A|,|B| > n/4. By Lemma 20,
with probability at least 1 — =" for all balanced separators S, vol(A) and vol(B) are linear
in n. In particular, if 5 = ¢(1/4) is the constant provided by Lemma 20 for a = 1/4, we have

pn < vol(A) < (1 —p)n (21)

with probability at least 1 — e~ (™).

Since vol(A) < (1 — B)n, we can apply Lemma 13 to the separator S and each connected
component of A separately. Thus, once again by concavity of the square root function, with
probability at least 1 — e~ for all balanced separator S, there exist some constant n>0
and a set of cells Dg of size

dg =Q (ril VOl(A)) > nn ,
,
such that all points inside Dg belong to S. Recall that some cells in Dg may not contain any
point. We will assume this deterministically for now and add the failure probability at the very
end.

Now it suffices to show that for any balanced separator S and for any possible set of cells
Dg of size at least ny/n/r, there will be with high probability at least yry/n points inside such
a set Dg. Denote by Ypg the random variable counting the number of points inside such a Dg.
Since vol(Dg) = I—ng, by part 2 of Lemma 17 applied with § = 1/2, we obtain

2 2
Pr <YDS < ;ds) < em1mls, (22)

We will now show that with high probability no balanced separator that occupies more than
nyv/n/r cells contains less than g—;dg points. We will do it by combining the inequality in (22)
with a union bound over all separators S together with the corresponding sets of cells Dg of
size dg > ny/n/r.

By definition of the cell graph, Dg has at most ¢ connected components (some connected
components of the graph induced by S can merge in Dg). We will assume that Dg has exactly
t connected components denoted by Dg,, ..., Dg, and with sizes dg,, ..., ds,.

Since r is a large constant, we may assume that r» > 4. Then, by setting a = b = 4\/n/r <
Vn, k=4and s = ds; in Lemma 7, we conclude that there are at most ntoi(ds, ++ds,) < ptedds
ways to construct possible sets of cells Dg corresponding to all balanced separators S with ¢
components.

We have

Pr(3S : S balanced, ds > nv/n/r,|S| < yry/n) < Z Z Z ntedds p—r7ds/128
ds>ny/n/rt<yry/nds; ++ds,=dg
(23)

Using ¢ nonnegative numbers, there are at most (dg)! < n! ways to add up to dg and thus,
the right hand side of (23) can be bounded from above by

Z Z n2t€9d56—r2ds/128 ) (24)

dg>ny/n/rt<yry/n
Denote by Cpr, by Ca and by Cp the set of cells that contain at least one point of H, A
and B, respectively. Recall that fn < vol(A), vol(B) < (1 — 8)n. By Lemma 20, there exists an
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e > 0 such that |C4|,|Cp| > en/2r? with probability at least 1 — e~ Since C'4 and Cp are
disjoint, and C4UCp C Cg\ Dg, we have |Cy\ Dg| > en/r? with probability at least 1—e~ (™).
Once more, we will assume this deterministically for now and add the failure probability at the
very end. Let v be a small constant.

Our aim for the rest of the proof is to show that each summand can be bounded from above
by an exponentially small term. We will do it by splitting the proof into 5 cases:

e Case 1, r > 32y/logn: Observe that t < dg, since ds, > 1 by definition. Therefore,

n2t€9dse—r2ds/128 < n2d569dse—r2ds/128 _ 6(210gn+0(1)—r2/128)ds < e—r2dg/256 ’

since r > 32+/log n.

e Case 2, ¢ <1 < 32y/logn and ds = w(y/n(logn)>?/r): Note that for ¢ sufficiently large,
since ¢ < 7, edds < ¢r?ds/256  Note also that e’ 9s > e“’(’"gm\/ﬁ(l"g”)sm) > e‘”(\/ﬁ(bg”)sm).
Thus, since t < vyry/n, we have n2t = e2tlogn < e2yrV/nlogn < eS4rvnllogn)®/? _ co(r?ds)
and hence,

)
n2t69dse—r2dg/128 < e—r2ds/256_

We will therefore assume dg = O(y/n(logn)3/?/r) from now on.

e Case 3, c <r < 32ylogn and t < ”lgé/f . If v is small enough, we have n? < e2/"Vn <
er?ds/512 If p g sufficiently large, we have e%%s < erids /512, Thus, in such case the
—r2dg /256

summand in (24) is bounded from above by e
e Case 4, c < r < 32/logn, t > 'I;g/nﬁ and at least a constant fraction of the cells in
Vnlogn (call

vr3

Cp \ Dg is contained in components (of the cell graph) of order at most
them small components):

Since |Cy \ Ds| > en/r?, there exists a constant €’ < ¢ such that ¢'n/r? cells of Cy \ Ds
are in small components. As in the concavity argument of (11), dg is minimized if there
are at most % components of order %. By part 2 of Lemma 14, there exist at
most 24 different connected components A; of H, such that d.A; intersects a given cell.
Hence, by applying the isoperimetric inequality given in (10) over each component of S

that touches the boundary of a small component of H,

de > 1 n*/*\/logn a’r\/ﬁ_Q n3/4
5= 24 N logn ri/2\/logn |

The remaining calculations are as in Case 2.

e Case 5, c < r < 32y/logn, t > YV and all but a o(1) fraction of cells in Cy \ Dg is

logn
contained in components with at least % cells (call them large components):

In this case, we focus only on the (sub)separator S' C S that separates these large
components. Let Dg1 be the cells corresponding to S! (in the sense of Lemma 13), of size
dg1. If there is one large component such that its intersection with 9S,, is larger than
%VOI(@Sn), then we modify S! and remove the cells separating this large component from
Dg1. By definition, there can be only one component satisfying the previous condition.
Denote by Hy such a component (if it exists). Since S is a balanced separator of size at
most 2yn, H \ (S U Hp) has at least n/4 vertices in large connected components.

Now, if we show that with high probability there are many points in S!, then the same
holds for S. Note that since |Cy \ Ds| > en/r? and S! separates at least a constant
fraction of the vertices of H, by Lemma 13 we still have dg1 = Q(y/n/r).
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Since we use a tessellation with side length ¢ = r/4, there are at most 16n/r? cells. Hence,
there are at most 7 < 16”“{ large components in Cy \ Dg. Observe that although the
number of large components is small, there could be many connected components in Dg1
which could cause some problems in bounding (24). In order to deal with this problem
we consider a tessellation of R? and extend the random geometric graph from S, to R2.
Consider the set of cells Dg2 C R? of size dg2 defined as follows: a cell D belongs to Dg2 if
either D € Dg1, or D € R?\ §n and intersects a large connected component of Cp \ Dg1.
One can imagine Dg2 to be the extension of Dg1 to the tessellation of R2.

Next, we will delete some cells from Dg2 to create Dgs in order to reduce the number of
connected components. Let Hy,. .., H, be the large connected components of H\ (SUH)).
For every H;, let C'y, denote its corresponding cells. We define its fill-up C}I as follows:
a cell D belongs to 1, if either D € Cy; or D belongs to a finite connected component of
R?\ Cp,. We construct Dgs by removing the cells from Dg: that intersect one of the C .
Since there is just one infinite connected component in R? \ Cp,, CH does not contam
holes. Hence, Dgs has at most p < 7 connected components.

Denote by Dp,,...Dg, the connected pieces of Dgs corresponding to the boundaries
of C}Il,...,C}{p, and let dp,,...dg, be their respective sizes. By Lemma 13, dy, =
Q(r~1vol(H;)). Once more by part 2 of Lemma 14, there exist at most 24 different
connected components of Cpr \ Dgs whose boundary intersects a given cell, and therefore
we have dgs = Q(Y_]_; dp,). Since Y 7_; vol(H;) > min{vol(A),vol(B)} = Q(n), by (10)
and by concavity of the square root function, we have dgs = Q(v/n/r).

Now, consider Dga := Dgs NS, of size dgs. Note that Dga C Dg. Since any large
connected component H; of H \ (S U Hy) satisfies vol(9Cy, N 9S,) < $vol(9S,,), by
Lemma 12,

vol(AC, N Sy) = Q(vol(dCY;)),

and therefore dga = Q(dgs).

By our argument we reduced the number of animals to consider from ¢ to at most 7.
Their sizes are now at most dgs, and at most dga of them contain points. Thus, each
summand of (24) is bounded by n?7e%¥ss e~ ds4 /128 Gince 7 < % and dg, = Q(/n/r),
and dg, = (ds,), similar arguments as in the Case 3 show that the summand is bounded
from above by e~ (V%) if 1 is at least a large constant.

We showed that each term of (24) can be bounded from above by min{e~2(*ds) =2rvm)} —
e~ V) if dg (and also dg1, dgz, dgs, dga as defined in Case 5) are of order Q(y/n/r). Since all
probabilities which we assumed deterministically throughout the proof hold with probability at
least 1 — e~ (") we have together with (20),

. VR o) Vi) — o~ VR)
Pr <E|S. S balanced, | S| < 32) < "4+ Z Z Qrvn) — = Urvn)
dg=ny/n/r t<yry/n
Having chosen ~ sufficiently small such that v < /32, the theorem follows. O
Proof of Theorem 2. Theorem 2 follows directly by recalling that tw(G) < td(G) and combining

Proposition 18 with Theorem 21. ]

5 Conclusion

Given a random geometric graph G € G(n,r) we showed that if 0 < r < r., tw(G) = @(log’ign)

and that if r > ¢, for some sufficiently large ¢, tw(G) = O(ry/n). We conjecture that the
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latter can be extended to the whole supercritical regime, that is, we conjecture that for every
r > r., tw(G) = O(ry/n). This is a natural thing to expect since r. is already the threshold
radius for the existence of a giant component. The conjecture is equivalent to the existence of
a sharp threshold width of order o(1) at » = r.. We remark that the general result on sharp
thresholds of monotone properties of [8] implies only a sharp threshold width of order log3/ 4n.
Our methods, however, require the knowledge of the exact threshold value r. of the appearance
of the giant component in a random geometric graph, which at the moment is not known.
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