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Abstract

We give asymptotically exact values for the treewidth tw(G) of a random geometric graph
G ∈ G(n, r) in [0,

√
n]2. More precisely, let rc denote the threshold radius for the appearance

of the giant component in G(n, r). We then show that for any constant 0 < r < rc,
tw(G) = Θ( logn

log logn ), and for c being sufficiently large, and r = r(n) ≥ c, tw(G) = Θ(r
√
n).

Our proofs show that for the corresponding values of r the same asymptotic bounds also
hold for the pathwidth and the treedepth of a random geometric graph.
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1 Introduction

Let V be a set of n points in the square Sn = [0,
√
n]2 and r = r(n) a nonnegative real number.

This choice of the square is only for convenience; by suitable scaling we could have chosen
the square [0, 1]2 and all the results would be still valid. We will identify each point with its
position, that is, v ∈ V refers also to the geometrical position of v in Sn.

The geometric graph G of V with radius r is the graph constructed by connecting two points
of V if their Euclidean distance in Sn is smaller than r. For any two points u, v ∈ Sn we will
denote by distE(u, v) their Euclidean distance and by distG(u, v) their distance in the graph G.

Then we define G(n, r) as the probability space of the geometric graphs of order n with
radius r. A graph G chosen uniformly at random from G(n, r) will be called a random geometric
graph and will be denoted by G ∈ G(n, r). Note that with probability one, no two vertices of
G ∈ G(n, r) are placed in the same position.

Starting with the seminal paper of Gilbert [7], random geometric graphs have in recent
decades received a lot of attention as a model for large communication networks such as sensor
networks. Network agents are represented by the vertices of the graph, and direct connectivity

∗This research is partially supported by the Catalan Research Council under project 2009SGR1387. The
first author is partially supported by the ICT Program of the European Union under contract number 215270
(FRONTS). The second author wants to thank the FPU grant from the Ministerio de Educación de España. An
extended abstract of this paper appeared in [16].
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is represented by edges. For applications of random geometric graphs, we refer to Chapter 3
of [10], and for a survey of many theoretical results, we refer to Penrose’s monograph [21].

All our stated results are asymptotic as n→∞. We use the usual notation a.a.s. to denote
asymptotically almost surely, i.e. with probability 1− o(1). It is well known that the property
of the existence of a giant component of order Θ(n) undergoes a sharp threshold in G(n, r) (see
e.g. [8]), this is, there exists a constant value rc such that for any ε > 0, a.a.s. the largest
component of G ∈ G(n, rc − ε) is of order O(log n), whereas in G ∈ G(n, rc + ε), a single
component of order Θ(n) is present, while the others have order O(log n) (see [21, Chapter 10]).
The exact value of rc is not yet determined, but is known that c− ≤ rc ≤ c+, where c− ≈ 0.834
and c+ ≈ 1.836 (see [21], p.189). Moreover, simulation studies suggest that the exact value of
rc ≈ 1.2 (see again [21], p.189).

Since random geometric graphs have been heavily used for modeling communication net-
works, it is natural to analyze the expected complexity of different algorithms applied to this
class. Courcelle’s Theorem [4] states that any problem that can be expressed in monadic sec-
ond order logic, can be solved in linear time for the class of graphs with bounded treewidth.
This motivates the study of this parameter and other tree-like parameters on random geometric
graphs. In this paper, we study the behavior of the treewidth and the treedepth on random
geometric graphs.

The treewidth was introduced independently by Halin in [9] and by Robertson and Seymour
in [25].

For a graph G = (V,E) on n vertices, we call (T,W) a tree decomposition of G, where W is
a set of vertex subsets W1, . . . ,Ws ⊆ V , called bags, and T is a forest with vertices in W, such
that

1.
⋃s
i=1Wi = V .

2. For any e = uv ∈ E there exists a set Wi ∈ W such that u, v ∈Wi.

3. For any v ∈ V , the subgraph induced by the Wi 3 v is connected as a subgraph of T .

The width of a tree-decomposition is w(T,W) = max
1≤i≤s

|Wi| − 1, and the treewidth of a graph G

can be defined as
tw(G) = min

(T,W)
w(T,W).

Observe that if G is a graph with connected components H1, . . . ,Hm, then

tw(G) = max
1≤i≤m

tw(Hi) . (1)

The concept of treedepth has been introduced under different names in the literature. In
this paper we follow the definition given by Nešetřil and Ossona de Mendez as a tree-like
parameter in the scope of homomorphism theory, where it provides an alternative definition of
bounded expansion classes [18]. For the sake of completeness, we note that the treedepth is
also equivalent to the height of an elimination tree (used for instance in the parallel Cholesky
decomposition [23]). Furthermore, analogous definitions can be found using the terminology of
rank function [17], vertex ranking number (or ordered coloring) [6] or weak coloring number [11].

We now give the precise definition of treedepth. Let T be a rooted tree. The height of T is
defined as the number of vertices of the longest rooted path. The closure of T is the graph that
has the same set of vertices and a pair of vertices is connected by an edge if one is an ancestor
of the other in T . We say that the tree T is an elimination tree of a connected graph G if G is
a subgraph of the closure of T . The treedepth of a connected graph G, td(G), is defined to be
the minimum height of an elimination tree of G.
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The definition of treedepth can also be extended to nonconnected graphs. If G is a graph
with connected components H1, . . . ,Hm,

td(G) = max
1≤i≤m

td(Hi) . (2)

Hence, if S ⊂ V (G) separates G into two subsets A and B, we have

td(G) ≤ |S|+ max{td(A), td(B)} . (3)

Observe that if H is a subgraph of G, then

td(H) ≤ td(G) and tw(H) ≤ tw(G) . (4)

Both parameters are closely connected: while the treewidth of a graph G is a parameter
that measures the similarity between G and the class of trees in general, the treedepth of G
measures how close G is to a star. In other words, the treedepth also takes into account the
diameter of the tree we are comparing the graph with. The two parameters are related by the
following inequalities:

tw(G) ≤ td(G) ≤ (tw(G) + 1) log2 n,

both bounds being sharp (see [18]). Note also that tw(G) ≥ ω(G)− 1, where ω(G) denotes the
size of the largest clique in G.

Results of the paper. In this paper we study the values of tw(G) and td(G) of a random
geometric graph G ∈ G(n, r) for different values of r = r(n). In particular, we prove the following
two main theorems:

Theorem 1. Let 0 < r < rc and let G ∈ G(n, r). Then, a.a.s., tw(G) = Θ( logn
log logn), and also

a.a.s., td(G) = Θ( logn
log logn).

Theorem 2. Let c be a sufficiently large constant. Let r = r(n) ≥ c and G ∈ G(n, r), A.a.s.,
tw(G) = Θ(r

√
n), and also a.a.s., td(G) = Θ(r

√
n).

Remark 3. For G ∈ G(n, r) with r constant, but r ≥ c, by the results of [5], many problems
such as Steiner Tree, Feedback Vertex Set, Connected Vertex Cover can be solved
in time O(poly(n)3

√
n), while others like Connected Dominating Set, Connected Feed-

back Vertex Set, Min Cycle Cover, Longest Path, Longest Cycle, Graph Metric
Travelling Salesman Problem can be solved in time O(poly(n)4

√
n).

Remark 4. Other width parameters that are sandwiched between the treewidth and the treedepth
clearly then also have the same asymptotic behavior in G(n, r). For instance, the pathwidth of
a graph, introduced by Robertson and Seymour [24], measures the similarity between a graph
and a path. Since the pathwidth is well known to be bounded from below by the treewidth and
bounded from above by the treedepth (see Theorem 5.3 and Theorem 5.11 of [26]), the former
theorems imply that for those values of r = r(n) the pathwidth of the graph is of the same order.

Remark 5. Whereas intuitively it might be clear that around the threshold of the existence of a
giant component there should be a jump for parameters like treewidth or treedepth in G(n, r), the
orders of magnitude of these parameters are not so obvious (for us). Moreover, we point out that
there are differences between G(n, r) and G(n, p): it is known that in the Erdős-Rényi random
graph model G(n, p), as soon as the giant component appears, the graph has linear treewidth
(see [14]). In contrast to this, Theorem 2 shows that a random geometric graph with a linear
number of edges containing a giant component only has treewidth Θ(

√
n). This different behavior

of the two models can be explained by their different expansion properties and the connection
between balanced separators and treewidth (see Lemma 19 below). Classical random graphs have
very good expansion properties, and thus it is difficult to find small separators of large sets of
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vertices. The geometric properties of the model G(n, r) imply the lack of large expanders. For
this reason, in the latter case one can construct a tree decomposition with smaller bags. On the
other hand, in the subcritical regime (with a linear number of edges, but before the existence of
a giant component) the treedepth of G(n, p) is Θ(log log n) (see [22]), whereas by Theorem 1,
for random geometric graphs it is already Θ( logn

log logn). (In fact, a lower bound of this order is
very easy, since the largest clique is of that order, and an upper bound of O(log n) is also easy,
since O(log n) is an upper bound for the size of the largest component). Furthermore, in this
range, in classical random graphs the treewidth is bounded by a constant (see [22]), whereas our
theorems show that in G(n, r) both treewidth and treedepth are asymptotically of the same order
for a wide range of parameters r. The fact that for random geometric graphs the treedepth and
treewidth are always asymptotically of the same order implies that G(n, r) is more similar to a
star–shaped tree than to a path–shaped tree, which in general is not true for random graphs.

Poissonization. In order to simplify calculations, we will use the well-known idea of Pois-
sonization (see [21, Section 1.7]): let V be a set of points obtained as a homogeneous Poisson
point process G(P1, r) of intensity 1 in Sn. In other words, V consists of N points in the square
Sn chosen independently and uniformly at random, where N is a Poisson random variable of
mean n. Exactly as in G(n, r), two points u, v ∈ V are connected by an edge if their Euclidean
distance in Sn is at most r. The main advantage of the Poisson point process is that the number
of points of V that lie in any region A ⊆ Sn of area a has a Poisson distribution with mean a;
and the number of points of V in disjoint regions of Sn are independently distributed. Moreover,
by conditioning G(P1, r) upon the event N = n, we recover the original distribution of G(n, r).
Therefore, since Pr(N = n) = Θ(1/

√
n), any event holding in G(P1, r) with probability at least

1 − o(fn) must hold in G(n, r) with probability at least 1 − o(fn
√
n). In particular, an event

holding with probability 1 − o(n−1/2) in G(P1, r) holds a.a.s. in G(n, r). We make use of this
property throughout the article, and perform the proofs of Theorem 1 and Theorem 2 for a
graph G ∈ G(P1, r).

The paper is organized as follows. In Section 2 we define the cell graph of a geometric graph
and give some properties of it. The proof of Theorem 1 is presented in Section 3. Whereas the
lower bound follows from a standard argument using the clique number of G(n, r), the proof of
the upper bound is more involved. In Section 4 we continue by proving Theorem 2. Finally, in
Section 5 we conclude by mentioning some open problems.

2 Properties of Deterministic Geometric Graphs

2.1 The cell graph of a geometric graph

For any constant ` > 0, we tessellate Sn into squares of sidelength ` called cells. For the sake of
simplicity of the presentation, we assume that

√
n/` is an integer for the values of ` considered

in this paper. We use this tessellation to construct the cell graph CG(`) of G: each nonempty
cell will be represented by a vertex and two different vertices of CG(`) will be joined if there
exist two points of G in the corresponding cells that share an edge (see Figure 1, where the
tessellation is omitted for clarity).

From now on, unless otherwise stated, we will call points the vertices of the geometric graph
G and use the word vertex for the cells of CG(`). The cell-graph CG(`) simplifies the original
geometric graph G while preserving the same structure. For any subgraph H of G we will
denote its cell graph by CH(`).

Remark 6. Notice that CH(`) is always a subgraph of CG(`). Observe that, for any ` ≤ r/
√

2,
each nonempty cell contains points from exactly one connected component of G, since all the
points inside a cell are connected. Thus, if ` ≤ r/

√
2 there exists a natural bijection between the

connected components of G and the connected components of CG(`).
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(a) Random geometric graph (b) Cell-graph

Figure 1: A random geometric graph and its corresponding cell graph

We need another auxiliary graph, the grid graph Lka,b, defined as follows: its vertex set is

V (Lka,b) = {(i, j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b} , and (i, j)(i′, j′) ∈ E(Lka,b) if and only if (i, j) 6= (i′, j′)
and max{|i − i′|, |j − j′|} ≤ k. Note that by construction, for a geometric graph G in Sn with
radius r we have the following relation (as subgraphs):

CG(`) ⊆ Ldr/`e√
n/`,
√
n/`

. (5)

The following lemma bounds the maximal number of different connected subgraphs of a
given size in Lka,b.

Lemma 7. The number of connected subgraphs of size s in Lka,b is at most O(ab(2k + 1)4s).

Proof. A connected subgraph is determined by a root v and any of its spanning trees, rooted
at v. Observe that there are ab many ways to choose v ∈ V (Lka,b). Moreover, the degree of a

vertex in Lka,b is at most (2k+1)2, since for any cell (i, j) there are at most (2k+1)2 cells (i′, j′)
such that max{|i− i′|, |j − j′|} ≤ k.

One can construct at most ((2k + 1)2)2s−3 ≤ (2k + 1)4s walks of length 2s − 2 that have
both start and end points at v. In particular, these walks contain all the possible spanning trees
rooted at v since a spanning tree has s − 1 edges and each edge is traversed twice. Thus, the
lemma follows.

Remark 8. Lemma 7 is certainly not tight. For the same problem on the integer lattice (each
cell is connected to the four closest ones) the asymptotic growth is poly(s)λs. However the exact
value of λ is not yet known. The best known lower and upper bounds for λ are 3.980137 and
4.65, respectively (see [2, 12]).

The following proposition bounds the treedepth of a strong product of a graph and a clique.
Given two graphs G1 and G2, the strong product G = G1 �G2 is defined as V (G) = V (G1)×
V (G2) and (u1, u2)(v1, v2) ∈ E(G) iff for i = 1, 2, either ui = vi or uivi ∈ E(Gi). Denote by Kt

the complete graph on t vertices.

Lemma 9. Let G = G1 �Kt. Then

td(G) ≤ t td(G1) .
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Proof. Let T1 be a tree of height td(G1) that embeds G1 in its closure. Note also that Kt is
contained in the closure of a rooted path of order t, Pt. Observe that T1 � Pt is not a tree, but
it contains a tree T , in whose closure T1 � Pt is contained (see Figure 2). Indeed, T can be
constructed in the following way: each vertex u ∈ V (T1) is replaced by a path of order t (call
these new vertices u1, . . . , ut), and if there is an edge uv ∈ E(T1), such that u is ancestor of v,
then in T , ut is connected by an edge to v1 (the depth of v1 in T is exactly one more than the
depth of ut), see Figure 2. Note that T is a tree and its closure contains G as a subgraph. Since
each vertex of G1 is replaced by t vertices, td(G) ≤ t td(G1).

Figure 2: Embedding of the strong product.

Observe also that for a geometric graph G,

G ⊆ CG(`) �Kt , (6)

where t is the maximum number of points inside a cell of the tessellation of length `.
Since we can express the treedepth of G in terms of the treedepth of its cell graph and the

latter one is a subgraph of Lka,b, the following proposition will be useful.

Proposition 10. Let Lka,b the grid graph defined as above and suppose that a ≤ b. Then

td(Lka,b) ≤ O(ka log b).

Proof. We present an elimination tree for Lka,b in a recursive way. First, note that td(Lka,k) =
O(ka), since the treedepth of a graph is always smaller than its order. Let us compute now
the treedepth of Lka,b. By removing the central copy of Lka,k in Lka,b, we disconnect the original

graph and we get two copies of Lka,(b−k)/2. Applying this recursively and using (3), we obtain

td(Lka,b) ≤ O(ka) + td(Lka,(b−k)/2) ≤ · · · ≤ O(ka) + · · ·+O(ka)︸ ︷︷ ︸
log b

+ td(Lka,k) = O(ka log b).

The following proposition will be very useful in the proof of Theorem 1, but can be applied
to any sparse geometric graph.
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Proposition 11. Let H be a geometric graph of order m such that there are no more than t
points inside each cell of length ` = r/

√
2.

Then, we have

td(H) = O

(
max

{
m

logm
, t(logm)3

})
.

Proof. Throughout this proof all cells will have length ` = r/
√

2. Notice that by Remark 6
the connected components of the cell graph CH(`) are in one to one correspondence with the
connected components in H. Thus, we may assume that H is connected. We will show an upper
bound on td(H) by providing an elimination scheme for CH which then induces an elimination
scheme for H.

Fix a vertex v ∈ V (CH) corresponding to a cell of the tessellation. For any integer d ≥ 0,
denote by Vd the set of vertices in the cell graph, which are at L∞ distance d in the underlying
grid graph from v (see Figure 3).

Analogously, we define Pd to be the set of points of H inside the cells of Vd.
For the sake of convenience, we define

K =
m

(logm)2
.

The idea of the proof is to find a separator S of H that contains at most O(K) points. This
separator will split the graph into some smaller subgraphs. Using (3) and applying the same
procedure recursively to the remaining parts, we will get an upper bound on td(H).

Let f be the largest integer for which

f−1∑
d=0

|Pd| ≤
m

2
. (7)

Let f1 be the largest integer for which f1 ≤ f and |Pf1 | ≤ K and f2 be the smallest integer
for which f2 ≥ f and |Pf2 | ≤ K. Since H contains m points, f2 − f1 ≤ m

K = (logm)2.
Given a graph G and S ⊂ V (G), we will denote by G[S] the subgraph of G induced by S.

We decompose of CH into the following subgraphs (see Figure 3):

CS = CH [Vf1∪Vf2 ] , CA = CH

[
f1−1⋃
d=0

Vd

]
, CL = CH

 f2−1⋃
d=f1+1

Vd

 and CB = CH

 ⋃
d≥f2+1

Vd

 ,

and we define accordingly

HS = H[Pf1∪Pf2 ] , HA = H

[
f1−1⋃
d=0

Pd

]
, HL = H

 f2−1⋃
d=f1+1

Pd

 and HB = H

 ⋃
d≥f2+1

Pd

 .

In the case |Pf | ≤ K, we have f1 = f2 and CL and HL are graphs on zero vertices. Thus,
suppose that this is not the case, and focus on CL.

Since ` = r/
√

2, by (5) we know that CL is a subgraph of at most 4 copies of L2
a,b (see

Figure 3), where a = (logm)2 and b = m, since f2 − f1 ≤ (logm)2 and |Pd| ≤ m for any d.
By (3) and Proposition 10, we get

td(CL) ≤ O(4a) + td(L2
a,b) = O

(
(logm)3

)
.

Moreover, HL ⊆ CL �Kt. Hence, by Lemma 9,

td(HL) = O
(
t(logm)3

)
.
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Figure 3: Decomposition of CH

By (3), now applied to H and the separator S = Vf1 ∪ Vf2 , we have

td(H) ≤ |S|+ max{td(HA), td(HL), td(HB)}
≤ 2K + max{td(HA), O

(
t(logm)3

)
, td(HB)}, (8)

since |S| ≤ 2K by definition of f1 and f2.
We recursively repeat this procedure for the two subgraphs HA and HB. By the choice of f

in (7), both subgraphs contain at most m/2 points. Hence, the recursion depth of our procedure
is at most log2m = O(logm). This implies that

td(H) = O
(
max

{
K logm, t(logm)3

})
= O

(
max

{
m

logm
, t(logm)3

})
.

2.2 Separators and cells

During the rest of the section we will consider a tessellation of length ` = r/4.
Given S ⊆ Sn a set of positive measure, we denote by vol(S) the area of S and by ∂S its

boundary in the euclidean topology. We also use vol(∂S) to refer to the length of ∂S. We only
consider sets S that are finite unions of discs, so that the length of the boundary is well defined.

For any set A ⊆ V (H), let A = {x ∈ Sn : minv∈A distE(x, v) ≤ r
2} ⊆ Sn, and notice that

∂A =
{
x ∈ Sn : minv∈A distE(x, v) = r

2

}
.

We will use the fact that for any cell D and for any two elements u, v ∈ D

distE(u, v) ≤ r

2
√

2
. (9)

Also, we make use of the following isoperimetric inequality (see [19], Theorem 1.6.1): for
any connected set of positive measure S ⊂ R2,

vol(∂S) ≥ Ω(
√

vol(S)) . (10)

This inequality can be extended to a nonconnected set S as follows: suppose that S is a
union of disjoint connected sets S1, . . . ,Sm. Then, for each i = 1, . . . ,m, we have vol(∂Si) =
Ω(
√

vol(Si)), and thus

vol(∂S) =

m∑
i=1

vol(∂Si) =

m∑
i=1

Ω(
√

vol(Si)) = Ω(
√

vol(S)), (11)
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where the last inequality follows from concavity of the square root function, that is for any
x, y ≥ 0, we have

√
x+
√
y ≥
√
x+ y.

Denote by
◦
Sn the interior of Sn. We have the following lemma:

Lemma 12. Let S ⊂ Sn be a connected set. Then,

vol(∂S ∩
◦
Sn) = Ω(min{vol(∂S), vol(∂(Sn \ S))}) .

Proof. Consider the complement of S, U = Sn \S. Let U1, . . . ,Um denote the disjoint connected
sets of U .

Let us focus on Ui for some i ∈ [m]. Let Vi = Sn \ Ui denote its complement. We will

show that vol(∂Ui ∩
◦
Sn) = Ω(min(vol(∂Ui), vol(∂Vi))). Since Ui and Vi are connected sets that

partition Sn, either ∂Ui ∩
◦
Sn = ∂Ui and we are done. Otherwise, there exist two points x and

y in ∂Ui ∩ ∂Sn such that ∂Ui = C1 ∪ C2, where Ci is a connected simple curve with endpoints x
and y, C1 ⊆ ∂Sn and C2 ∩ ∂Sn = {x, y}. Let C3 = ∂Sn \ C1 and notice that ∂Vi = C2 ∪ C3 and
that C1 ∪ C3 = ∂Sn.

Let Wi = Ui if vol(C1) ≤ vol(C3) and Wi = Vi otherwise. This implies that vol(C2) ≥
‖x−y‖2 = Ω(min{vol(C1), vol(C3)}). Using that vol(∂Wi) = vol(C2)+ min{vol(C1), vol(C3)}, we

have vol(∂Wi ∩
◦
Sn) = vol(C2) = Ω(min{vol(∂Ui), vol(∂Vi)}).

Since each point in ∂Sn belongs to at most one set Ui, there is at most one set Ui∗ such that

vol(∂Ui∗) ≥ vol(∂Vi∗). If this is not the case, then we have vol(∂S ∩
◦
Sn) =

∑m
i=1 vol(∂Ui∩

◦
Sn) =∑m

i=1 Ω(vol(∂Ui)) = Ω(vol(∂U)). Otherwise,

vol(∂S ∩
◦
Sn) = vol(∂U ∩

◦
Sn) =

m∑
i=1

vol(∂Ui ∩
◦
Sn) =

m∑
i=1

Ω(min{vol(∂Ui), vol(∂Vi)})

= Ω

vol(∂Vi∗) +
∑
i 6=i∗

vol(∂Ui)

 = Ω(vol(∂S)) ,

where the last equality follows from

vol(∂Vi∗) +
∑
i 6=i∗

vol(∂Ui) = vol(S) +
∑
i 6=i∗

vol(∂Ui ∩ ∂Sn) .

The following lemma shows that for any separator S of a geometric graph H, we can find
a large number of cells of length ` = r/4, whose points are entirely contained in S (see also
Figure 4, left).

Lemma 13. Let H be a connected geometric graph of order m and S ⊂ V (H) be a separator
of H. Fix a connected component H1 of H \ S and denote by A = V (H1).

Consider a tessellation with side length ` = r/4. If vol(A) < cn for some c < 1, then there
exists a set of cells DS of size dS, such that all points inside DS belong to S and

dS = Ω
(
r−1
√

vol(A)
)
.

Proof. Define B = V (H) \ (S ∪ A), that is, B is the set of vertices of H that are contained
neither in S nor in A.

Observe that for any pair of points v ∈ A and w ∈ B, we have distE(v, w) ≥ r, since v and
w belong to different connected components of H \ S. Let C = ∂A denote the boundary of A.
By definition, all points in C lie at distance exactly r/2 from some point in A. Thus, they lie
at distance at least r/2 from any point in B.

9



Let DS be the union of cells that have nonempty intersection with C. Let us point out
that some of these cells may not contain any point of V (H). We will now show that dS =
Ω(r−1

√
vol(A)).

By hypothesis of Lemma 13, vol(A) < cn for some constant c < 1, and thus by (10),

vol(C) = vol(∂A) = Ω(
√

vol(A)) . (12)

For any cell D ∈ DS we denote by CD = C ∩D, the restriction of C to D. We will show that
the length of CD is not too large by projecting the elements of CD onto ∂D, in such a way that
the length of CD does not decrease by too much.

Let p : CD → ∂D the application that sends an element c ∈ CD ⊂ C being at distance r/2
from a point v ∈ A to the intersection of ∂D and the segment that joins c and v (see Figure 4,
right). In case where there is more than one point of A at the same distance from c, p(c) chooses
one of them arbitrarily.

Figure 4: Cells of DS and the projection of CD.

Note that p is injective, since no two elements of CD can have the same image: indeed,
suppose that there exist two different c, c′ ∈ CD with corresponding points v, v′ ∈ A such that
p(c) = p(c′). Then, the segments cv and c′v′ would intersect at p(c), and either distE(c, v′) < r/2
or distE(c′, v) < r/2 holds, contradicting the definition of C.

Let us show that the application does not contract CD too much. Recall that distE(c, v) =

r/2. Since c, p(c) ∈ D, by (9) we have distE(c, p(c)) ≤ r
2
√

2
, and therefore distE(p(c), v) ≥

√
2−1

2
√

2
r

by the triangle inequality.
A simple geometric argument shows that

vol(p(S)) ≥
r
2√

2−1
2
√

2
πr

vol(S).

Since p is injective and vol(∂D) = 4` = r,

vol(CD) = O(vol(∂D)) = O(r) .

Using this upper bound for all cells D ∈ DS , we obtain

dS ≥
vol(C)

maxD∈DS vol(CD)
= Ω

(
r−1
√

vol(A)
)
.

Moreover, all points contained in DS belong to S: by (9), any point u contained in DS lies
at distance at most r/(2

√
2) from some element c ∈ C. However, all points of A ∪ B lie at

distance at least r/2 from all the elements of C. Thus, u /∈ A ∪B, implying that u ∈ S.

10



We finish with some properties of the tessellation when choosing ` = r/4.

Lemma 14. Let H be a geometric graph with connected components H1, . . . ,Ht. Define Ai =
V (Hi) and consider a tessellation with ` = r/4. Then, for any cell D we have the following:

1. if there exists a point v ∈ Ai such that v ∈ D, then D ⊂ Ai.

2. there are at most 24 curves Ci = ∂Ai that intersect the cell.

Proof. For the first part, by (9), for any u ∈ D,

distE(u, v) <
r

2
,

and thus u ∈ Ai.
For the second part, observe that if Ci intersects D, then there must exist a point of v ∈ Ai

at distance at most r/2 from some point in D. There are at most 24 cells satisfying this
criterion, namely the ones in the first and second neighborhood of D. Since all points of a cell
belong to the same component (they are all connected), there are at most 24 different curves Ci
intersecting D.

3 Subcritical regime

In this section we compute the treedepth of a random geometric graph with 0 < r < rc, that
is, below the existence of a giant component. By Theorem 10.3 of [21], a.a.s. the order of each
component is at most O(log n). In fact, by looking at Theorem 10.3 of [21], it is easily seen that
with probability at least 1− o(n−3/2) the order of each component is O(log n).

We will use the following result several times: McDiarmid in [15] proved that for any r =
Θ(1) and G ∈ G(n, r), a.a.s.

ω(G) = Θ

(
log n

log log n

)
. (13)

In fact, by looking at the proof of Lemma 5.3 in [15], by choosing (in the notation of the proof
given there) k1 = k1(r) to be sufficiently large and k2 = k2(r) to be sufficiently small, we can
also easily see that with probability at least 1− o(n−1/2) we have

ω(G) = Θ

(
log n

log log n

)
, (14)

and by looking at Lemma 4.4 and 5.3 in [15], the same result holds for G(P1, r) as well (in fact,
for Lemma 5.3, either the number of points of G(P1, r) is not in the set {n − C

√
n log n, n +

C
√
n log n} for C large enough, which happens with probability o(n−1/2), or the respective

lower and upper bounds for the number of points can be used in the calculations of Lemma 5.3,
again by choosing k1 large enough and k2 small enough).

By (2), the order of the largest connected component implies a coarse upper bound, namely

td(G) = O(log n) .

In order to find a better upper bound, more work is needed. First, we need the following simple
lemma, whose proof is included for completeness.

Lemma 15. Let X be a random variable that follows a Poisson distribution with parameter λ.
Then, for any k ≥ 2λ,

Pr(X ≥ k) ≤ 2 Pr(X = k).

11



Proof.

Pr(X ≥ k) =
∑
i≥k

Pr(X = i) =
∑
i≥k

e−λ
λi

i!

= e−λ
λk

k!

(
1 +

λ

k + 1
+

λ2

(k + 1)(k + 2)
+ . . .

)
≤ e−λ

λk

k!

∑
i≥0

(
λ

k

)i
= e−λ

λk

k!

1

1− λ
k

≤ 2e−λ
λk

k!
= 2 Pr(X = k),

where the last inequality follows from the assumption k ≥ 2λ.

Let ν = ν(r) be a sufficiently large constant. For the sake of convenience, we define

Tmax =
ν log n

log log n
and T =

√
2 log n

log log n
.

From now on, we consider in this section the cell graph CG(`) of G ∈ G(P1, r) with ` = r/
√

2
and write simply CG for CG(`). Notice that all points inside a cell of CG form a clique. Hence,
by (14), by choosing ν = ν(r) sufficiently large, each cell contains less than Tmax points a.a.s.
For this particular tessellation, we call a cell sparse if it contains less than T points, and dense
otherwise.

Proposition 16. Let 0 < r < rc and let G ∈ G(P1, r). With probability at least 1 − o(n−1/2),
every connected component H of G contains at most O(Tmax) points in dense cells.

Proof. For any connected component H of G we will show that the probability that the number
of points in dense cells of H is at least 2Tmax is o(n−3/2). Since there are clearly at most n
connected components in G, by taking a union bound over all them, with probability 1−o(n−1/2)
no component will have more than 2Tmax points in dense cells.

Let Ai be the number of points in the cell i. Since we are using a Poisson point process of
intensity 1, Ai follows a Poisson distribution with parameter λ = r2/2. Denote by p = Pr(Ai ≥
T ) the probability that cell Ai is dense.

By Lemma 15,

(1−O(T−1))
e−λ√
2πT

(
eλ

T

)T
= Pr(Ai = T ) ≤ p = Pr(Ai ≥ T ) ≤ 2 Pr(Ai = T ) ≤ 2e−λ√

2πT

(
eλ

T

)T
,(15)

where we have used Stirling’s formula T ! = (1 +O(T−1))
√

2πT
(
T
e

)T
.

To count the number of points lying in dense cells, we define the following random variable
for each cell i ∈ V (CG):

Yi =

{
t if i is dense and has t points inside,
0 otherwise.

Our aim is to show that YH =
∑

i∈V (CH) Yi is at most O(Tmax).
Notice that the probability that the cell i is sparse is 1− p, while the probability of having

T + j points is

Pr(Ai = T + j) = (1−O((T + j)−1)) e−λ√
2π(T+j)

(
eλ
T+j

)T+j
≤ ( eλT )T e−λ√

2πT
( eλT )j ,

12



for any integer j ≥ 0. Using (15) we have

Pr(Ai = T + j) ≤ 2p
(
eλ
T

)j
.

These observations lead to the definition of the following independent random variable Ri for
each cell i ∈ V (CG):

Ri =


0 with probability 1− 2p,

T + j with probability 2p
(
eλ
T

)j
for any j ≥ 1,

T with probability 2p
(

1− eλ
T−eλ

)
.

First of all, observe that Ri is a probability distribution. The random variables Yi and
Ri have similar distributions. In particular, each variable Ri stochastically dominates the
corresponding random variable Yi. Analogously, we define R =

∑
i∈V (CH)Ri. Then,

Pr(R ≥ j) ≥ Pr(Y ≥ j), (16)

for any j ≥ 0. In particular, this also holds, if j = O(Tmax).

Therefore, it is enough to compute an upper bound for Pr(R > 2Tmax). Clearly, since r < rc,
and all connected components are of order O(log n) with probability at least 1− o(n−3/2), with
the same probability in the cell graph CG the graph diameter of each component CH is at most
K log n for some sufficiently large constant K = K(r). For the case where the graph diameter
is bigger than K log n, Pr(R > 2Tmax) can be easily bounded by o(n−3/2). For the case where
it is smaller than K log n, we observe the following: given a cell from CH , all points that belong
to H are contained in the box of cells of size (2K log n + 1) × (2K log n + 1) centered on the
first cell. Let η > 0 such that (2K log n+ 1)2 ≤ η log2 n.

Hence we have

Pr(R > 2Tmax) ≤ o(n−3/2) +

(2K logn+1)2∑
m=1

∑
S∈(η log2 n

m )

∑
ci:i∈S∑

i∈S ci≥2Tmax

Pr

(⋂
i∈S

Ri = ci

)
, (17)

where m counts the number of dense cells in the distribution given by the Ri, S is the set
of dense cells and ci is the number of points inside the dense cell i ∈ S. There are at most
ηm(log n)2m ways to choose the set S of size m and at most (Tmax)m < (log n)m possible values
for the ci.

Recall that the variables Ri are independent and that Pr(Ri = T + j) = 2p
(
eλ
T

)j
for any

j ≥ 1. Therefore,

Pr

(⋂
i∈S

Ri = ci

)
=

m∏
i=1

2p

(
eλ

T

)ci−T
.

On the one hand, if m ≤ 2
√

log n, using (15),

m∏
i=1

2p

(
eλ

T

)ci−T
≤

m∏
i=1

4√
2πT

(
eλ

T

)ci
≤

m∏
i=1

(
eλ

T

)ci
≤ (2eλ

√
2πT p)

∑
ci
T ≤ (2eλ

√
2πT p)2

√
logn.

(18)
On the other hand, if m = 2

√
log n+ j for some integer j ≥ 1,

m∏
i=1

2p

(
eλ

T

)ci−T
≤ (2p)m = (2p)2

√
logn(2p)j .

13



Therefore, by splitting the second part of (17) into two sums, we obtain

Pr(R > 2Tmax) ≤ o(n−3/2) +

2
√

logn∑
m=1

ηm(log n)3m(2eλ
√

2πT p)2
√

logn

+
(
2η(log n)3p

)2√logn∑
j≥1

(
2η(log n)3p

)j
.

From the bounds on p in (15), one can derive that η(log n)3p < 1/2, and the infinite sum of
the second term above is bounded from above by one. Thus,

Pr(R > 2Tmax) ≤ o(n−3/2) +
(

2
√

log n
)(

η(log n)3p(2eλ
√

2πT + 2)
)2
√

logn

= o(n−3/2) + exp
{

log logn/2 + 2
√

log n (3 log log n+ log p+O(log T ))
}
.

Moreover, by (15), we also have p ≤ 2e−λ√
2πT

(
eλ
T

)T
, and hence log p ≤ −(1 + o(1))T log T ≤

−
√

log n. Thus,

Pr(R > 2Tmax) < o(n−3/2) + exp {−(1 + o(1))2 log n} = o(n−3/2). (19)

By (16), this also implies that Pr(Y > 2Tmax) = o(n−3/2), and by taking a union bound over
all components, this implies that the probability of having a connected component with more
than 2Tmax points inside dense cells is o(n−1/2).

Proof of Theorem 1. The lower bound on tw(G) follows easily from (14), which yields

td(G) ≥ tw(G) ≥ ω(G)− 1 = Ω

(
log n

log log n

)
.

For the upper bound, we construct an elimination tree for G. By (2) it suffices to bound
from above the treedepth of each connected component. Let H be a connected component of
G.

From Proposition 16, there are at most O(Tmax) points in dense cells of H. We temporarily
remove all these points, and add them at the end. Let H ′ be the subgraph of H that remains
after removing the points in the dense cells.

Observe that now, by definition of sparse, every cell of CH′ contains at most T points.
Denoting by m = |V (H ′)|, by Proposition 11 we have

td(H ′) = O

(
max

{
m

logm
,T (logm)3

})
.

Since, with probability at least 1− o(n−3/2), m = O(log n), we have that for every component
H of G, td(H ′) = O(Tmax) with probability at least 1− o(n−1/2).

Recall that adding a new point to H can increase the treedepth by at most one unit. Thus,
td(H) ≤ td(H ′) +O(Tmax) = O(Tmax), and therefore, using (1), we have

td(G) = O

(
log n

log logn

)
with probability at least 1− o(n−1/2).

14



4 Supercritical regime

Fix now r = r(n) ≥ c, for some sufficiently large constant c. Recall that for any subset
S ⊆ Sn = [0,

√
n]2 of positive measure, we denote by vol(S) the area of S. We need the following

standard lemma (which is a simple application of Chernoff bounds for Poisson variables, see for
example Theorem A.1.15 of [1]):

Lemma 17. For any S ⊆ Sn and any δ > 0, let |S| denote the number of points inside S.
Then, we have:

1. With probability at least 1− (eδ(1 + δ)−(1+δ)))vol(S) ≥ 1− e−
δ2

3
vol(S), |S| ≤ (1 + δ) vol(S).

2. With probability at least 1− e−
δ2

2
vol(S), |S| ≥ (1− δ) vol(S).

We will use this lemma to show that there exist separating sets with few points, and conse-
quently, give an upper bound on td(G).

Proposition 18. Let c be a sufficiently large constant, let r = r(n) ≥ c and let G ∈ G(P1, r).
With probability 1− e−Ω(r

√
n), td(G) ≤ O(r

√
n).

Proof. Consider the tessellation of Sn into square cells of side length ` = r. Denote by D(i,j)

the j-th cell in the i-th row, where 1 ≤ i, j ≤ a =
√
n/r.

Define

X1
1 =

(
a⋃
i=1

D(a/2,i)

)
∪

(
a⋃
i=1

D(i,a/2)

)
,

and consider the set Y 1
1 ⊂ V (G), containing the points insideX1

1 . Observe that Y 1
1 is a separator,

since ` = r, and it splits the graph into 4 components (some of them might be empty), G1
2, G2

2,
G3

2 and G4
2.

By (3), we have
td(G) ≤ |Y 1

1 |+ max
1≤j≤4

{td(Gj2)} .

We then define analogously the sets Xj
2 , for all Gj2, and using (3), we continue iteratively.

Let t denote the step where all sets Xj
t have size one (see Figure 5).

Figure 5: Construction of the sets Xj
i .
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The treedepth of G will be bounded from above by the maximum number of points inside
any of the possible sets of cells

Xj1j2...jt = Xj1
1 ∪X

j2
2 ∪ · · · ∪X

jt
t ,

where 1 ≤ ji ≤ 4i−1.
Observe that |Xj

i | ≤ a2−(i−2) . The sets Xj1j2...jt = Xj1
1 ∪X

j2
2 ∪ · · · ∪X

jt
t are not disjoint,

but they all have the same size

|Xj1j2...jt | =
t∑
i=1

|Xji
i | ≤

t∑
i=1

a2−(i−2) ≤ 4a.

Let Yj1j2...jt denote the set of points in Xj1j2...jt . Thus, |Yj1j2...jt | is a random variable following
a Poisson distribution with mean at most 4ar2.

By part 1 of Lemma 17 applied with δ = 1,

Pr
(
|Yj1j2...jt | ≥ 8ar2

)
< e−4ar2/3 = e−Ω(r

√
n) .

Moreover, there are at most
t∏
i=1

4i−1 = eO(t2)

sets of the form Xj1j2...jt . Observe also that, by construction, t = O(log a) = O(log n).
Now, by a union bound over all sets,

Pr
(
∃ j1, j2, . . . , jt : |Yj1j2...jt | > 8ar2

)
≤ eO(log2 n)−Ω(r

√
n) = e−Ω(r

√
n) .

Thus, we have that the treedepth of G is at most

td(G) ≤ 8ar2 = O(r
√
n)

with probability at least 1− e−Ω(r
√
n), finishing the proof.

For a lower bound on tw(G), we need the following link between the treewidth of a graph
and the existence of a vertex separator with special properties. A vertex partition V = (A,S,B)
is a balanced k-partition if |S| = k + 1, S separates A and B, and 1

3 (n− k − 1) ≤ |A|, |B| ≤
2
3 (n− k − 1). In this case, S is also called a balanced separator. The following result connecting
balanced partitions and treewidth is due to Kloks [13].

Lemma 19 ([13]). Let G be a graph on n vertices, and suppose that tw(G) ≤ k for some
n ≥ k − 4. Then G has a balanced k-partition.

From now on and until the end of the section, we consider the tessellation of Sn into square
cells of side length ` = r/4.

Recall that for any set A ⊂ V (H), we define A = {x ∈ Sn : minv∈A distE(x, v) ≤ r/2}.
Observe that in a geometric graph, no direct relation exists between the size of A and the
volume of A. In the case of a random geometric graph and for a set A of linear size, however,
vol(A) can be bounded from below using the size of A, as the following lemma shows.

Lemma 20. Let c be a sufficiently large constant and let r = r(n) ≥ c. Let G ∈ G(P1, r) and
let α ∈ (0, 1). Then, with probability 1 − e−Ω(n), for any set A ⊆ V (G) with |A| ≥ αn, there
exists c(α) > 0, such that

vol(A) ≥ c(α)n .
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Proof. Set m = m(α) to be the smallest constant such that mλ is integer,

e−1

bmc!

(
m2

m− 1
+

m

(m− 1)2

)
≤ α

8
and m ≥ 4e ,

which exists for any α > 0, since the left-hand side of the first condition tends to zero, when
m→ +∞.

Recall that the number of points inside a cell D follows a Poisson distribution with mean
λ = r2/16. Suppose that D contains t ≥ 0 points. Define then ZD to be the following random
variable:

ZD =

{
t if t ≥ mλ ,
0 otherwise,

and let Z =
∑
ZD be the sum of these random variables over all cells of the tessellation.

We may consider r ≥ 4, since by hypothesis r ≥ c, for some c large enough. This implies
that λ ≥ 1. By Stirling bounds and by calculating the derivative one can see that for any m ≥ 1
the function f(λ) = e−λ λmλ

(mλ)! is decreasing for λ ∈ [1,∞), and thus

Pr(ZD = mλ) = e−λ
λmλ

(mλ)!
≤ e−1

bmc!
.

Also

Pr(ZD = mλ+ i) = e−λ
λmλ+i

(mλ+ i)!
= e−λ

λmλ+(i−1)

(mλ+ (i− 1))!
· λ

mλ+ i
≤ 1

m
Pr(ZD = mλ+ (i− 1)) ,

for any i ≥ 1. Hence,

E (ZD) =
∑
t≥mλ

tPr(ZD = t) ≤ e−1

bmc!
∑
i≥0

(mλ+ i)m−i ≤ e−1

bmc!

(
m2λ

m− 1
+

m

(m− 1)2

)
≤ αλ

4
,

where the last inequality follows from the definition of m. Since λ = r2/16 and there are 16n/r2

cells in the tessellation, we have

E (Z) ≤ αn

4
.

By Hoeffding bounds for unbounded random variables (the precise version we use here is Theo-
rem 1 of [3], applied with XD = εD = ZD, and thus S = T = Z, Y = Po(λ), mk = m = E (ZD)
for any k, and b = mλ − 1, so that m(b) = m and the measure µ[m] is exactly our probability
distribution of ZD, and x = 2E (Z))

Pr(Z > 2E (Z)) < inf
h<x

e−h2E(Z)E
(
ehZ
)
≤ e−2E(Z)E

(
eZ
)
.

Now, observe that

e2E(ZD) ≥ e2mλ Pr(ZD = mλ) ≥ e(2m−1)λ λmλ

(mλ)!

and

E
(
eZD

)
= Pr(ZD = 0) +

∑
i≥0

emλ+i Pr(ZD = mλ+ i) ≤ 1 + e(m−1)λ λmλ

(mλ)!

∑
i≥0

( e
m

)i
.

Since by assumption on m, e/m ≤ 1/4, we have

E
(
eZD

)
≤ 1 +

4

3

λmλ

(mλ)!
e(m−1)λ ≤ 3

2

λmλ

(mλ)!
e(m−1)λ .
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The random variables ZD are mutually independent. Thus,

e2E(Z) =
∏

e2E(ZD) ≥
(
λmλ

(mλ)!
e(2m−1)λ

) 16n
r2

and

E
(
eZ
)
≤
(

3

2

λmλ

(mλ)!
e(m−1)λ

) 16n
r2

,

and therefore

Pr(Z > 2E (Z)) ≤ e−2E(Z)E
(
eZ
)
≤
(

3

2
e−mλ

) 16n
r2

= e−Ω(n) .

Thus, with probability at least 1− e−Ω(n), there are at most αn/2 points of G contained in cells
with at least mλ points, and thus with the same probability there are at least αn/2 points of
A contained in cells with less than mλ points.

Therefore, with this probability, there are at least

αn/2

mλ
=

8αn

mr2

different cells D that contain at least one point from A. By part 1 of Lemma 14, D ⊂ A, and

vol(A) ≥ 8αn

mr2
· vol(D) = c(α)n

with probability at least 1− e−Ω(n).

Using the previous lemmata, we are able to provide a lower bound for tw(G).

Theorem 21. Let c be a sufficiently large constant, and let r = r(n) ≥ c. Let also G ∈ G(P1, r).
Then, tw(G) = Ω(r

√
n) with probability at least 1− e−Ω(r

√
n).

Before proving the theorem we sketch its proof. We are going to show that any balanced
separator S of the giant component contains many points. Observe that if vol(S) is large then
the probability of containing few points is exponentially small. We show that in general, any
such separator has a large volume. Here we strongly use the condition that S is balanced.
The conclusion will then follow by taking a union bound over all possible sets of cells that are
candidates for a separator.

Proof. Fix γ > 0 to be a sufficiently small constant. Let H be the largest component of G.
Note that for r ≥ c with c sufficiently large, by Theorem 3.3 of [20],

|V (H)| = Ω(n) (20)

with probability at least 1 − e−Ω(n). We will for now assume deterministically that |V (H)| =
Ω(n) holds and only in the end add the probability e−Ω(n) that |V (H)| = o(n) holds. By
choosing c sufficiently large, to simplify calculations, we may even assume |V (H)| ≥ 0.9n. We
will show that there exists no balanced separator of size γr

√
n for H. Then, by Lemma 19, this

implies that tw(H) ≥ γr
√
n = Ω(r

√
n), and by (1), tw(G) ≥ tw(H) = Ω(r

√
n).

For any balanced separator S ⊂ V (H) of H, denote by t be the number of connected
components of the graph induced by S and let S1, . . . , St denote the subsets inducing connected
components within H. We may assume that S is minimal, and hence each component of S
contains at least one point of H. Therefore we can assume that t ≤ γr

√
n, as otherwise there

is nothing to prove. We may assume that r ≤ 2
√
n, since for r = 2

√
n, G(P1, r) is already the
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complete graph. If S is a balanced separator of size at most γr
√
n ≤ 2γn, there exist two not

necessarily connected sets A,B ⊂ V (H) of size 1−2γ
3 |V (H)| ≤ |A|, |B| ≤ 2(1−2γ)

3 |V (H)|, such
that H \ S contains no edges from A to B.

Since γ is a sufficiently small constant and |V (H)| ≥ 0.9n, |A|, |B| ≥ n/4. By Lemma 20,
with probability at least 1− e−Ω(n), for all balanced separators S, vol(A) and vol(B) are linear
in n. In particular, if β = c(1/4) is the constant provided by Lemma 20 for α = 1/4, we have

βn ≤ vol(A) ≤ (1− β)n (21)

with probability at least 1− e−Ω(n).
Since vol(A) ≤ (1 − β)n, we can apply Lemma 13 to the separator S and each connected

component of A separately. Thus, once again by concavity of the square root function, with
probability at least 1 − e−Ω(n), for all balanced separator S, there exist some constant η > 0
and a set of cells DS of size

dS = Ω
(
r−1
√

vol(A)
)
≥ η
√
n

r
,

such that all points inside DS belong to S. Recall that some cells in DS may not contain any
point. We will assume this deterministically for now and add the failure probability at the very
end.

Now it suffices to show that for any balanced separator S and for any possible set of cells
DS of size at least η

√
n/r, there will be with high probability at least γr

√
n points inside such

a set DS . Denote by YDS the random variable counting the number of points inside such a DS .

Since vol(DS) = r2

16dS , by part 2 of Lemma 17 applied with δ = 1/2, we obtain

Pr

(
YDS <

r2

32
dS

)
≤ e−

r2

128
dS . (22)

We will now show that with high probability no balanced separator that occupies more than
η
√
n/r cells contains less than r2

32dS points. We will do it by combining the inequality in (22)
with a union bound over all separators S together with the corresponding sets of cells DS of
size dS ≥ η

√
n/r.

By definition of the cell graph, DS has at most t connected components (some connected
components of the graph induced by S can merge in DS). We will assume that DS has exactly
t connected components denoted by DS1 , . . . , DSt and with sizes dS1 , . . . , dSt .

Since r is a large constant, we may assume that r ≥ 4. Then, by setting a = b = 4
√
n/r ≤√

n, k = 4 and s = dSj in Lemma 7, we conclude that there are at most nt94(dS1+···+dSt ) ≤ nte9dS

ways to construct possible sets of cells DS corresponding to all balanced separators S with t
components.

We have

Pr(∃S : S balanced, dS ≥ η
√
n/r, |S| ≤ γr

√
n) ≤

∑
dS≥η

√
n/r

∑
t≤γr

√
n

∑
dS1+···+dSt=dS

nte9dSe−r
2dS/128 .

(23)

Using t nonnegative numbers, there are at most (dS)t ≤ nt ways to add up to dS and thus,
the right hand side of (23) can be bounded from above by∑

dS≥η
√
n/r

∑
t≤γr

√
n

n2te9dSe−r
2dS/128 . (24)

Denote by CH , by CA and by CB the set of cells that contain at least one point of H, A
and B, respectively. Recall that βn ≤ vol(A), vol(B) ≤ (1−β)n. By Lemma 20, there exists an
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ε > 0 such that |CA|, |CB| ≥ εn/2r2 with probability at least 1− e−Ω(n). Since CA and CB are
disjoint, and CA∪CB ⊆ CH \DS , we have |CH \DS | ≥ εn/r2 with probability at least 1−e−Ω(n).
Once more, we will assume this deterministically for now and add the failure probability at the
very end. Let ν be a small constant.

Our aim for the rest of the proof is to show that each summand can be bounded from above
by an exponentially small term. We will do it by splitting the proof into 5 cases:

• Case 1, r > 32
√

log n: Observe that t ≤ dS , since dSj ≥ 1 by definition. Therefore,

n2te9dSe−r
2dS/128 ≤ n2dSe9dSe−r

2dS/128 = e(2 logn+O(1)−r2/128)dS ≤ e−r2dS/256 ,

since r ≥ 32
√

log n.

• Case 2, c ≤ r ≤ 32
√

log n and dS = ω(
√
n(log n)3/2/r): Note that for c sufficiently large,

since c ≤ r, e9dS < er
2dS/256. Note also that er

2dS ≥ eω(r3/2
√
n(logn)3/2) ≥ eω(

√
n(logn)3/2).

Thus, since t ≤ γr
√
n, we have n2t = e2t logn ≤ e2γr

√
n logn ≤ e64γ

√
n(logn)3/2 = eo(r

2dS),
and hence,

n2te9dSe−r
2dS/128 ≤ e−r2dS/256.

We will therefore assume dS = O(
√
n(log n)3/2/r) from now on.

• Case 3, c ≤ r ≤ 32
√

log n and t ≤ νr
√
n

logn : If ν is small enough, we have n2t < e2νr
√
n <

er
2dS/512. If r is sufficiently large, we have e9dS < er

2dS/512. Thus, in such case the
summand in (24) is bounded from above by e−r

2dS/256.

• Case 4, c ≤ r ≤ 32
√

log n, t > νr
√
n

logn and at least a constant fraction of the cells in

CH \ DS is contained in components (of the cell graph) of order at most
√
n logn
νr3

(call
them small components):

Since |CH \DS | ≥ εn/r2, there exists a constant ε′ ≤ ε such that ε′n/r2 cells of CH \DS

are in small components. As in the concavity argument of (11), dS is minimized if there

are at most ε′r
√
n

logn components of order
√
n logn
νr3

. By part 2 of Lemma 14, there exist at
most 24 different connected components Ai of H, such that ∂Ai intersects a given cell.
Hence, by applying the isoperimetric inequality given in (10) over each component of S
that touches the boundary of a small component of H,

dS ≥
1

24
· n

1/4
√

log n√
νr3

· ε
′r
√
n

log n
= Ω

(
n3/4

r1/2
√

log n

)
.

The remaining calculations are as in Case 2.

• Case 5, c ≤ r ≤ 32
√

log n, t > νr
√
n

logn and all but a o(1) fraction of cells in CH \ DS is

contained in components with at least
√
n logn
νr3

cells (call them large components):

In this case, we focus only on the (sub)separator S1 ⊆ S that separates these large
components. Let DS1 be the cells corresponding to S1 (in the sense of Lemma 13), of size
dS1 . If there is one large component such that its intersection with ∂Sn is larger than
1
2 vol(∂Sn), then we modify S1 and remove the cells separating this large component from
DS1 . By definition, there can be only one component satisfying the previous condition.
Denote by H0 such a component (if it exists). Since S is a balanced separator of size at
most 2γn, H \ (S ∪H0) has at least n/4 vertices in large connected components.

Now, if we show that with high probability there are many points in S1, then the same
holds for S. Note that since |CH \ DS | ≥ εn/r2 and S1 separates at least a constant
fraction of the vertices of H, by Lemma 13 we still have dS1 = Ω(

√
n/r).
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Since we use a tessellation with side length ` = r/4, there are at most 16n/r2 cells. Hence,

there are at most τ ≤ 16νr
√
n

logn large components in CH \DS . Observe that although the
number of large components is small, there could be many connected components in DS1

which could cause some problems in bounding (24). In order to deal with this problem
we consider a tessellation of R2 and extend the random geometric graph from Sn to R2.
Consider the set of cells DS2 ⊆ R2 of size dS2 defined as follows: a cell D belongs to DS2 if

either D ∈ DS1 , or D ∈ R2 \
◦
Sn and intersects a large connected component of CH \DS1 .

One can imagine DS2 to be the extension of DS1 to the tessellation of R2.

Next, we will delete some cells from DS2 to create DS3 in order to reduce the number of
connected components. Let H1, . . . ,Hρ be the large connected components of H\(S∪H0).
For every Hi, let CHi denote its corresponding cells. We define its fill-up C ′Hi as follows:
a cell D belongs to C ′Hi if either D ∈ CHi or D belongs to a finite connected component of
R2 \CHi . We construct DS3 by removing the cells from DS2 that intersect one of the C ′Hi .
Since there is just one infinite connected component in R2 \ CHi , C ′Hi does not contain
holes. Hence, DS3 has at most ρ ≤ τ connected components.

Denote by DH1 , . . . DHρ the connected pieces of DS3 corresponding to the boundaries
of C ′H1

, . . . , C ′Hρ , and let dH1 , . . . dHρ be their respective sizes. By Lemma 13, dHi =

Ω(r−1 vol(Hi)). Once more by part 2 of Lemma 14, there exist at most 24 different
connected components of CH \DS3 whose boundary intersects a given cell, and therefore
we have dS3 = Ω(

∑τ
i=1 dHi). Since

∑ρ
i=1 vol(Hi) ≥ min{vol(A), vol(B)} = Ω(n), by (10)

and by concavity of the square root function, we have dS3 = Ω(
√
n/r).

Now, consider DS4 := DS3 ∩ Sn of size dS4 . Note that DS4 ⊆ DS . Since any large
connected component Hi of H \ (S ∪ H0) satisfies vol(∂C ′Hi ∩ ∂Sn) ≤ 1

2 vol(∂Sn), by
Lemma 12,

vol(∂C ′Hi ∩
◦
Sn) = Ω(vol(∂C ′Hi)),

and therefore dS4 = Ω(dS3).

By our argument we reduced the number of animals to consider from t to at most τ .
Their sizes are now at most dS3 , and at most dS4 of them contain points. Thus, each

summand of(24) is bounded by n2τe9dS3e−r
2dS4/128. Since τ ≤ νr

√
n

logn and dS4 = Ω(
√
n/r),

and dS4 = Ω(dS3), similar arguments as in the Case 3 show that the summand is bounded
from above by e−Ω(r

√
n), if r is at least a large constant.

We showed that each term of (24) can be bounded from above by min{e−Ω(r2dS), e−Ω(r
√
n)} =

e−Ω(r
√
n) if dS (and also dS1 , dS2 , dS3 , dS4 as defined in Case 5) are of order Ω(

√
n/r). Since all

probabilities which we assumed deterministically throughout the proof hold with probability at
least 1− e−Ω(n), we have together with (20),

Pr

(
∃S : S balanced, |S| ≤ ηr

√
n

32

)
≤ e−Ω(n) +

∑
dS≥η

√
n/r

∑
t≤γr

√
n

e−Ω(r
√
n) = e−Ω(r

√
n) .

Having chosen γ sufficiently small such that γ ≤ η/32, the theorem follows.

Proof of Theorem 2. Theorem 2 follows directly by recalling that tw(G) ≤ td(G) and combining
Proposition 18 with Theorem 21.

5 Conclusion

Given a random geometric graph G ∈ G(n, r) we showed that if 0 < r < rc, tw(G) = Θ( logn
log logn)

and that if r ≥ c, for some sufficiently large c, tw(G) = Θ(r
√
n). We conjecture that the
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latter can be extended to the whole supercritical regime, that is, we conjecture that for every
r > rc, tw(G) = Θ(r

√
n). This is a natural thing to expect since rc is already the threshold

radius for the existence of a giant component. The conjecture is equivalent to the existence of
a sharp threshold width of order o(1) at r = rc. We remark that the general result on sharp
thresholds of monotone properties of [8] implies only a sharp threshold width of order log3/4 n.
Our methods, however, require the knowledge of the exact threshold value rc of the appearance
of the giant component in a random geometric graph, which at the moment is not known.
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[17] Jaroslav Nešetřil and Saharon Shelah, On the order of countable graphs, European J. Com-
bin. 24 (2003), no. 6, 649–663.
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