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The metric dimension of a connected graph G is the minimum number of vertices in 
a subset S of the vertex set of G such that all other vertices are uniquely determined 
by their distances to the vertices in S . We define an extended metric dimension for 
graphs with some edges missing, which corresponds to the minimum number of vertices 
in a subset S such that all other vertices have unique distances to S in all minimally 
connected graphs that result from completing the original graph. This extension allows 
for incomplete knowledge of the underlying graph in applications such as localizing the 
source of infection. We give precise values for the extended metric dimension when the 
original graph’s disconnected components are trees, cycles, grids, complete graphs, and we 
provide general upper bounds on this number in terms of the boundary of the graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite, simple, connected graph with |V (G)| = n vertices. For a subset R ⊆ V (G) with |R| = r, and a vertex 
v ∈ V (G), define d(v, R) to be the r-dimensional vector whose i-th coordinate d(v, R)i is the length of the shortest path 
between v and the i-th vertex of R . We call a set R ⊆ V (G) a resolving set if for any pair of vertices v, w ∈ V (G), d(v, R) �=
d(w, R). Clearly, the entire vertex set V (G) is always a resolving set, and so is R = V (G) \ {v} for every vertex v . The metric 
dimension β(G) is then the smallest cardinality of a resolving set. We have the trivial inequalities 1 ≤ β(G) ≤ n − 1, with 
the lower bound attained for a path, and the upper bound for the complete graph. The metric dimension was introduced 
by Slater [10] in the mid-1970s, and by Harary and Melter [7]. As a start, Slater [10] determined the metric dimension 
of trees. Two decades later, Khuller, Raghavachari and Rosenfeld [9] gave a linear-time algorithm for computing the metric 
dimension of a tree, and characterized the graphs with metric dimensions 1 and 2. The metric dimension for many graph 
classes is known, including random graphs [1], and its calculation has also been extensively studied from a computational 
complexity point of view (see [5,6,9]).

In this paper1 we extend the concept of metric dimension to graphs with some edges missing: suppose we are given 
a finite, simple graph F = (V , E) with |V | = n consisting of k ≥ 2 connected components, denoted by Ci , for i = 1, . . .k. 
Denote the class H(F ) to be the class of all possible connected graphs that can be constructed from F by adding k − 1
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Fig. 1. An example of a partially observed network with two components. A missing edge is the one connecting the two components. In (a) distances 
of a vertex u from the set O in the graph H1 are the same as the distances of a vertex v to the set O in the graph H2: dH1 (u, o1) = 4 = dH2 (v, o1), 
dH1 (u, o2) = 2 = dH2 (v, o2) and dH1 (u, o3) = 2 = dH2 (v, o3). Without knowing if the true graph is H1 or H2 the source cannot be correctly identified, as it 
can be either vertex u or v . In (b), two more vertices are included in set O . It can be checked that O is now a minimum cardinality extended resolving 
set. Now, the distances of the vertices u and v to the set O are different, as dH1 (u, o4) = 3 �= 1 = dH2 (v, o4) and dH1 (u, o5) = 3 �= 1 = dH2 (v, o5). Hence, 
the vertices u and v can be distinguished and the source can be unambiguously localized, even if it is not known exactly how the two components are 
connected.

edges. For a graph H1 ∈ H(F ), a vertex u ∈ V and a set O  ⊆ V , denote by dH1 (u, O ) the distance vector of u to the set 
O in the graph H1, that is, (dH1 (u, O ))i is the length of the shortest path between u and the i-th vertex of O in the 
graph H1. A set of vertices O  ⊆ V (F ) such that for any two different vertices u and v , and any two graphs H1, H2 ∈ H(F ), 
dH1 (u, O ) �= dH2 (v, O ) is called an extended resolving set of F . The cardinality of a smallest extended resolving set of a 
graph F , denoted by γ (F ), is the extended metric dimension of F . Note that maxHi∈H(F ) β(Hi) ≤ γ (F ) ≤ n − 1.

Motivation. The introduction of resolving sets by Slater [10] was motivated by the application of placement of a minimum 
number of sonar detectors in a network, while Khuller, Raghavachari and Rosenfeld [9] were interested in finding the 
minimum number of landmarks needed for robot navigation on a graph. Recently, the problem of finding the minimum 
number of agents whose infection times need to be observed in order to identify the first infected agent for a simplified 
diffusion model was cast as finding the metric dimension of the graph [11]. Similarly, to identify a rumor source in a 
network based on the times when the nodes first heard the rumor, observed nodes should form a resolving set.

However, in many practical applications, the network topology is not completely known, and only locally can the net-
work be completely observed. For example, one wants to uniquely identify a source in a network possibly far away, but 
information about the presence/non-presence of edges is missing. More precisely, we want to find a subset of the vertices, 
from which we can identify a source uniquely, even when we only know that the graph has some edge connecting two (pos-
sibly far) components, and without knowing which edge it is. Hence, just by observing the distances between the nodes, 
and without knowing exactly how local components are connected, we wish to always unambiguously identify the source. 
An illustrative example is shown in Fig. 1.

We model incomplete network knowledge by assuming that the graph of interest is disconnected, with k components 
and k − 1 unobserved edges connecting the components, and we consequently introduce the concept of extended metric 
dimension. We are aware that our model is restrictive and is only a first step towards incomplete knowledge of the graph 
topology. A more general model, allowing the addition of more than k − 1 edges, and not necessarily only a spanning tree 
between the original components, is object of further research.

A similar, but different, approach was recently undertaken by [4]: their way of modeling incomplete information is the 
following: they call a set S doubly-resolving, if for any two vertices u, v there exist x, y ∈ S such that d(u, x) − d(u, y) �=
d(v, x) − d(v, y), and their goal is to find a doubly-resolving set of minimal cardinality. The motivation for the work [4] also 
stems from the application of source localization, but with the difference that the original activation time of the source is 
not known, while the graph structure is fully known.

Notation. For a connected graph G , i, j ∈ V (G), denote an i − j-path to be a sequence of all different vertices v0 = i,
v1, . . . , v� = j, such that for i = 0, . . . , � − 1, {vi, vi+1} ∈ E(G). Let L (Ci) denote the set of all leaves of component Ci . 
Let K (Ci) be the set of vertices of component Ci that have degree greater than two, and that are connected by paths of 
degree-two vertices to one or more leaves in Ci (when considering Ci as a separate graph and ignoring edges to other 
components). For a given vertex c ∈ K (Ci), call the leaves connected to c via such degree-two-paths to be the associated 
leaves of c. Note that for a tree that is not a path each leaf is associated to exactly one vertex c ∈ K (Ci). For a fixed 
component Ci of F , denote by Si a minimum cardinality resolving set of Ci (so that β(Ci) = |Si |). The M × N-grid with 
M, N ≥ 2, is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being 
in the range 0, . . . , M − 1, y-coordinates in the range 0, . . . , N − 1, and two vertices are connected by an edge whenever the 
corresponding points are at Euclidean distance 1. The four vertices of degree two are called corner vertices.

For a connected graph G , a vertex v is a boundary vertex of u if dG(w, u) ≤ dG(v, u), for all w that are neighbors of 
v [3]. A vertex v is a boundary vertex of G if it is a boundary vertex of some vertex of G . The set of all boundary vertices 
of a vertex u is denoted as ∂(u). The boundary of a vertex set S ⊆ V is the set of vertices in G that are boundary vertices 
for some vertex u ∈ S . The boundary of graph G , ∂(G), is the set of all boundary vertices of G . It is well known that the 
boundary is a resolving set, see [8]. For example, the boundary of a tree is the set of its leaves, whereas the boundary of a 
grid is the set of its 4 corner vertices, and the boundary of a cycle is the whole vertex set [8].
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Statements of results. We state the main results of this paper which are then proved in the following sections.

Theorem 1.1. Let F be a graph of k components, where each component is a tree. Then γ (F ) = min j
∑k

i=1,i �= j |L (Ci) | + |S j |, unless 
all components are isolated vertices, in which case γ (F ) = k − 1. In the first case, we may assume without loss of generality, that the 
minimum is attained for j = k. Then the set consisting of all leaves from components 1, . . . , k − 1 together with a minimum cardinality 
resolving set of the k-th component is a minimum cardinality extended resolving set of the graph F .

Theorem 1.2. Let F be a graph of k components, where each component is a complete graph. Let I1 denote the set of indices of 
components that are isolated vertices, I2 the set of indices of components that have only 2 vertices, and I3 the set of indices of 
components that contain at least 3 vertices. If I1 and I2 are empty, then γ (F ) = n − k and the set consisting of all but one vertex of 
each component is a minimum cardinality extended resolving set of the graph F . Otherwise, γ (F ) = ∑

i∈I3
(|Ci | − 1)+2|I2| +|I1| −1

(note that I3 might be empty, in which case the contribution of the preceding sum over I3 is zero). The set consisting of all but one 
vertex from each component of at least size 3 and all but one vertex from the components of sizes 1 or 2 is a minimum cardinality 
extended resolving set of the graph F .

Theorem 1.3. Let F be a graph of k components, where each component is a grid. Then γ (F ) = 3k − 1. Let O i = {
ri

1, ri
2, ri

3

}
denote a 

set of three corner vertices from component Ci. Then O  = ∪k−1
i=1 O i ∪ Sk is a minimum cardinality extended resolving set of F .

Theorem 1.4. Let F be a graph of k components, where each component is a cycle of size greater than 3. Let ke denote the number of 
components with an even number of vertices. Then γ (F ) = 2k + ke − 1, if ke > 0, and γ (F ) = 2k, otherwise. For a component Ci with 
an even number of vertices ni , define O i = {

ri
1, ri

2, ri
3

}
, where ri

1 , ri
2 are two neighboring vertices in Ci and ri

3 is a vertex at distance at 
least ni−2

2 from both of them, also in Ci . For a component Ci with an odd number of vertices ni , define O i = {
ri

1, ri
2

}
, where ri

1 and ri
2

are two vertices of Ci that are at distance ni−1
2 from each other. If ke = 0, O  = ∪k

i=1 O i is a minimum cardinality extended resolving 
set of F . If ke > 0, assume without loss of generality that Ck is a component with an even number of vertices. Then O  = ∪k−1

i=1 O i ∪ Sk
is a minimum cardinality extended resolving set of F .

For general graph classes we have the following results, the second one tightening the first one, as the boundary of a 
graph can be very large.

Theorem 1.5. For any arbitrary graph F with k connected components, the set O  = ∪k−1
i=1 ∂(Ci) ∪ Sk is an extended resolving set for F .

Theorem 1.6. Let F be an arbitrary graph with k connected components, let Si be a resolving set of Ci , and let O i = Si ∪ ∂(Si). Then 
O  = ∪k−1

i=1 O i ∪ Sk is an extended resolving set for F .

2. Proofs of main results for special graph classes

Proof of Theorem 1.1. Let u, v ∈ V (G) be any two different vertices, and let H1, H2 be any two graphs from the set 
of possible graphs H(F ). We need to show that the set O  = ∪k−1

i=1 L (Ci) ∪ Sk is a set of smallest cardinality for which 
dH1 (u, O ) �= dH2 (v, O ) holds when all components are trees, unless all components are isolated vertices, in which case 
O  = ∪k−1

i=1 Ci .
We first prove the claim of sufficiency. If both u and v are any two vertices in the same component, then u and v are 

distinguishable as the set of all the leaves of a tree is a resolving set. Hence we may assume u ∈ V (Ci) and v ∈ V (C j) for 
i �= j. We may also assume without loss of generality that i < k. Let p be the vertex in Ci and q the vertex in C j , such that 
any path from a vertex in Ci to any vertex in C j in H2 contains a subpath p − q. Note that dH2 (p, q) ≥ 1. If u is a leaf, as it 
is contained in L (Ci), it is distinguishable from v , since 0 = dH1 (u, u) < dH2 (u, v). If u is not a leaf, and u = p, then for any 
leaf r ∈ L (Ci), dH2 (r, v) = dH2 (r, p) +dH2 (p, q) +dH2 (q, v) ≥ dH1 (r, p) +dH2 (p, q) > dH1 (r, p). Thus, the two distance vectors 
are not equal either. Otherwise, if u is not a leaf, and u �= p, let r be a leaf in L (Ci) such that u is on the path from r to p
(such a leaf clearly exists). Then dH2 (r, v) = dH2 (r, u) + dH2 (u, p) + dH2 (p, q) + dH2 (q, v) > dH1(r, u) + dH1 (u, p) > dH1 (r, u). 
Thus, the two distance vectors also in this case are not equal, which completes the proof of sufficiency.

Now, we prove the claim of necessity. Let O be an arbitrary extended resolving set. We will show that O has to be at 
least of the size given by the sufficient condition.

Case I: Let Ci and C j be two components with at least 2 vertices, such that both have a leaf which is not included 
in O . Let u be such a leaf in component Ci with neighbor u′ and v be a leaf in C j with neighbor v ′ , such that u, v /∈ O . 
We claim that u and v are indistinguishable, as illustrated in Fig. 2a. We can construct H1 by connecting u with v ′ , and 
u with some vertex z� of every other component C� (if there are more than 2 components). H2 is then constructed by 
connecting v with u′ and v with the same vertex z� for every C� with � /∈ {i, j} as in H1; the other newly added edges are 
the same in H1 and H2 (and not involving either Ci nor C j). Now, we have dH1 (u, O ) = dH2 (v, O ), as follows. For any vertex 
r ∈ Ci \ {u}, we have dH1(u, r) = 1 + dH1 (u′, r), and dH2(v, r) = dH2 (u′, r) + 1 = dH1 (u′, r) + 1. For any vertex r ∈ C j \ {v}, we 
have dH1(u, r) = dH1 (v ′, r) + 1, and dH2 (v, r) = dH2 (v ′, r) + 1 = dH1 (v ′, r) + 1. Finally, for a vertex r ∈ C� , � �= i, j, we have 
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Fig. 2. Case I in the Proof of Theorem 1.1: Constructing trees H1 and H2 when both components Ci and C j have at least two vertices.

Fig. 3. Case II in the Proof of Theorem 1.1: Constructing trees H1 and H2 when component Ci has only one vertex.

dH1 (u, r) = 1 + dH1 (z�, r) = 1 + dH2 (z�, r) = dH2 (v, r). Thus the vertices u and v are indistinguishable, and the claim holds. 
Hence, either all the leaves of component Ci or component C j have to be included in O . Without loss of generality, let 
us assume that all the leaves of Ci are included in O . Now we assume that only |S j| − 1 vertices are selected from the 
component C j . In the first sub-case, when C j is not a path, from [2], we have |S j| = |L 

(
C j

) | − |K (
C j

) |. If only |S j | − 1
vertices were taken from C j , then there exists a vertex c in K

(
C j

)
with two associated leaves u and v , such that no vertex 

from the paths c − u nor c − v is included in O . But then there exist a vertex u′ on the path c − u, and a vertex v ′ on the 
path c − v , such that dC j (u′, c) = dC j (v ′, c). Note that u′ might coincide with u, and v ′ might coincide with v . The vertices 
u′ and v ′ are indistinguishable from each other in C j . Constructing a tree H1 by connecting any vertex z� from every other 
component C� , � �= j, with any fixed vertex in K

(
C j

)
, we see that u′ and v ′ still are indistinguishable by vertices in O , as 

shown in Fig. 2b. In the second sub-case, when C j is a path with leaves u and v , S j comprises only one leaf. If no vertex 
from C j is in O , H1 can be constructed by connecting one of its leaves u with some vertex z� of every other component C� , 
while H2 is constructed by connecting z� to the other leaf v , and vertices u and v are indistinguishable, as Fig. 2c shows. 
Thus, at least |S j | vertices have to be taken from C j .

Case II: Ci consists of only one vertex, u, and C j has at least 2 vertices. By the same arguments as in Case I, it can be 
seen that at least |S j | vertices from component C j have to be included in O . We will show now that u has to be included 
in O as well. In the first sub-case, when C j is a path, H1 can be constructed by connecting u with the leaf c of C j where 
c ∈ O , and then connecting c to a vertex z� of every other component C� , � �= i, j. Let v be the vertex in C j which is the 
neighbor of c. If u is not chosen, u is indistinguishable within H1 from v , as can be seen in Fig. 3a. As for the second 
sub-case, when C j is not a path, let c be a vertex in K

(
C j

)
such that the path to its associated leaf v ′ contains no vertices 

from O . Then H1 is constructed by connecting u with c, and then connecting c to a vertex z� of every other component 
C� , � �= i, j. Let v be the neighbor of c in C j which lies on the path c − v ′ . Note that v can coincide with v ′ . Then u is 
indistinguishable within H1 from v , as shown in Fig. 3b. Hence, u must also be included in O .

Case III: Both Ci and C j contain only one vertex. Call these u and v , respectively. At least one of them has to be included 
in O : otherwise, we can construct H1 by connecting both u and v to some vertex z� from every other component C� , 
� �= i, j, and then u and v are indistinguishable within H1. If there are only two components, each with one vertex, H1 is 
constructed by connecting them. Clearly, if neither vertex is included in O , the set O is empty, and the two vertices are 
indistinguishable within H1.

Therefore, for any pair of components Ci and C j , an extended resolving set O has to include all leaves from one com-
ponent and a resolving set from the other, unless both have size 1, in which case only 1 vertex is enough. Hence, if there 
exists at least one component which has 2 or more vertices, from all but one component all the leaves have to be taken, 
and from the remaining component, at least a resolving set. If all k components have only one vertex, the set O has to 
contain k − 1 vertices. �
Proof of Theorem 1.2. Let u, v ∈ V (G) be any two different vertices, and let H1, H2 be any two graphs from the set of 
possible graphs H(F ). First we need to show that the set O consisting of all but one vertex from each component is a set 
of smallest cardinality for which dH1 (u, O ) �= dH2 (v, O ) holds when all the components are complete graphs with at least 
3 vertices.
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Fig. 4. Proof of Theorem 1.2: Constructing trees H1 and H2 when both components Ci and C j are complete graphs.

First, we prove the claim of sufficiency. Let us denote the set of all but one vertex on component Ci by O i . If u and v are 
in the same component, they are distinguishable, since each O i is a resolving set of component Ci [9]. Hence, let us assume 
that vertex u ∈ V (Ci) is not included in O i , and that vertex v ∈ V (C j) is not included in O j , and i �= j. Let p ∈ V (Ci) and 
q ∈ V (C j), such that p − q is contained in every shortest path between vertices of components Ci and C j in H2. Note again 
that dH2 (p, q) ≥ 1. We prove the claim by contradiction and assume that the following relations hold:

dH1(u, r) = 1 = dH2(v, r) = dH2(v,q) + dH2(q, p) + dH2(p, r), (1)

for every r ∈ O i . Then for dH2 (p, q) = 1, the condition dH2 (p, r) = 0 would have to hold, while for dH2 (p, q) > 1, the 
condition dH2 (p, r) < 0 would have to hold for all r ∈ O i . In either case, this is not possible, and the claim is proved.

To prove the claim of necessity, let O be an arbitrary extended resolving set. Assume that in one component Ci there 
are two vertices, u and v , that are not included in O . We construct H1 by adding the edges between a fixed vertex 
t ∈ V (Ci) \ {u, v} and some fixed vertex z� of some other component C� . Then we have dH1 (u, r) = dH1 (v, r) for all r ∈ O , 
and this completes the proof.

Now, we consider the case when there is at least one component of size 1 or 2. We need to show that a minimum 
cardinality extended resolving set O should contain all but one vertex of each component of size at least 3 and all but one 
vertex from the components of sizes 1 or 2. First, we prove the claim of sufficiency. If either u or v is included in O , w.l.o.g. 
say u, then u and v are clearly distinguishable, as, dH1 (u, u) = 0 �= dH2 (u, v), for any H1, H2 ∈ (F ). Therefore, let u /∈ O be a 
vertex belonging to component Ci , and let v /∈ O be a vertex belonging to component C j . Let p ∈ V (Ci) and q ∈ V (C j), such 
that the path p − q is contained in every shortest path between vertices from Ci and C j in H2. Note that dH2 (p, q) ≥ 1. 
Since only one vertex from a component of sizes 1 or 2 is not included in O , let us assume u is in a component of size 
at least 3. Then by the same argument as in (1) and the following discussion, we must have dH1 (u, r) �= dH2 (v, r) for some 
r ∈ O .

To prove the claim of necessity, let O be an arbitrary extended resolving set. We will show that O has to be at least of 
the size given by the sufficient condition.

Case I: Let Ci be a component of size at least 3, with two vertices, u and v , that are not included in O . This is exactly 
the case discussed when there are only components of size at least 3 and it is shown in Fig. 4a. Thus, all but one vertex 
from each component of size at least 3 has to be included in O .

Case II: Let Ci be a component of size 2, where neither vertex is included in O . Let u, v be the two vertices from the 
component Ci . We can construct H1 by connecting u with any vertex z� ∈ V (C�), and H2 by connecting v again to the 
same vertex z� ∈ V (C�), for any � �= i. In both H1 and H2 all other connections between components are the same and not 
including Ci . Then, we have that u and v cannot be distinguished, as illustrated in Fig. 4b. Hence at least one vertex from a 
component of size 2 has to be included in O .

Case III: Let Ci be a component of size 2 with one vertex, u, that is not included in O . First, let us consider the sub-case 
when C j is a component of size 2, and vertex v ∈ V (C j) is a vertex not included in O . Then, H1 can be constructed by 
connecting u with the vertex c j ∈ C j , where c j ∈ O , and then connecting c j to some vertex z� of every other component 
C� . H2 can be constructed by connecting v with the vertex ci ∈ Ci , where ci ∈ O , and then connecting ci to the same vertex 
z� of every other component C� . All the other connections in H1 and H2 are the same and not including either Ci or C j . 
Now we have that dH1 (u, r) = dH2 (v, r) for all r ∈ O , and u and v are indistinguishable, as Fig. 4c shows. Next, we consider 
the sub-case when C j is an isolated vertex, not included in O . We can construct H1 by connecting ci ∈ V (Ci), where ci ∈ O
to the isolated vertex from C j . Then, u and the vertex from C j are indistinguishable. Hence, all but one vertex from the 
components of size 2 have to be included in O .

Case IV: Let both Ci and C j be isolated vertices. Note that this is equivalent to Case III of the Proof of Theorem 1.1. Now 
all but one vertex from the components of sizes 1 have to be included in O .

Hence, the set O should contain all but one vertex on each component of at least size 3 and all but one vertex from the 
components of sizes 1 or 2. �
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Proof of Theorem 1.3. Let u, v ∈ V (G) be any two different vertices, and let H1, H2 be any two graphs from the set of 
possible graphs H(F ). We need to show that the set O comprising three corner vertices from k − 1 components and a 
resolving set of the k-th component is a set of smallest cardinality for which dH1 (u, O ) �= dH2 (v, O ) holds when all the 
components are grids.

Let us denote the size of the grid Ci as xi × yi . We assume that each vertex l ∈ V (Ci) has assigned to it a position vector 
(xl, yl) which represents its location on the integer lattice Ci , with the first selected corner vertex ri

1 at position (0, 0), 
ri

2 at (xi, 0) and ri
3 at (0, yi). First, let us prove the claim of sufficiency. If u and v are in the same component, they are 

distinguishable, since any two corner vertices having the same value in one coordinate form a resolving set of a grid [9]. 
Hence, let us assume that u ∈ V (Ci) and v ∈ V (C j), for i �= j and i < k. Let p be the vertex in Ci and q the vertex in C j , such 
that any path from a vertex in Ci to any vertex in C j in H2 contains a subpath p − q, with dH2 (p, q) ≥ 1. If u = p, then for 
all r ∈ O i we have dH2 (v, r) = dH2 (r, p) +dH2 (p, q) +dH2 (q, v) > dH2 (r, p) = dH1 (r, u). Therefore u and v are distinguishable. 
For u �= p, let us prove the claim by contradiction. Assuming dH1 (u, O i) = dH2 (v, O i), we obtain the following equations:

dH1(u, ri
1) = xu + yu

= dH2(v, ri
1) = xp + yp + dH2(p,q) + dH2(q, v)

dH1(u, ri
2) = xi − xu + yu

= dH2(v, ri
2) = xi − xp + yp + dH2(p,q) + dH2(q, v)

dH1(u, ri
3) = xu + yi − yu

= dH2(v, ri
3) = xp + yi − yp + dH2(p,q) + dH2(q, v). (2)

The system of equations (2) can be rewritten in matrix form

Aα = b,

where

A =
⎡
⎣

1 1 −1
−1 1 −1
1 −1 −1

⎤
⎦ , α =

⎡
⎣

xu

yu

dH2(p,q) + dH2(q, v)

⎤
⎦ , b =

⎡
⎣

xp + yp

−xp + yp

xp − yp

⎤
⎦ .

A is a matrix of full rank, implying that the system of equations (2) has a unique solution, given by A−1b. The only solution 
is xu = xp , yu = yp , and dH2 (p, q) + dH2 (q, v) = 0, contradicting dH2 (p, q) ≥ 1. The set ∪k−1

i=1 O i ∪ Sk is a set of cardinality 
3k − 1, and this completes the sufficiency claim.

For the claim of necessity, let us assume that there exist two components Ci and C j , such that from each of them, only 
two vertices are chosen. Let 

{
ri

1, ri
2

}
be the set of two vertices from Ci and let 

{
r j

1, r j
2

}
be the set of two vertices from C j

that are included in O .
Case I: In at least one component, the vertices included in O are not two corner vertices with one identical coordinate. 

Let us assume that this is the case with Ci . We claim that there exist two vertices u and v in Ci which are indistinguishable 
by ri

1 and ri
2. Denote by (xri

1
, yri

1
) and by (xri

2
, yri

2
) the positions at which ri

1 and ri
2 are located in the grid.

First, let us consider the sub-case, when ri
1 and ri

2 differ in both coordinates, as shown in Fig. 5a. Without loss of 
generality, let us assume that yri

1
< yri

2
. Let �x = |xri

2
− xri

1
| and �y = yri

2
− yri

1
. Let u be the vertex at (xri

2
, yri

1
). For 

�x ≤ �y , let v be the vertex at (xri
1
, yri

1
+ �x), while for �x > �y , we consider two possible cases. For xri

1
< xri

2
, let v

be the vertex at (xri
1
+ �x − �y, yri

2
), and for xri

1
> xri

2
, let v be the vertex at (xri

2
+ �y, yri

2
). Constructing a tree H1 by 

connecting some vertex z� from every other component C� , � �= i, with either ri
1 or ri

2, we have dH1 (u, ri
1) = �x = dH1 (v, ri

1)

and dH1 (u, ri
2) = �y = dH1 (v, ri

2). Hence the vertices u and v are indistinguishable by any vertex in O .
In the second sub-case, ri

1 and ri
2 differ in only one coordinate, as Fig. 5b illustrates. Then, let u and v be two neighbors 

of ri
1, which are not on the shortest path ri

1 − ri
2. These two vertices exist, as all vertices on the grid, except the corner 

vertices, have at least 3 neighbors. Now, we have dCi (u, ri
1) = 1 = dCi (v, ri

1) and dCi (u, ri
2) = 1 + dCi (r

i
1, r

i
2) = dCi (v, ri

2). 
Therefore, there always exist two vertices u and v , such that they are not distinguishable by any two vertices of Ci which 
are not two corner vertices with one identical coordinate. Constructing a tree H1 by connecting some vertex z� from every 
other component C� , � �= i, with either ri

1 or ri
2, we see that u and v still are indistinguishable by any vertex in O .

Case II: From both components Ci and C j , two corner vertices with one identical coordinate are included in O . Let u′ be 
a vertex on Ci that is a neighbor of ri

1 such that it shares one coordinate with both ri
1 and ri

2. Then let u be a neighbor of 
u′ such that it does not share any coordinates with ri

1. Similarly, let v ′ be a vertex in C j that is a neighbor of r j
1 such that 

it shares one coordinate with both r j
1 and r j

2. Then let v be a neighbor of v ′ such that it does not share any coordinates 
with r j . We can construct H1 by connecting u with v ′ and u with some vertex z� of every other component C� (if there 
1
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Fig. 5. Proof of Theorem 1.3: Constructing H1 and H2 when the components are grids.

are more than 2 components). Then H2 is constructed by connecting v with u′ and v with the same vertex z� as in H1, as 
shown in Fig. 5c. The distances of u and v from the vertices in O are

dH1(u, ri
1) = dH2(v, ri

1) = 2

dH1(u, ri
2) = dH2(v, ri

2) = 1 + dH1(u′, ri
2)

dH1(u, r j
1) = dH2(v, r j

1) = 2

dH1(u, r j
2) = dH2(v, r j

2) = 1 + dH2(v ′, r j
2)

dH1(u, r) = dH2(v, r) = 1 + dH1(z�, r),

for r ∈ C� , � �= i, � �= j. Hence the vertices u and v are indistinguishable.
Therefore, at least 3 vertices of component Ci or component C j have to be included in O . Without loss of generality, let 

us assume that 3 vertices in Ci are included in O . Now we assume that only |S j | − 1 = 1 vertex is selected from C j . Then 
there exist two vertices u and v in component C j , which are at the same distance from the only vertex r included from S j . 
We construct H1 by connecting some vertex z� from every other component C� to vertex r in component C j . Observe that 
the vertices u and v are still not distinguishable within H1, and hence at least |S j | = 2 vertices have to be included from 
component C j . In conclusion, for any two components, at least 3 vertices from one and 2 vertices from the other one have 
to be included in O , and thus |O | ≥ 3(k − 1) + 2 = 3k − 1. �
Proof of Theorem 1.4. Let u, v ∈ V (G) be any two different vertices, and let H1, H2 be any two graphs from the set of 
possible graphs H(F ). We need to show that the set O as defined in the statement of the theorem with cardinality equal 
to 2k + ke − 1 if the number of components with an even number of vertices, ke is non-zero, or 2k, otherwise, is a set of 
smallest cardinality for which dH1 (u, O ) �= dH2 (v, O ) holds when all components are cycles.

First, let us prove the claim of sufficiency. As in Theorem 1.3, let us assume that vertex u is located in component Ci
and vertex v is in component C j (when u and v belong to the same component, they are clearly distinguishable, as any 
two neighboring vertices of an even cycle and any two vertices at distance (ni − 1)/2 in the case of an odd cycle Ci form 
a resolving set of a cycle). Let u ∈ V (Ci), v ∈ V (C j), with i �= j and i < k. Let p be the vertex in Ci and q the vertex in C j , 
such that any path from a vertex in Ci to any vertex in C j in H2 contains a subpath p −q, with dH2 (p, q) ≥ 1. If the vertices 
u and v are not distinguishable by O i , then dH1(u, r) = dH2 (v, r) = dH1 (p, r) + dH2 (p, q) + dH2 (q, v) holds for some H1 and 
H2 and all r ∈ O i . Therefore, the following must hold

dH1(u, r) > dH1(p, r). (3)

Case I: Both components Ci and C j have an even number of vertices. For a component Ci , due to the placement of ri
3, 

the distance dH (ri
1, r

i
3) ∈

{
ni−2

2 ,
ni
2

}
, for any H ∈ H(F ). The same holds for dH (ri

2, r
i
3). Let us first consider the sub-case 

where both p and u lie in the same half of the cycle, i.e., both lie either on the shorter path ri
2 − ri

3 or on the shorter path 
ri

1 − ri
3, as shown in Fig. 6a. Suppose without loss of generality that they both lie on the shorter path ri

2 − ri
3. As one of the 

vertices out of {u, p} is closer to ri
3 and the other one is closer to ri

2, (3) cannot hold simultaneously for both ri
2 and ri

3. The 
other sub-case that needs to be considered is when u and p lie in different semi-cycles, one on the shorter path ri

2 − ri
3, 

and the other on the shorter path ri
1 − ri

3, as illustrated in Fig. 6b. Notice that for any vertex w that is on the shorter path 
ri

1 − ri
3, the distance dH (w, ri

2) = min{dH (w, ri
1) + 1, dH (w, ri

3) + dH (ri
3, r

i
2)}. We have dH (w, ri

1) + 1 ≤ ni
2 − 1 + 1 = ni

2 , and 
also dH (w, ri

3) + dH (ri
3, r

i
2) ≥ 1 + ni−2

2 = ni
2 . Therefore, the first term of the minimum can never be larger than the second 

term, hence we can write dH (w, ri
2) = dH (w, ri

1) + 1. The same reasoning holds when w is on the shorter path ri
2 − ri

3, and 
then we can write dH (w, ri

1) = dH (w, ri
2) + 1. Now, for vertices u and p that lie in different semi-cycles, we either have 

dH1 (u, ri ) = dH1 (u, ri ) + 1 and dH1 (p, ri ) = dH1 (p, ri ) − 1, or dH1(u, ri ) = dH1 (u, ri ) − 1 and dH1 (p, ri ) = dH1 (p, ri ) + 1. If 
1 2 1 2 1 2 1 2
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Fig. 6. Case I in the Proof of Theorem 1.4: Both cycle components have an even number of vertices.

Fig. 7. Proof of Theorem 1.4: Constructing H1 and H2 when the components are cycles.

now (3) holds and u and v are indistinguishable by ri
1 and ri

2, then we would have to have

dH2 (p,q) + dH2 (q, v) = dH1 (u, ri
1) − dH1 (p, ri

1) = dH1 (u, ri
2) − dH1 (p, ri

2).

If now dH1 (u, ri
1) = dH1 (u, ri

2) + 1 and dH1 (p, ri
1) = dH1 (p, ri

2) − 1 holds, then we would have to have

dH1 (u, ri
1) − dH1 (p, ri

1) = dH1 (u, ri
2) − 1 − dH1 (p, ri

2) − 1,

which is clearly not possible. If dH1 (u, ri
1) = dH1 (u, ri

2) − 1 and dH1 (p, ri
1) = dH1 (p, ri

2) + 1 holds, the analogous contradiction 
appears, and hence in both cases (3) cannot hold.

Case II: At least one of the components Ci or C j has an odd number of vertices. Let us assume that this is the case 
with Ci . Similarly, as in Case I, let us first consider the sub-case where both p and u lie in the same half of the cycle, i.e. 
both on the shorter path ri

1 − ri
2 or both on the longer path ri

1 − ri
2. As before, one of the vertices out of {u, p} is closer to ri

1, 
and the other is closer to ri

2, and thus (3) cannot hold simultaneously for both ri
1 and ri

2. The other sub-case that needs to 
be considered is when u and p lie in different semi-cycles, one on the shorter path ri

1 − ri
2, of length ni−1

2 , and the other on 
the longer path ri

1 − ri
2, of length ni+1

2 . Then either we have dH1(u, ri
2) = ni−1

2 −dH1 (u, ri
1) and dH1 (p, ri

2) = ni+1
2 −dH1 (p, ri

1), 
or dH1(u, ri

2) = ni+1
2 − dH1 (u, ri

1) and dH1 (p, ri
2) = ni−1

2 − dH1 (p, ri
1). From dH1 (u, ri

2) > dH1 (p, ri
2) as given by Condition (3), 

we obtain dH1 (p, ri
1) > dH1 (u, ri

1) + 1 or dH1(p, ri
1) > dH1 (u, ri

1) − 1. In either case, we get that (3) cannot hold for both 
r = ri

1 and r = ri
2.

Note that when comparing components Ci and C j with i �= j, only vertices of the extended resolving set coming from 
component Ci were used to distinguish between any two vertices from components Ci and C j . Hence, for one component, 
say, Ck , it is enough to choose a resolving set, that is, a set that distinguishes all vertices within Ck (a minimum cardinality 
resolving set is always of size 2). Hence, if ke > 0, we may assume that Ck is an even cycle. Thus only 2 vertices are chosen 
from Ck , and from all other even cycles 3 vertices are chosen. Thus, in this case 2k + ke − 1 vertices are enough. If ke = 0, 
then 2 vertices are chosen from each component, giving the bound 2k in this case.

Now, we prove the claim of necessity. Observe first that clearly at least 2 vertices of each cycle have to be chosen, as 
otherwise the two neighbors of the chosen vertex r cannot be distinguished; one can construct a graph H1 by connecting r
with one fixed vertex of each other component, and the two neighbors of r are indistinguishable.

Let us first assume that there exist two components Ci and C j both containing an even number of vertices, and from 
each component, only two vertices are included in O . Denote by ri

1, ri
2 the vertices chosen from Ci and by r j

1, r
j
2 the vertices 

chosen from C j . If in at least one component, say Ci , the two selected vertices ri
1 and ri

2 are at distance exactly ni
2 from 

each other, let u and v be two neighbors of ri
1. Note that u and v are equidistant from both ri

1 and ri
2. Constructing H1

by connecting some vertex z� from every other component C� to ri
1, the vertices u and v are still not distinguishable 

within H1, as shown in Fig. 7a. Otherwise, let us assume that in both components Ci and C j the vertices selected in O are 
not at distance exactly ni

2 (
n j
2 , respectively) from each other. Let u then be a neighbor of ri

1 in Ci that is on the longer path 
ri − ri , and let v be a neighbor of r j in C j that is on the longer path r j − r j . We can construct H1 by connecting u with r j
1 2 1 1 2 1
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and u with some vertex z� of every component C� (if there are more than 2 components). H2 is constructed by connecting 
v with ri

1 and v with the same vertex z� (for every other component C�) as in H1, as shown in Fig. 7b. The distances of the 
vertices u, v from the vertices in O are

dH1(u, ri
1) = dH2(v, ri

1) = 1

dH1(u, ri
2) = dH2(v, ri

2) = 1 + dH1(r
i
1, ri

2)

dH1(u, r j
1) = dH2(v, r j

1) = 1

dH1(u, r j
2) = dH2(v, r j

2) = 1 + dH2(r
j
1, r j

2)

dH1(u, r) = dH2(v, r) = 1 + dH1(z�, r),

for r ∈ O l , l �= i, j. Hence the vertices u and v are indistinguishable.
Therefore, if both Ci and C j have an even number of vertices, at least 3 vertices of component Ci or 3 vertices of 

component C j have to be included in O . Hence, from all but one component with an even number of vertices, 3 vertices 
have to be chosen, and from the remaining ones, at least 2. This completes the proof. �
3. Proofs of results for general graph classes

We start with the following easy observation.

Observation 3.1. Let G be a connected graph. Consider any two vertices r and u of G, and consider a shortest path r − u. Either u is a 
boundary vertex for r, or there exists some vertex u′ such that the shortest path r − u can be extended to a shortest path r − u′ , with u′
being a boundary vertex for r.

Proof. If u is not a boundary vertex for r, then by definition there exists a neighbor w of u such that dG (w, r) > dG(u, r). 
Thus, dG(w, r) ≥ dG(u, r) + 1, and in particular, a shortest path r − u can be extended to w such that along this extended 
path, the lower bound can be attained, and thus dG (w, r) = dG (u, r) + 1. Hence, the path r − w going through u is also 
a shortest path r − w . If w is then a boundary vertex for r, we are done, and otherwise we iteratively apply the same 
argument with w playing the role of u. The claim follows. �

We are now ready to show our results in terms of boundary vertices.

Proof of Theorem 1.5. Let u, v ∈ V (G) be any two different vertices, and let H1, H2 be any two graphs from the set of 
possible graphs H(F ). We need to show that for the set O  = ∪k−1

i=1 ∂(Ci) ∪ Sk the condition dH1 (u, O ) �= dH2 (v, O ) holds for 
an arbitrary graph.

Since the boundary is a resolving set, any two vertices belonging to the same component are distinguishable by a set 
that contains the boundaries of k − 1 components and a resolving set of the k-th component. As before, let u ∈ V (Ci), 
v ∈ V (C j), let p ∈ V (Ci) and q ∈ V (C j) such that any path from a vertex in Ci to any vertex in C j in H2 contains a 
subpath p − q, and let i < k. If u is a boundary vertex, it is distinguishable from v , since 0 = dH1 (u, u) < dH2 (u, v). If u is 
not a boundary vertex, and u = p, then for any boundary vertex r ∈ ∂(Ci), dH2(r, v) = dH2 (r, p) + dH2 (p, q) + dH2 (q, v) ≥
dH1 (r, p) +dH2 (p, q) > dH1 (r, p). Thus, the two distance vectors are not equal either. Now, we consider the case when u �= p. 
If u is a boundary vertex for p, let u′ = u. Otherwise, the shortest path between p and u in component Ci can be extended 
to a shortest path p − u′ by Observation 3.1, such that u′ is a boundary vertex of p. For a fixed shortest path p − u′ we have 
dH2 (u′, v) = dH2 (u′, p) + dH2(p, q) + dH2 (q, v) = dH1 (u′, u) + dH1(u, p) + dH2 (p, q) + dH2 (q, v) > dH1 (u′, u), which completes 
the proof. �
Proof of Theorem 1.6. Let u, v ∈ V (G) be any two different vertices, and let H1, H2 be any two graphs from the set of 
possible graphs H(F ). We need to show that for the set O  = ∪k−1

i=1 O i ∪ Sk , where O i = Si ∪ ∂(Si), the condition dH1 (u, O ) �=
dH2 (v, O ) holds for an arbitrary graph.

Let r ∈ Si be a vertex from a resolving set of a component Ci . Once more, let u ∈ V (Ci), v ∈ V (C j), with i < k. Let p
be the vertex in Ci and q the vertex in C j , such that any path from a vertex in Ci to any vertex in C j in H2 contains a 
subpath p − q, with dH2 (p, q) ≥ 1. As in the proof of Theorem 1.5, if u is a boundary vertex for r, let u = u′ . Otherwise, by 
Observation 3.1, the shortest path between r and u in component Ci can be extended to a shortest path r −u′ , with u′ being 
a boundary vertex for r. We need to show that dH1(u, u′) �= dH2 (v, u′), for any vertex v belonging to some other component 
C j (as in the previous theorems, if u and v are in the same component, they are distinguishable by the resolving set of that 
component). If u is a boundary vertex itself, then we clearly have dH1 (u, u′) = 0 �= dH2 (v, u′), so we may assume u �= u′ . If 
r does not distinguish u and v , then dH1 (u, r) = dH2 (v, r) = dH1 (p, r) + dH2 (p, q) + dH2 (q, v) and

dH1(u, r) > dH1(p, r), (4)

holds, since dH2 (p, q) ≥ 1.
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Fig. 8. Proof of Theorem 1.6: Extending the shortest path r − u to a shortest path r − u′ .

Case I: There exists a shortest path from u′ to p in component Ci that passes through u. Hence there exists a shortest 
path from u′ to v in H2 that passes through u. Then we have dH2 (u′, v) = dH1 (u′, u) + dH1 (u, p) + dH2 (p, v) > dH1 (u′, u). 
Thus u and v have different distances to u′ , and they are distinguishable.

Case II: All shortest paths from u′ to p in component Ci do not pass through u. Hence no shortest path from u′ to v in 
H2 passes through u. Let b be the vertex closest to u on this path, such that the path b − u′ is common to both shortest 
paths p − u′ and r − u′ , as illustrated in Fig. 8. Note that b might coincide with u′ , but not with u. Also observe that since 
b is on the extension of a shortest path r − u to a shortest path r − u′ , at least one shortest path r − b passes through u. 
Therefore, we have

dH1(r, u) + dH1(u,b) ≤ dH1(r, p) + dH1(p,b). (5)

Since (4) holds, from (5) it follows that

dH1(u,b) < dH1(p,b). (6)

Now, from (6) and the fact that dH2 (v, p) = dH2 (v, q) + dH2 (q, p) ≥ 1 we obtain

dH2(v, u′) = dH2(v, p) + dH2(p,b) + dH2(b, u′)
> dH2(v, p) + dH2(u,b) + dH2(b, u′)
> dH1(u, u′).

Therefore, u and v have different distances to the boundary vertex u′ , and they are thus distinguishable by a boundary 
vertex of a vertex belonging to the resolving set. The theorem follows. �

Inspecting the proofs of Theorems 1.1, 1.3, 1.4, we see that when comparing two vertices from Ci and C j , in fact only the 
structure of Ci and its resolving set matters. Therefore, whenever one of the components of the observed disconnected graph 
F is a tree (cycle, or grid, respectively), then instead of including a resolving set and its boundary vertices, it is sufficient to 
choose all leaves in the case the component is a tree (two neighboring vertices together with a vertex at distance at least 
n−2

2 from both of them in the case of the even cycle on n vertices, two vertices at distance n−1
2 from each other in the 

case of an odd cycle on n vertices, and three corner vertices in the case of the grid, respectively). Note that this might be 
better than the bound claimed by Theorem 1.6, which for example in the case of the grid requires all four corner points 
to be chosen. Also, note that applying Theorem 1.6 to the case when all components are trees can yield exactly the results 
of Theorem 1.1. When a subset of leaves is selected as a resolving set of a tree component, then the resolving set and its 
boundary is precisely the set of all the leaves, hence Theorem 1.6 constructs a minimum cardinality extended resolving set. 
However, for some classes of graphs we conjecture that the bound given in Theorem 1.6 can be arbitrarily bad, and it is 
future work to make this argument rigorous.

4. Concluding remarks

We have introduced and analyzed the concept of an extended metric dimension for different graph classes. The pro-
posed metric enables the introduction of uncertainty in graph topology in problems modeled with metric dimension. One 
such problem is to find the minimum number of observed nodes needed for identification of the source node of network 
diffusion, in the settings where knowing the full network topology is not feasible.

We have given exact answers on this extended metric dimension for trees, cycles, grids, and complete graphs, and have 
given general upper bounds for arbitrary graphs in terms of their boundary. Needless to say, it would be interesting to 
determine this number exactly for other graph classes, such as bipartite graphs, or to find tighter bounds. Additionally, in 
practical scenarios involving network diffusion, links connecting the vertices of the network represent stochastic propagation 
times of some rumor or a virus. Hence, it would be of practical interest to analyze a suitably defined stochastic version of 
both the standard and extended metric dimension problems.
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