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In the paper ‘‘On the limiting distribution of the metric dimension for random forests’’ the metric
dimension β(G) of sparse G(n, p) with p = c/n and c < 1 was studied (Theorem 1.2). In the proof
of this theorem, for the convergence in distribution Stein’s Method was applied incorrectly (see
comments later). We provide in this corrigendum a right way to prove the theorem. In order to state
the corrected version of Theorem 1.2 of the original paper, we need a few definitions. Define T as the
family of all labeled trees. For each T ∈ T , let tn(T ) be the number of labeled isolated trees isomorphic
to T in G ∈ G(n, p) with p = c/n (the labeling is obtained from the relative ordering of the labels
of the vertices and projecting it onto {1, . . . , |T |}), and let {tn(T )}T be the corresponding sequence.
Define also t∗n (T ) := (tn(T ) − E[tn(T )]) /

√
n and by {t∗n (T )} (or simply t∗n below) be the corresponding

normalized and scaled sequence. Note that for every T with |T | > n, tn(T ) = 0 and t∗n (T ) = 0. Define
X = {X(T )}T∈T (the index set here and below is the set of all isolated labeled trees, where the labeling
is obtained from the relative ordering and projecting it onto {1, . . . , |T |}) to be the Gaussian sequence
with 0 means and covariance function cov(X(T1), X(T2)) = h(T1)δ(T1, T2) + (c − 1)k1k2h(T1)h(T2),
where h(T ) = c−1(ce−c)k/k! with |T | = k, and δ(·, ·) is the Kronecker symbol.

Theorem 1.2 in the original paper has then to be replaced by the following theorem:

Theorem 1.1 (Theorem 1.2 in the Original Paper). Let G ∈ G(n, p).

(i) For p = o
(
n−1

)
, β(G) = n(1 + o(1)) asymptotically almost surely.

(ii) For p =
c
n with 0 < c < 1, we have E [β(G)] = Cn(1 + o(1)), where
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and Varβ(G) = Θ(n). Moreover, the sequence of random variables {(β(G) − E [β(G)])/
√
n} converges in

distribution (as n → ∞) to
∑

Tβ(T )X(T ), which is a sum of Gaussian variables of computable non-zero
covariances as defined above.

Part (i) and the calculation of the asymptotic expectation and the order of the variance of part (ii)
in Theorem 1.2 of the original paper was the same and the results still hold, but the convergence to
the normal distribution was wrong: indeed, in the original paper, in addition to the convergence to
the normal distribution an upper bound on the speed of convergence to the normal distribution was
given. This upper bound came from an application of Stein’s Method:

Theorem 1.2 (Theorem 1 of [1] and its Following Remarks). Let I ⊆ N, Ki ⊆ I and i ∈ I , be finite index sets
and suppose that the random variables W, {Xi}i∈I , {Wi}i∈I and {Zi}i∈I have finite second moment. Suppose
that W =

∑
i∈IXi, with E [Xi] = 0 for i ∈ I , and E

[
W 2

]
= 1. Suppose furthermore that W = Wi + Zi,

for any i ∈ I , where Wi is independent of both Xi and Zi, and let Zi =
∑

k∈Ki
Xk, for any i ∈ I . Let

ε = 2
∑
i∈I

∑
k,ℓ∈Ki

(E [|XiXkXℓ|] + E [|XiXk|]E [|Xℓ|]) . (2)

Then, if {W (n)
} is a sequence of random variables, whose elements can all be decomposed as W, and for

which we denote by ε(n) the corresponding value of ε from (2), we have that W (n) tends in distribution to
a standard normal random variable, and

d(L(W (n)), Φ) ≤ Kε(n),

for some universal constant K .

As mentioned, Stein’s Method was applied with Ki ⊆ [n] being the set of indices of those vertices
belonging to the same connected component as the vertex with index i. Unfortunately, in order to
apply this method, the index sets have to be initially fixed and cannot be random sets, and the proof
given there is not correct.

However, the convergence to the normal distribution still holds as an application of the following
result of Pittel [3] (without an upper bound on the speed of convergence, however): Define for each
δ > 0 the space ℓ1,δ as the Banach space of all sequences x = {x(T )}T with the norm ∥x∥δ :=∑

T |T |
δ
|x(T )| < ∞. Note that in particular t∗n ∈ ℓ1,δ for each δ > 0, since for |T | = k with k > n,

clearly t∗n (T ) = 0. Adapted to our setup of G(n, p) with p = c/n and 0 < c < 1, Pittel’s theorem reads
as follows:

Theorem 1.3 (Theorem 2 and the Following Proposition of [3]). Let G ∈ G(n, p) with p = c/n and
0 < c < 1. For each δ > 0, X ∈ ℓ1,δ almost surely, and t∗n converges to X in distribution. By Portmanteau’s
theorem, the latter means that for every bounded continuous function f : ℓ1,δ → R, E

[
f (t∗n )

]
converges

to E [f (X)].

For our concrete purpose of themetric dimension, for any x ∈ ℓ1,δ define g(x) =
∑

Tβ(T )x(T ). Since
β(T ) ≤ |T |, we have |g(x)| ≤

∑
T |T ||x(T )| = ∥x∥1. Since g is linear, g is a continuous functional in ℓ1,δ

with δ = 1. Let G′ be the graph consisting of the connected components of G ∈ G(n, p) that are not
trees. By Theorem 5.7 of [2], E

[
|G′

|
]

= O(1), and hence, since β(G′) ≤ |G′
|, we have E

[
β(G′)

]
= O(1).

Therefore, for any function ωn tending to infinity with n, β(G′)/ωn converges to 0 in distribution. We
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thus have

(β(G) − E [β(G)])/
√
n =

(∑
T

β(T )tn(T ) −

∑
T

β(T )E [tn(T )]
)
/
√
n +

β(G′) − E
[
β(G′)

]
√
n

=

∑
T

β(T )t∗n (T ) + o(1) = g(t∗n ) + o(1).

Now, we aim to show that (β(G) − E [β(G)])/
√
n converges in distribution to g(X), or equivalently

g(t∗n ) to g(X). Seeing g as a function g : ℓ1,δ → R, g is continuous but not bounded. Let Yn = g(t∗n ) and
Y = g(X). To show that Yn converges to Y , by Portmanteau’s theorem, it suffices to show that for every
bounded continuous function f : R → R,E [f (Yn)] converges toE [f (Y )]. Note that f (Yn) = f ◦g(t∗n ) and
f (Y ) = f ◦ g(X). Observe that f ◦ g is continuous as a composition of two continuous functions, and it
is also bounded, since f is bounded. Thus,E

[
f ◦ g(t∗n )

]
converges toE [f ◦ g(X)], since by Theorem 1.3,

t∗n converges to X in distribution. Thus, Yn converges to Y , and the remaining part of item (ii) of
Theorem 1.1 is proven.
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