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Abstract. Suppose that you add rigid bars between points in the plane, and
suppose that a constant fraction q of the points moves freely in the whole plane;

the remaining fraction is constrained to move on fixed lines called sliders.

When does a giant rigid cluster emerge? Under a genericity condition, the
answer only depends on the graph formed by the points (vertices) and the

bars (edges). We find for the random graph G ∈ G(n, c/n) the threshold

value of c for the appearance of a linear-sized rigid component as a function
of q, generalizing results of [8]. We show that this appearance of a giant

component undergoes a continuous transition for q ≤ 1/2 and a discontinuous

transition for q > 1/2. In our proofs, we introduce a generalized notion of
orientability interpolating between 1- and 2-orientability, of cores interpolating

between the 2-core and the 3-core, and of extended cores interpolating between
the 2 + 1-core and the 3 + 2-core; we find the precise expressions for the

respective thresholds and the sizes of the different cores above the threshold.

In particular, this proves a conjecture of [8] about the size of the 3 + 2-core.
We also derive some structural properties of rigidity with sliders (matroid and

decomposition into components) which can be of independent interest.

1. Introduction

Consider a set of points, some of them allowed to move freely in the Euclidean
plane, and some constrained to move on fixed lines, called sliders. The free points
have two degrees of freedom, the points attached to sliders have only one. Now,
add bars between pairs of these points; a bar fixes the length between the two
endpoints. The points and bars form a framework. A framework is said to be rigid
if it cannot be deformed (but can possibly be translated and rotated on the plane);
equivalently, it is rigid if the distance between any pair of points, connected by
a bar or not, is fixed. Characterizing the rigidity of a framework is very difficult
in general. In the absence of sliders, a celebrated theorem by Laman [9] ensures
that for a generic framework, its rigidity properties only depend on its underlying
graph, where points are vertices and bars are edges: the geometry does not enter.
This theorem has been generalized to frameworks with sliders in [19]. In the whole
article, we will implicitly assume that all frameworks are generic, so that rigidity
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has a purely graph-theoretical characterization and we can deal with vertices and
edges instead of points and bars. This will be detailed in Section 2.

We will call a vertex of type 1 (resp. type 2) if it is (resp. is not) connected to
a slider. Consider now a percolation setting: take a set of n vertices, a fraction q
of which are of type 2, and add edges randomly. The questions are: When does a
giant (that is: including a positive fraction of the vertices) rigid structure emerge?
What is its size? When edges are sampled independently at random between pairs of
vertices, the resulting graph is an Erdős-Rényi random graph G ∈ G(n, c/n). In this
case and for q = 1 (no slider), Kasiviswanathan et al. [8] showed that the threshold
for a giant rigid component is an explicitly computable constant c with c ' 3.588,
and that the transition is discontinuous (see below the statement of Theorem 2.12
for a more detailed explanation): as soon as the giant rigid component appears, it
already includes a positive fraction of all n vertices. This recovers numerical and
heuristic results found earlier in the physics literature [15, 4], and contrasts with
the emergence of a giant connected component at c = 1, which is continuous.

Indeed when q = 0, we will see that rigidity is closely related to the emergence of
the giant connected component. Our goal is to investigate the case where q ∈ [0, 1].
We are thus interested in situations interpolating between standard connectivity
percolation and rigidity percolation as studied in [8]. We obtain the following
results:

• We compute the threshold for rigidity percolation as a function of q.
• We show that the transition is continuous for q ≤ 1/2 and discontinuous for
q > 1/2, thus uncovering what is called a “tricritical” point in statistical
mechanics, for q = 1/2.
• On the way, we obtain new results on cores for Erdős-Rényi random graphs

and their generalization to two types of vertices. We prove in particular a
conjecture on the size of the 3 + 2-core in [8].

Rigidity percolation has physical motivations: it is a model to understand some
properties of network glasses and proteins [21, 17, 3, 18]. Thus, problems related
to ours have been investigated by theoretical physicists. We have already cited
investigations on random graphs starting with [15, 4], with only one type of vertex
(type 2, or more generally type k). In [14], Moukarzel heuristically studies a model
with two types of vertices: a fraction of the vertices are pinned to the plane, instead
of being allowed to move in one direction; they could be called “type 0” vertices. In
this case, the transition disappears when the fraction of pinned vertices increases:
there is no tricritical point, but rather a critical point.

In order to compute the threshold for rigidity, we use the same connection as [8]
between orientability and rigidity. We then use recently introduced and powerful
methods to compute the orientability threshold [12]. To investigate the continuous
or discontinuous character of the transition, we rely on various refinements of a
method introduced in [6] to investigate the cores of a random graph. In Section 2,
we define our notion of rigidity with sliders and state our main results for Erdős-
Rényi random graphs. In Section 3, we gather our structural results for rigidity with
sliders: matroid and decomposition into components. We then prove our results
for random graphs: in Section 4, we compute the orientability threshold, and in
Section 5, we relate it to rigidity. We then prove our main theorems in Sections 6,
7 and 8. Finally a technical but important lemma is proved in Section 9.
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2. Some definitions on rigidity and statements of results

Throughout this paper log denotes the natural logarithm. Also, throughout the
paper G is a graph (V,E) with |V | = n and |E| = m. All our graphs are simple.
Vertices are either of type 1 or of type 2, and for i ∈ {1, 2}, ni denotes the number
of vertices of type i, so that n = n1 + n2.

Subgraphs are typically denoted by G′ with ni(G
′) vertices of type i ∈ {1, 2},

n(G′) = n1(G′) + n2(G′) vertices in total and m(G′) edges. When the context is
clear, we use the following notations: n′ = n(G′), n′i = ni(G

′) and m′ = m(G′).

Definition 2.1. Let G be a graph with n = n1 + n2 vertices and m edges. G is
sparse if for all subgraphs G′ ⊆ G on n′ = n′1 + n′2 ≥ 2 vertices and m′ edges, we
have:

m′ ≤ n′1 + 2n′2 + min{0, n′1 − 3} = 2n′ −max{n′1, 3}.

In terms of physics, a sparse graph represents a structure without redundant
constraint. The special treatment needed for subgraphs with 0, 1 or 2 vertices
of type 1, i.e. when n′1 < 3, can then be understood: a structure which is not
connected at all to the underlying plane (that is n′1 = 0) cannot be pinned, and
always keeps at least three degrees of freedom, hence the −3; a structure with one
slider (that is n′1 = 1) always keeps at least two degrees of freedom, hence the −2;
and similarly for n′1 = 2. If n′1 ≥ 3, the structure can be completely pinned to the
underlying plane, and thus has zero degree of freedom.

Remark 2.2. We follow here Streinu and Theran [19], with a simplified terminol-
ogy to make the present article easier to read. The present definition of sparsity
corresponds to their (2, 0, 3)-graded-sparsity, for a restricted class of graphs (they
consider also multiple graphs, and more types of vertices). Since we are only us-
ing two concepts of sparsity (see definition of Laman-sparsity below), no confusion
should arise. To make the connection more explicit, note that our “type 1 vertices”
correspond to vertices “with one attached loop” in [19].

We recall the standard definition:

Definition 2.3. G is Laman-sparse if for all subgraphs G′ ⊆ G with n′ ≥ 2,
m′ ≤ 2n′ − 3.

Laman-sparsity and sparsity are equivalent if there are only vertices of type 2,
i.e. n = n2. Moreover a sparse graph is always Laman-sparse.

Definition 2.4. G is minimally rigid if either n = 1, or G is sparse and

m = n1 + 2n2 + min{0, n1 − 3}.(1)

Lemma 2.5. If G is minimally rigid with n1 < 6, then G is connected.

Proof. Consider a partition of the vertices into two parts with na and nb vertices
respectively. Let ma and mb be the number of edges induced by each part. By the
sparsity of G, we have mi ≤ 2ni − 3 for i ∈ {a, b}. Hence, we have

m− (ma +mb) ≥ 2n−max{3, n1} − 2na − 2nb + 6 = 6−max{3, n1},

so that for n1 < 6, the two parts are connected. �
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Remark 2.6. For n1 ≥ 6, a minimally rigid graph G does not need to be connected
as can be seen by considering the disjoint union of two cliques of size three with all
vertices of type 1.

Remark 2.7. Streinu and Theran (see [19]) use a slightly different definition of
rigidity. In our notation, for them G is minimally rigid if G is sparse and m = n1+
2n2. This definition is not equivalent to ours: using our Definition 2.4, physically,
it means that we consider as rigid a structure that cannot be deformed (but can
possibly be moved over the plane as a solid object). Streinu and Theran (see [19])
consider as rigid a structure that cannot be deformed, and that is pinned to the
plane; in particular, rigidity in this sense implies n1 ≥ 3. Definition 2.4, however,
coincides with the standard definition of rigidity when there are only vertices of type
2, and this will be convenient to compare our results with the results of [8]; it will
also allow us to use some of their results.

Recall that a spanning subgraph is one that includes the entire vertex set V .

Definition 2.8. A graph is rigid if it contains a spanning subgraph which is min-
imally rigid. A rigid block in G is defined to be a vertex-induced rigid subgraph.
A rigid component of G is an inclusion-wise maximal block.

Remark 2.9. Observe that for a sparse graph G, a rigid block is always minimally
rigid.

We point out that a rigid component does not need to be connected. By defini-
tion, it is clear that rigidity is preserved under addition of edges and that the size
of the largest (in terms of vertices covered) rigid component of a graph can only
increase when edges are added.

We now describe our probabilistic setting: consider for the following statements
the random graph G ∈ G(n, c/n) where each edge is present independently with
probability c/n, with c > 0. Each vertex gets, independently of all other vertices,
type 1 with probability 1− q and type 2 with probability q, where q ∈ [0, 1].

To state our result, we need some notations. Let Poi(x) be a Poisson random

variable with parameter x, and set Q(x, y) = P(Poi(x) ≥ y) = e−x
∑
j≥y

xj

j! . We

define the function c∗(q) as follows:

• for q ≤ 1/2, we set c∗(q) = 1
1−q ;

• for q > 1/2, let ξ∗ = ξ∗(q) be the positive solution to:

ξ
(1− q)Q(ξ, 1) + qQ(ξ, 2)

(1− q)Q(ξ, 2) + 2qQ(ξ, 3)
= 2.

In this case we set:

c∗(q) =
ξ∗

(1− q)Q(ξ∗, 1) + qQ(ξ∗, 2)
.

It will follow from the proof that the equation for ξ∗ has indeed a unique positive
solution and that for q > 1/2, c∗(q) < 1

1−q .

We can now state our first theorem (see also Figure 1):

Theorem 2.10. Let G ∈ G(n, c/n) with c > 0, and let q ∈ [0, 1]. Let Rn(q, c)
(RCn (q, c), resp.) be the number of vertices covered by the largest rigid component
(connected rigid block, resp.) of G.
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• For c > c∗(q), there is a giant rigid component in G a.a.s., i.e., there exists
α = α(q, c) > 0 such that

P
(
Rn(q, c)

n
≥ α

)
→ 1 as n→∞.

• For c < c∗(q), there is no giant rigid component in G a.a.s.; i.e.,

∀α > 0, P
(
Rn(q, c)

n
≥ α

)
→ 0 as n→∞.

The above results also hold true for RCn (q, c). Moreover, for c > c∗(q), a.a.s., there
is one unique giant rigid component (one unique giant connected rigid block, resp.).

Remark 2.11. Since the union of two rigid components is not necessarily rigid
in case two rigid components are vertex-disjoint or they share only one vertex, the
statement that there is a unique giant rigid component is not trivial.
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0
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Rigid phase

Non rigid phase

Figure 1. Illustration of Theorems 2.10 and 2.12: the rigid
and non rigid phases are shown in the (q, c) plane. The blue line is
c∗ = 1/(1−q), and represents the continuous transition for q < 1/2;
it starts at (0, 1) (black circle), which is the connectivity percola-
tion threshold, passes through the ”tricritical point” (1/2, 2) (blue
circle), and is not a transition line any more for q > 1/2 (this part is
plotted with a dashed line). The red line is the numerically com-
puted discontinuous transition line, which starts at (1/2, 2) and
ends at the rigidity threshold computed in [8], (1, 3.588 . . .) (red
circle).

Our next theorem states that the transition as c varies and q is held fixed is
continuous for q ≤ 1/2 and discontinuous for q > 1/2. More precisely, we have the
following (see also Figure 1):

Theorem 2.12. • The transition is discontinuous for q > 1/2. More formally: let
q > 1/2; there exists α(q) = α > 0 such that for any c > c∗(q)

lim
n→∞

P
(
Rn(q, c)

n
≥ α

)
= 1.
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• The transition is continuous for q ≤ 1/2. More formally: let q ≤ 1/2; for any
α > 0,

lim
c→ 1

1−q

lim
n→∞

P
(
Rn(q, c)

n
≥ α

)
= 0.

We now relate rigidity and orientability. We start with the following definition
of 1.5-orientability.

Definition 2.13. A graph is 1.5-orientable if there exists an orientation of the
edges such that type 1 vertices have in-degree at most 1 and type 2 vertices have
in-degree at most 2.

A standard argument in the context of network flows gives (see Proposition 3.3
in [16]):

Proposition 2.14. A graph G is 1.5-orientable if and only if for every induced
subgraph G′ of G, m′ ≤ n′1 + 2n′2.

As a corollary, we see that a sparse graph G is always 1.5-orientable. Moreover,
we see that if G is 1.5-orientable, then G will remain 1.5-orientable after removing
some edges and if G is not 1.5-orientable then adding edges cannot make it 1.5-
orientable.

Our next theorem shows that the threshold for being 1.5-orientable for the ran-
dom graph G ∈ G(n, c/n) is the same as the one for the appearance of a giant rigid
component.

Theorem 2.15. Let G ∈ G(n, c/n) with c > 0, and let q ∈ [0, 1].

(a) if c < c∗(q), G is 1.5-orientable a.a.s.
(b) if c > c∗(q), G is not 1.5-orientable a.a.s.

We now relate the notion of rigidity and 1.5-orientability with a new notion of
core.

Definition 2.16. For a graph with type 1 and type 2 vertices, the 2.5-core is the
largest induced subgraph with all type 1 vertices having degree at least 2 and all type
2 vertices having degree at least 3.

Observe that this definition coincides with the 2-core (3-core, resp.) if the graph
contains only type 1 vertices (type 2, resp.).

One can show that we can construct the 2.5-core by removing recursively type 1
vertices with degree at most 1 and type 2 vertices with degree at most 2. Clearly, the
2.5-core can be empty and in this case, the graph is 1.5-orientable. More generally,
a graph G is 1.5-orientable if and only if its 2.5-core is 1.5-orientable.

Clearly the size of the 2.5-core can only increase with the addition of edges. In
our probabilistic setting, it turns out that for a fixed q, the 2.5-core appears at a
value c̃(q) ≤ c∗(q).

Let Q(x, y) be defined as before. We define

c̃(q) = inf
ξ>0

ξ

(1− q)Q(ξ, 1) + qQ(ξ, 2)
.(2)

We remark that as ξ → 0, we have ξ
(1−q)Q(ξ,1)+qQ(ξ,2) →

1
1−q , and in particular

c̃(q) ≤ 1
1−q . Let ξ̃(q, c) be the largest solution to

ξ = (1− q)cQ(ξ, 1) + qcQ(ξ, 2).(3)
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We can now state the theorem:

Theorem 2.17. Let G ∈ G(n, c/n) with c > 0 and let q ∈ [0, 1]. Let Core be the
2.5-core of G, n1(Core) (n2(Core), resp.) be the number of vertices of type 1 (type
2, resp.) in the core and m(Core) be the number of edges in the core. We have

(a) if c < c̃(q) and q > 0, then a.a.s. the 2.5-core has op(n) vertices.
(b) if c > c̃(q), then a.a.s.

n1(Core)/n → (1− q)Q(ξ̃(q, c)), 2),

n2(Core)/n → qQ(ξ̃(q, c)), 3),

2m(Core)/n → ξ̃(q, c)
(

(1− q)Q(ξ̃(q, c)), 1) + qQ(ξ̃(q, c)), 2)
)
.

Remark 2.18. When the core is not op(n), i.e., when c > c̃(q), we have

m(Core)

n1(Core) + 2n2(Core)
→ ξ̃(q)

2

(1− q)Q(ξ̃(q)), 1) + qQ(ξ̃(q)), 2)

(1− q)Q(ξ̃(q)), 2) + 2qQ(ξ̃(q)), 3)
.

In particular, if this ratio is larger than one, then the 2.5-core is not 1.5-orientable.
A simple computation shows that this ratio becomes larger than one exactly for c >
c∗(q) ≥ c̃(q). Moreover, we have c∗(q) = c̃(q) = 1

1−q for q ≤ 0.5 and c∗(q) > c̃(q)

for q > 0.5.

Remark 2.19. When q is fixed and we increase c from 0 to infinity, it is easy to
deduce the following from the previous theorem: for q ≤ 1/2, the size of the 2.5-core
is continuous in c, whereas for q > 1/2, the 2.5-core appears discontinuously.

In the absence of sliders (q = 1), the largest rigid component is closely related
to the 3 + 2-core [8]. This led the authors of [8] to formulate a conjecture on the
size of the 3 + 2-core. We introduce now a generalization of the 3 + 2-core which
will play a role in our proof of Theorem 2.12.

Definition 2.20. Starting from the 2.5-core, one constructs a larger subgraph as
follows: add recursively type 1 vertices which are linked by one edge to the current
subgraph, and type 2 vertices which are linked by two edges to the current subgraph.
The resulting subgraph is called the 2.5 + 1.5-core.

It is clear that this definition coincides with the 2+1-core (3+2-core, resp.) if
the graph contains only type 1 vertices (type 2, resp.).

Furthermore, we also compute the threshold and the size of the 2.5+1.5-core.
This proves a conjecture in [8] on the 3+2-core. The proof follows again the ideas

in [6]. We use the same definitions of c̃(q) and ξ̃(q) as before and state the following
theorem:

Theorem 2.21. Let G ∈ G(n, c/n) with c > 0 and q ∈ [0, 1]. Let Core+ be the
2.5 + 1.5-core of G, and n(Core+) the number of vertices inside the 2.5 + 1.5-core.
If c > c̃(q), where c̃(q) is defined by (2), then a.a.s.,

n(Core+)/n→ 1− e−ξ̃ − qξ̃e−ξ̃,

where ξ̃ is defined in (3).
Remark 2.22. For q ≤ 1/2, we have c̃(q) = 1

1−q , and if c ↘ 1
1−q , then we have

ξ̃ → 0, and thus n(Core+)/n→ 0.
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For the proof of the aforementioned theorems, the following lemma plays a crucial
role, and hence we state it already here: for a subgraph of size n′, let n′1 be its
number of vertices of type 1 and n′2 its number of vertices of type 2 (we do not
explicitly refer either to the size or to the subgraph, since it is clear from the
context). Let Xn′ denote the number of subgraphs of size n′ with more than
n′1 + 2n′2 edges. We have:

Lemma 2.23. Let q ∈ (0, 1), and let G ∈ G(n, p) with p = c/n and c < 1
1−q .

A.a.s., there exists α = α(q, c− 1
1−q ) > 0 such that

∑
1≤n′≤αnXn′ = 0.

Remark 2.24. Lemma 2.23 will also play the role of the Lemma 4.1 in [5], or
Proposition 3.3 in [8]. Lemma 4.1 in [5] ensures that all subgraphs of size u, with
m edges, such that m/u > c1 > 1 are of size at least γn for some γ > 0. In our
case however, if n2, the number of type 2 vertices is much smaller than n1, this
lemma cannot be used. Lemma 2.23 provides the necessary refinement.

3. Properties of (deterministic) sparse graphs

In this section we gather a few properties valid for general graphs, independently
of the probabilistic setting. They will be useful later.

Given two subgraphs A = (VA, EA) and B = (VB , EB) of G, we denote by A∪B
(A ∩ B, resp.) the subgraph of G with vertex set VA ∪ VB (VA ∩ VB , resp.) and
edge set EA ∪ EB (EA ∩ EB , resp.).

Lemma 3.1. Given two rigid blocks A = (VA, EA) and B = (VB , EB) of a sparse
graph G, we have

• if n(A ∩B) ≥ 2, then A ∪B and A ∩B are rigid blocks.
• if n(A ∩ B) ≥ 1 and min{n1(A), n1(B)} ≥ 3, then n1(A ∩ B) ≥ 3 and in

particular A ∪B and A ∩B are rigid blocks.

Proof. We first point out that for any x, y, z ≥ 0, such that min{x, y} ≥ z, we have

max{x+ y − z, 3}+ max{z, 3} ≥ max{x, 3}+ max{y, 3}.(4)

Denoting by m(∆) the number of edges between VA \ VB and VB \ VA, we have

m(A ∪B) = m(A) +m(B)−m(A ∩B) +m(∆)

= 2n(A)−max{n1(A), 3}+ 2n(B)−max{n1(B), 3} −m(A ∩B) +m(∆)

By the sparsity of G, we have m(A ∪ B) ≤ 2n(A ∪ B) −max{n1(A ∪ B), 3}, and
hence

m(A ∩B) ≥ 2n(A ∩B)−max{n1(A), 3} −max{n1(B), 3}+ max{n1(A ∪B), 3}+m(∆).

Using (4) with x = n1(A), y = n1(B) and z = n1(A ∩B), we get

m(A ∩B) ≥ 2n(A ∩B)−max{n1(A ∩B), 3}+m(∆).

First assume that n(A ∩B) ≥ 2, so that by sparsity of G, we get m(∆) = 0 and

m(A ∩B) = 2n(A ∩B)−max{n1(A ∩B), 3}.
Hence, we have

m(A ∪B) = 2n(A)−max{n1(A), 3}+ 2n(B)−max{n1(B), 3}
−2n(A ∩B) + max{n1(A ∩B), 3}

≥ 2n(A ∪B)−max{n1(A ∪B), 3},
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so that by sparsity of G, we indeed have an equality and we have proved the first
point.

We now assume that n(A∩B) ≥ 1 and min{n1(A), n1(B)} ≥ 3, so that we have
m(A ∪B) ≤ 2n2(A ∪B) + n1(A ∪B) and then

m(A ∩B) ≥ 2n2(A ∩B) + n1(A ∩B) +m(∆).

We see that m(A∩B) ≥ 1 and hence n(A∩B) ≥ 2. So, again by sparsity of G, we
get

m(A ∩B) ≤ 2n2(A ∩B) + n1(A ∩B) + min {0, n1(A ∩B)− 3} .

In particular, we have n1(A ∩ B) ≥ 3, and then the second point follows from the
first one. �

Next, we show that by changing one vertex from type 2 to type 1, a rigid graph
remains rigid. Intuitively and geometrically, this is clear: rigidity of a graph means
that the only possible motions are rigid body motions (i.e. of the full structure).
Changing a vertex from type 2 to type 1 only adds a new constraint, which cannot
free new motions. The formal proof, given in the following lemma, is not completely
straightforward.

Lemma 3.2. Let G be a minimally rigid graph, and let v be a type 2 vertex. Define
G̃ as the same graph as G where v is transformed into a type 1 vertex. Then G̃ is
rigid.

Proof. Assume first that n1(G) < 3. Then G̃ is actually even minimally rigid, and

the statement follows: indeed, consider a subgraph H̃ of G̃. If v /∈ H̃, the sparsity
condition for H̃ is directly inherited from the sparsity of G. If v ∈ H̃, consider H
the subgraph of G with the same vertices as H̃, except that v is of type 2. Then
from the sparsity of G, we have

m(H) ≤ 2n(H)− 3, and m(H) ≤ n1(H) + 2n2(H).

Since n1(H) < 3, it is enough to consider only the condition m(H) ≤ 2n(H) − 3.

Since m(H̃) = m(H), n(H̃) = n(H), the condition m(H̃) ≤ 2n(H̃)− 3 is true, and

since n1(H̃) ≤ 3, this condition is enough to ensure that H̃ verifies the sparsity

condition. Hence G̃ is sparse. It is also clear that G̃ has exactly the right number
of edges (we use again here n1(G̃) ≤ 3). Thus G̃ is rigid.

Assume now n1(G) ≥ 3. Now G̃ cannot be minimally rigid since it has one
excess edge. We have to remove an edge, and the difficulty is to remove the right
one. Define H to be the smallest subgraph of G such that:

• H contains v,
• n1(H) ≥ 3,
• H is minimally rigid.

H exists since G itself verifies all three conditions above. By Lemma 3.1, H is
unique and can be defined as the intersection of all subgraphs of G verifying the
above conditions. In particular, for any K ⊆ G satisfying the above conditions,
H ⊆ K.

Now choose any edge e in H and define Ḡ as follows:

Ḡ = G̃\{e}.
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We prove now that Ḡ is minimally rigid, which is clearly enough to show that G̃
is rigid: first, notice that n1(Ḡ) = n1(G) + 1 ≥ 3; with respect to G, one edge is
removed and one vertex is turned from type 2 to type 1, hence the total number
of edges is correct. It thus remains to prove that Ḡ is sparse. Assume Ḡ is not
sparse, and take a subgraph K of Ḡ violating the sparsity condition. Observe that
if before changing v from type 2 to type 1, we have n1(K) < 3, by the argument
at the beginning of the lemma, K remains sparse, so we may assume that already
in G we have n1(K) ≥ 3. We have a few cases:
Case 1: If v /∈ K, K can be seen as a subgraph of G; the sparsity of G implies
that the sparsity condition for K is true. This contradicts the hypothesis on K.
Case 2: Assume now v ∈ K. We have, by assumption on K not being sparse,

m(K) = n1(K) + 2n2(K) + 1.

Case 2a: Assume H ⊆ K. Let K ′ be the subgraph corresponding to the vertex
set K in G, i.e., K ′ is equal to K, but vertex v is changed from type 1 back to type
2. K ′ had at most n1(K ′) + 2n2(K ′) edges. Now, v changed its type, but also one
edge e ∈ H has been removed, hence we have m(K) ≤ n1(K) + 2n2(K), and K
cannot violate sparsity.
Case 2b: Assume H * K. Let K ′ be defined as in the previous case. K ′ is
a subgraph of G. G is sparse, hence K ′ is sparse. Since n1(K ′) ≥ 3 and since
m(K) = n1(K) + 2n2(K) + 1, we have

m(K ′) = n1(K ′) + 2n2(K ′).

Hence K ′ is minimally rigid (in G). Also, v ∈ K ′, hence K ′ satisfies all properties

defining H, and thus, by minimality H ⊆ K ′. This implies in turn that in G̃,
H ⊆ K, which is a contradiction, finishing the proof. �

The next two lemmas relate the degree of a vertex of type i to rigidity.

Lemma 3.3. Let G be a rigid graph. Then for i ∈ {1, 2}, any vertex of type i has
degree at least i in G.

Proof. Let Ḡ be a spanning minimally rigid subgraph of G, and suppose that v
is a vertex of type i with degree strictly less than i in Ḡ. Considering the cases
n′1 = 0, 1, 2 and n′1 ≥ 3 separately, we see that in each case Ḡ\ {v} is a subgraph of
Ḡ which violates the sparsity condition, contradicting the sparsity of Ḡ. �

Lemma 3.4. Let G be a rigid graph, and v a type i vertex with degree i. Then
G\{v} is rigid (but not necessarily connected).

Proof. Let Ḡ be a spanning, minimally rigid subgraph of G. The degree of v in Ḡ
is by Lemma 3.3 still i.

First, Ḡ\{v} is sparse, since Ḡ is sparse. If v is of type 2, removing v removes
two degrees of freedom and two edges, so the constraint of the total number of
edges counting for minimal rigidity is satisfied for Ḡ \ {v}. Note, however, that
Ḡ\{v} might be the disjoint union of two rigid blocks with no edge in between (in
which case, by sparsity, both blocks H1 and H2 satisfy n1(Hi) ≥ 3). If v is of type
1 and if also n1(G) > 3, then removing v removes one degree of freedom and one
edge, so the constraint counting for minimal rigidity is also satisfied for Ḡ \ {v}.

It remains to consider the case v of type 1 and n1(G) ≤ 3. If we had n1(G) = 1,
then Ḡ\{v} is sparse with n1(Ḡ\{v}) = 0, and we would have

m(Ḡ\{v}) ≤ 2n(Ḡ\{v})− 3.
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This would imply for Ḡ

m(Ḡ) = m(Ḡ\{v}) + 1 ≤ 2n2(Ḡ)− 2 = n1(Ḡ) + 2n2(Ḡ)− 3,

contradicting the rigidity of Ḡ. The same reasoning excludes the cases n1(G) = 2
and n1(G) = 3, and the proof follows. �

We also show how rigidity and the 2.5-core of a graph are deterministically
related.

Lemma 3.5. Let C be a rigid block of a graph G, and let Core+ be the 2.5 + 1.5-
core of G. If the 2.5-core of C is not empty, then C ⊆ Core+.

Proof. Let us recursively remove vertices to construct the 2.5-core of C. C0 := C
is rigid, thus by Lemma 3.3, the first removed vertex v1, assumed to be of type i,
has degree i. By Lemma 3.4, C1 = C\ {v1} is rigid. We can iterate this process
until the 2.5-core of C is constructed. At each step we can apply Lemmas 3.3 and
3.4, hence we only remove type i vertices with degree exactly i. The union of all
remaining vertices form the 2.5-core of C. Since the 2.5-core of C is not empty and
is a subgraph of the 2.5-core of G, all the removed vertices are in the 2.5 + 1.5-core.
Therefore C ⊆ Core+.

�

The following proposition is closely related to the concept of “graded-sparsity
matroids” introduced in [11]. It shows that the matroid structure is retained within
our slightly modified definitions.

Proposition 3.6. The collection of all minimally rigid graphs on n1 vertices of
type 1 and n2 vertices of type 2 is the set of bases of a matroid whose ground set is
the set of edges of the complete graph on n = n1 + n2 ≥ 2 vertices.

Proof. The case n1 = 0 is well-known (see [10]), so we consider only the case n1 ≥ 1.
We first construct a minimally rigid graph, i.e., we show that the set of minimally

rigid graphs is not empty. Consider the case where n1 ≥ 2. Start from one cycle
with the vertices of type 1 and one cycle with the vertices of type 2. If there are
only two vertices of a given type, then the cycle is simply an edge between these
two vertices and if there is only one vertex of a given type, the cycle is empty.
Hence if ni < 3 for i ∈ {1, 2}, the corresponding cycle contains ni − 1 edges and if
ni ≥ 3, the corresponding cycle contains ni edges. In particular, since we assumed
that n1 ≥ 2, the cycle with vertices of type 1 has n1 + min{n1 − 3, 0} edges. If
n2 = 0, we are done. If n2 ≥ 1, we select one vertex of type 1 (denoted by u) and
add an edge between this vertex and each vertex of type 2 to get a minimally rigid
graph. Then for n2 ≥ 3 we are done as the graph has 2n2 + n1 + min{0, n1 − 3}
edges and is sparse. For n2 = 1, 2, we need to add an edge, and for example we can
add one edge between a vertex of type 1 different from u and any vertex of type 2.

Consider now the case n1 = 1. The cases n2 = 1, 2 are easy, one can just take
the complete graph. For n2 ≥ 3, start as above with a cycle with vertices of type
2 and then add an edge between all vertices of type 2 except one and the vertex of
type 1.

We now prove the basis exchange axiom. Let Bi = (V,Ei), i = 1, 2 be two
minimally rigid graphs and e2 ∈ E2\E1. We must show that there exists an edge
e1 ∈ E1\E2 such that (V,E1\{e1}∪{e2}) is minimally rigid. Let e2 = uv. Consider
all the rigid blocks ofB1 containing vertices u and v. By Lemma 3.1, the intersection
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of these blocks denoted by B′ = (V ′, E′) is still a rigid block of B1. B′ is not a
rigid block of B2, since otherwise the subgraph E′ ∪ {e2} ⊂ E2 would violate the
sparsity of B2 (recall that u, v ∈ V ′). Hence there exists e1 ∈ E′\E2. We are done
if we prove that B3 = (V,E1\{e1} ∪ {e2}) is sparse. Consider any subgraph H of
B1 such that sparsity is violated in B1 ∪ {e2}. Observe that H is a rigid block of
B1 containing both u and v. Since B′ is the minimal subgraph of B1 with this
property, B′ ⊆ H, and then both endpoints corresponding to e1 are in H. The
addition of e2 violates sparsity, but the removal of e1 restores the count, and we
are done. �

Remark 3.7. (due to L. Theran) As pointed out in Remark 2.2, Proposition 3.6 can
also be deduced from the fact that, using the terminology of [19], all (2, 0, 3)-graded-
sparse graphs form a matroid whose ground set is the set of edges of the complete
graph together with two loops at each vertex (see [19]). More precisely, let M1 be
this matroid with ground set E1 := {E(Kn)∪ 2 loops per vertex} with independent
sets I1, and let n1 and n2 be the number of vertices of type 1 (type 2, resp.).
Let L be the set of edges containing exactly 1 self-loop at each of the n1 vertices
of type 1. Consider then E2 := {E(Kn) ∪ L} and note that E2 ⊆ E1. Moreover,
I2 := {A ∈ I1 : A ⊆ E2} is still a matroid M2, since this corresponds to a truncation
of M1. Finally, consider the sets I3 := {A ∈ I2 : A ∪ L is independent in M2}.
Since this corresponds to a contraction of M2, the resulting structure is a matroid,
that corresponds exactly to the matroid described in Proposition 3.6 (all elements
of I3 being sparse graphs with n vertices, of which n1 are of type 1 and n2 of type
2). In order to make the paper more self-contained, we opted, however, for a direct
proof here.

Define a decomposition of the edge set of a graph to be a collection of rigid
components such that every edge is in exactly one rigid component, and such that
isolated vertices form their own rigid components.

Lemma 3.8. Any graph G decomposes uniquely into rigid components. Any two
rigid components intersect in at most one vertex.

Proof. First assume G is sparse. Consider an edge e = uv. The edge uv itself is a
rigid block. The union of all rigid blocks containing both u and v is, by Lemma 3.1
part (i), still rigid, and this is the unique maximal block e belongs to. If initially
we had chosen another edge inside this unique maximal block, the result would
clearly be the same (if it were larger, we could again apply Lemma 3.1 part (i) and
obtain a bigger block containing e). Thus, the set of edges forms an equivalence
relation whose equivalence classes are given by the rigid components the edges
belong to. Isolated vertices always belong to their own component, and hence the
decomposition is unique, proving the first part for sparse graphs. For such graphs,
the second part of the lemma follows immediately from Lemma 3.1 part (ii).

Now, suppose that G is not sparse and consider its rigid components: we will
show that we can choose one edge e = uv, remove it from G to obtain G′ = G \uv,
and that the rigid components of G′ are the same as those of G. Then, repeating
the procedure until the graph is made sparse, the lemma will be proved.

First, since rigidity is monotone, a rigid component of G′ is a rigid block in G,
and we have to show only that a rigid component in G remains a rigid component in
G′. Since G is not sparse, there exists one subgraph H with n1(H)+n2(H) vertices
of type 1 (type 2, resp.) having more than n1(H) + 2n2(H) −min{0, n1(H) − 3}
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edges. Among all such subgraphs choose a minimal subgraph H, i.e., any induced
subgraph of H when leaving out at least one vertex is sparse. Observe that H is
rigid. Choose the edge e = uv ∈ E(H). H \ uv remains rigid. Let C be a rigid
component in G. We have to show it is a rigid component in G′ = G \ uv. We
consider now three cases:
i) C does not contain both u and v: then it remains rigid after the removal of uv,
and there is nothing else to prove.
ii) C contains u and v, but not all of H. Then in G′, H̃ := C∩H is sparse (as every
proper subgraph of H, and therefore of H \ uv, is sparse). By the augmentative

property of matroids, if not yet spanning, H̃ can be completed to obtain a minimally
rigid spanning subgraph C ′ of C. Thus C remains rigid in G′.
iii) C contains all of H. Since H \uv is rigid, we can find a minimally rigid spanning

subgraph H̃ of H \uv. Again, by the augmentative property of matroids, if not yet

spanning, H̃ can be completed to obtain a minimally spanning subgraph C ′ of C,
and C remains rigid in G′. �

Lemma 3.9. Take two rigid components R1 and R2. Adding at most three pairwise
disjoint edges uivi, with ui ∈ V (R1)\V (R2), and vi ∈ V (R2)\V (R1) turns R1∪R2

into a rigid block.

Proof. From the proof of the previous lemma, it suffices to prove the statement
for sparse G. Remember that two rigid components R1 and R2 intersect in either
0 or 1 vertex, and by monotonicity we may assume that there is no edge from
V (R2) \ V (R1) to V (R1) \ V (R2). Let n1(R1) = i and n1(R2) = j. If R1 ∩R2 = ∅,
then let t = 0, and otherwise let t ∈ {1, 2} be equal to the type of the vertex in
R1 ∩R2. If t ∈ {1, 2} and min{i, j} ≥ 3, by Lemma 3.1 part(ii), R1 ∪R2 is already
rigid. By a similar argument as in the proof of Lemma 3.1 part(ii), we can show
that the case i ≥ 3, j = 2 and t = 2 is impossible, as in this case m(R1 ∩ R2) ≥ 1,
and thus n(R1 ∩R2) ≥ 2. In all other cases, do the following: if min{i, j} ≥ 3 and
t = 0, then no edge is added. If i ≥ 3 and j < 3, 3− j − t edges are added, if i < 3
and j < 3 and (i+ j) ≥ 3, then 6− i− j− t edges are added, and if i < 3 and j < 3
and (i+ j) < 3, then 3− t edges are added. It can be seen that in all cases the total
number of edges needed for R1 ∪ R2 being minimally rigid is correct. Moreover,
the number of edges added is for any fixed value of i monotone nondecreasing in j.
Also, for non-intersecting subgraphs A ⊆ R1 and B ⊆ R2 the number of edges that
can be added between A and B without violating sparsity is at least the number
of edges that can be added in case they intersect in one vertex. In particular, this
means that for any subgraph A ⊆ R1 with i′ ≤ i vertices of type 1 and any subgraph
B ⊆ R2 with j′ ≤ j vertices of type 1 such that min{n(A), n(B)} ≥ 2, the number
of edges that can be added between vertices of A and B without violating sparsity
is at least the number of edges added between R1 and R2, and thus such subgraphs
remain sparse. Otherwise, suppose n(A) = 1 and we may assume A and B disjoint.
By disjointness of the newly added edges at most 1 edge is added between A and
B. Thus, an originally sparse graph B remains sparse after adding one vertex and
at most one edge. Thus, all subgraphs are sparse, and the statement follows. �

4. Proof of Theorem 2.15

The proof of Theorem 2.15 relies on Theorem 4.1 in [12] and Lemma 2.23. To
a simple graph G = (V,E), we associate the bipartite graph Gb = (V b, Eb) (the
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corresponding incidence graph) with vertex set V b = V ∪ E and an edge between
v ∈ V and e ∈ E if and only if v is an endpoint of e in G. We say that Gb is
the bipartite version of G. The size of a spanning subgraph S = (V ∪ E,F ) of Gb

is defined as the number of edges |F | of S. We now consider the case where each
vertex in V of the original graph G has a type in {1, 2}. We say that a spanning
subgraph is admissible if for each v ∈ V , the degree of v in S is at most its type
and for each e ∈ E, the degree of e in S is at most one.

Clearly, if G is 1.5-orientable, an orientation gives a spanning subgraph of size
|E| which is the maximum possible size of an admissible spanning subgraph, and
the converse holds as well. Hence we have the following claim: a graph G is 1.5-
orientable if and only if the size of a maximum admissible spanning subgraph of Gb

is equal to |E|.
For the random graph G ∈ G(n, c/n), when types are drawn independently at

random being 1 with probability 1− q, and 2 otherwise, independently of the rest,
we denote by Mn = Mn(c, q) the size of the largest admissible spanning subgraph
of the bipartite version Gbn of G. Our previous claim translates into: G = (Vn, En)
is 1.5-orientable if and only if Mn = |En|.

We now apply Theorem 4.1 in [12] in order to compute the limit for Mn

En
as

n → ∞. Theorem 4.1 in [12] is stated in the general framework of local weak
convergence. As noted in Section 5 of [12], the fact that Gbn converges weakly
almost surely to a multi-type branching process is standard [7]. More precisely, in
our case, types are associated with the two partite sets Vn and En: a vertex with
type associated to Vn will have offspring distribution given by a Poisson distribution
of mean c and a vertex with type associated to En will have a deterministic offspring
of size one (hence a degree of 2). Theorem 4.1 in [12] deals with spanning subgraph
in bipartite graphs with general degree constraints. In our case, the maximum
degree allowed in a spanning subgraph for a vertex corresponding to En is simply
one and for a vertex corresponding to Vn the maximum degree allowed is its type.
We are now ready to state a direct application of Theorem 4.1 in [12]:

Theorem 4.1. For the random graph G ∈ G(n, c/n), we have

lim
n→∞

1

|En|
Mn = inf

x∈[0,1]
{FA(x) | x = gA ◦ gB(x)} = inf

x∈[0,1]
FA(x),

where

gA(x) = 1− x,
gB(x) = 1− (1− q)Q(cx, 1)− qQ(cx, 2),

FA(x) = 1− (1− gB(x))2 +
2

c
((1− q)Q(cx, 2) + 2qQ(cx, 3)) .

Proof. We first introduce notation: for an integer valued random variable Y and
for 0 ≤ x ≤ 1, we denote by Y (x) the thinning of Y obtained by taking Y points
and randomly and independently keeping each of them with probability x, so that
P(Y (x) = k) =

∑
s≥k P(Y = s)

(
s
k

)
xk(1 − x)s−k. Applying Theorem 4.1 of [12] in

our framework gives:

FA(x) = E[WA ∧DA(gB(x))] +
E[DA]

E[DB ]
E[WB1(DB(x) ≥WB + 1)], with

gA(x) = P(NA(x) < WA) and gB(x) = P(NB(x) < WB).
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where DA = 2, WA = 1 and

DB = Poi(c), and WB =

{
1, w.p. 1− q,
2, w.p. q.

Theorem 4.1 follows by simple computations. �

We now compute a simpler expression for infx∈[0,1] FA(x). A simple calculation

shows that the derivative of FA(x) has the same sign as ∆(x) = x − gA ◦ gB(x).

Then, we have (we use the fact that d
dxQ(x, y) = e−x xy−1

(y−1)! )

∆(x) = x− (1− q)Q(cx, 1)− qQ(cx, 2),(5)

∆′(x) = 1− (1− q)ce−cx − c2xqe−cx,

∆′′(x) = c3qe−cx
(
x− 2q − 1

qc

)
.

Observe that ∆(0) = 0, ∆(1) > 0. Define x̃ = x̃(c, q) as the largest solution in [0, 1]
to the equation ∆(x) = 0, and observe that FA(0) = 1. Moreover, we have

∆′(1) = 1− (1− q)ce−c − c2qe−c ≥ 1− ce−c ≥ 1− e−1 ≥ 0.

We now prove that

inf
x∈[0,1]

FA(x) = min{1,FA(x̃)}.(6)

First assume that q ≤ 1/2, so that we have ∆′′(x) ≥ 0 for x ∈ [0, 1]. If 1−q ≤ 1/c,
then ∆′(0) = 1−(1−q)c ≥ 0 and we have ∆(x) ≥ 0, so that x̃ = 0 and the function
FA(x) is increasing. Hence infx∈[0,1] FA(x) = FA(0) = 1. Otherwise, if 1−q > 1/c,

then a similar analysis shows that FA(x) is decreasing on [0, x̃] and increasing on
[x̃, 1], so that we have infx∈[0,1] FA(x) = FA(x̃) < 1.

Assume now that q > 1/2 so that ∆′′(x) vanishes once on (0, 1). Hence, if
1 − q > 1/c, we have ∆′(0) < 0, so that ∆(x) < 0 for x ∈ (0, x̃) and ∆(x) > 0 for
x ∈ (x̃, 1]. As above, we have infx∈[0,1] FA(x) = FA(x̃) < 1. Consider then the case
1− q ≤ 1/c, so that ∆′(0) ≥ 0. Moreover as ∆′(1) ≥ 0, either ∆(x) is non-negative
or there exists 0 < y < x̃ such that ∆(x) is positive on (0, y) and (x̃, 1) and negative
on (y, x̃). In any case, we have infx∈[0,1] FA(x) = min{FA(0),FA(x̃)}, and (6) is
proved.

By Theorem 4.1 we thus have

lim
n→∞

Mn

|En|
= inf
x∈[0,1]

FA(x) = min{1,FA(x̃)}.

In the argument above, we showed that for 1 − q > 1/c, we have x̃ > 0 and
FA(x̃) < 1 and for 1/2 ≤ 1− q ≤ 1/c, we have x̃ = 0 and infx∈[0,1] FA(x) = 1. In
particular, we see that for 1 − q > 1/c, G ∈ G(n, c/n) is a.a.s. not 1.5-orientable
and for 1/2 ≤ 1 − q ≤ 1/c, G ∈ G(n, c/n) is a.a.s. ’almost’ 1.5-orientable, i.e., all
vertices except possibly o(n) will satisfy their indegree constraints. We will show
that the graph is a.a.s. indeed 1.5-orientable in the last part of the proof relying
on Lemma 2.23.

Before doing that, we consider the case q > 1/2 and find the condition on c, so
that FA(x̃) < 1, where x̃ = x̃(c) is the largest solution to ∆(x) = 0 with ∆(x)
defined in (5). By the previous analysis, if FA(x̃) < 1 and ∆(x̃) = 0, then x̃ is
necessarily the largest solution to ∆(x) = 0.
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Now using the fact that ∆(x̃) = 0, we see that gB(x̃) = 1− x̃, so that we have

FA(x̃) = 1− x̃2 +
2

c
((1− q)Q(cx̃, 2) + 2qQ(cx̃, 3)) .

Making the change of variable ξ = cx̃, we get

FA(x̃) = 1− ξ2

c2
+

2

c
((1− q)Q(ξ, 2) + 2qQ(ξ, 3)) .

Define the function

f(ξ, q) = ξ
(1− q)Q(ξ, 1) + qQ(ξ, 2)

(1− q)Q(ξ, 2) + 2qQ(ξ, 3)
,

and recall that the definition of x̃ becomes for ξ:

ξ = c ((1− q)Q(ξ, 1) + qQ(ξ, 2)) ,(7)

so that we can rewrite the previous expression as

FA(x̃) = 1− 1

c
(f(ξ, q)− 2) ((1− q)Q(ξ, 2) + 2qQ(ξ, 3)) .

We have FA(x̃) < 1 if and only if f(cx̃, q) > 2. Observe that for q > 0, we have
limξ→0 f(ξ, q) = 2 and limξ→0 f(ξ, 0) = 3/2. Moreover, for any q > 1/2, one can
show that there exists a unique positive solution to f(ξ∗, q) = 2 and for ξ ∈ (0, ξ∗),
we have f(ξ, q) < 2, whereas for ξ > ξ∗, we have f(ξ, q) > 2. Now, using (7), we
define

c∗ =
ξ∗

(1− q)Q(ξ∗, 1) + qQ(ξ∗, 2)
,

so that c∗x̃(c∗) = ξ∗.
As a function of c with x being fixed, ∆(x) is non-increasing in c which implies

that x̃(c) is non-decreasing in c (for q > 1/2, by the previous analysis, ∆(x) is
always negative on the left of x̃ and positive on its right).

Thanks to the monotonicity of c 7→ x̃(c), we have: if c > c∗, then cx̃(c) > ξ∗

and f(cx̃, q) > 2, i.e., FA(x̃) < 1. Similarly, if c < c∗ and x̃(c) > 0, then we get
f(cx̃, q) < 2, i.e., FA(x̃) > 1.

To summarize, we proved that for the function c∗(q) defined in the statement
of the theorem, we have: for c < c∗(q), a.a.s., we have limn→∞

Mn

|En| = 1 and for

c > c∗(q), a.a.s., we have limn→∞
Mn

|En| < 1. In particular, (b) follows: if c > c∗(q),

the graph is a.a.s. not 1.5-orientable. We still need to prove that if c < c∗(q), the
graph is a.a.s. 1.5-orientable.

Choose c̃, such that c < c̃ < c∗. Let G̃n = (Ṽn, Ẽn) ∈ G(n, c̃/n) be an associated

random graph and M̃n a maximum admissible subgraph for G̃n. Construct a cou-
pling between random graphs with different parameters c < c̃, by removing edges
in G̃n with the appropriate probability. The goal is to construct an admissible
subgraph M̄n for some Ḡn ∈ G(n, c̄/n) with c̄ ≥ c such that |M̄n| = |Ēn| (Ēn is the
set of edges of Ḡn). In other words, Ḡn is 1.5-orientable which implies the claim as
G ∈ G(n, c/n) can be obtained from Ḡn by removing edges.

If |M̃n| = |Ẽn|, we are done. Assume then that |M̃n| < |Ẽn| and consider the

bipartite graph G̃bn. We say that a vertex v ∈ Ṽn is saturated if its degree in M̃n is

equal to its type. We point out that if an edge (v, e) ∈ E(G̃bn) where v ∈ Ṽn and

e ∈ Ẽn is not covered by M̃n, then the vertex v is saturated (otherwise M̃n would

not be maximal hence not maximum). In particular, if e ∈ Ẽn is isolated in M̃n,
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Figure 2. Bipartite representation of Gn and construction of the
alternating paths. Squares (upper row) are the edges of Gn; circles
(lower row) are the vertices of Gn. Filled (resp. empty) circles are
vertices of type 1 (resp. type 2). Solid lines (resp. dashed lines)

are edges in G̃bn that are (resp. are not) in M̃n (not all edges of G̃bn
are represented). The thickened square is an edge of Gn which is

not covered by M̃n: thus it is a starting point for alternating paths.

then each of its neighbors u and v is saturated. Starting from these vertices and
following the covered edges, we can then construct alternating paths in which the
edges are alternatively covered in M̃n and uncovered. Let K̃b be the union of all
such alternating paths (see Figure 2 for an illustration).

Each vertex v ∈ Ṽn∩K̃b is saturated so that the graph K̃ associated to K̃b in the
original G̃n is a subgraph satisfying the hypotheses of Lemma 2.23. Hence there
exists α > 0 such that K̃ has size (i.e., number of vertices |V (K̃)|) at least αn.

Let us call gapn = |Ẽn| − |M̃n|. By the previous analysis, we know that gapn =
o(n). To make the coupling between random graphs at different c’s explicit, attach

a uniform random variable U[0,1] to each edge of G̃n, rank the edges according to
these variables, and delete them sequentially to construct the graphs Gn(c) with

c < c̃. Since |V (K̃)| ≥ αn, each time an edge is removed, the probability it belongs

to K̃ is larger than ε′, for some ε′ > 0. Moreover, each time an edge in K̃ is removed,
gapn decreases by one. Thus the probability that deleting an edge decreases gapn
is at least ε′. Hence a.a.s. gapn reaches 0 before the graph Gn with parameter c
is constructed. At this point, we have found c̄ ≥ c such that |M̄n| = |Ēn| and we
have proved that a.a.s. Gn(n, c̄/n) is 1.5-orientable: we are done.

5. Orientability and rigidity

In this section we will show that the threshold of having a giant rigid component
coincides with the threshold for 1.5-orientability, which together with Theorem 2.15
completes the proof of Theorem 2.10.

Lemma 5.1. Let 0 < c < c∗(q), α > 0, and G ∈ G(n, c/n). Then a.a.s. G does
not contain any rigid component of size αn or larger, i.e., with Rn(q, c) denoting
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the number of vertices covered by the largest rigid component of G, we have

P
(
Rn(q, c)

n
≥ α

)
→ 0 as n→∞.

Proof. We follow here the proof of Lemma 5.1 in [8]. Let Xα be the event ”G has
a rigid component of size at least αn”. Define the graph G′ obtained by adding

to G = (V,E) edges sampled independently with probability 1/n2

1−c/n = 1
n2 (1 + o(1))

from
(
V
2

)
\E. G′ then has law G(n, (c+ 1/n)/n). For n large enough, c+ 1

n < c∗(q),
hence G′ is 1.5-orientable a.a.s. Thus

P(G′ is not 1.5− orientable |Xα)P(Xα)+P(G′ is not 1.5− orientable |X̄α)P(X̄α) = o(1).

Now, assuming that Xα holds, we call R = (VR, ER) the corresponding rigid com-
ponent of size at least αn. Since it is rigid, certainly |ER| ≥ 2n2(R) + n1(R) − 3.

Furthermore, the number of vertex pairs in
(
VR

2

)
\ER, available to receive a new

edge, is at least (α2n2/2)(1 +O(1/n)). Thus, the probability that at least 4 added
edges are in R is Θ(1). Calling R′ the subgraph of G′ with vertex set VR, we
see that with probability Θ(1), |ER′ | ≥ 2n2(R′) + n1(R′) + 1, which implies by
Proposition 2.14 that G′ is not 1.5-orientable. We conclude:

P(G′ is not 1.5− orientable |Xα) = Θ(1),

which implies P(Xα) = o(1) and proves the lemma. �

The other direction is harder. For q = 1 (all vertices are type 2, standard 2D
rigidity percolation), the authors of [8] use a lemma by Theran ([20]), stating that
rigid components have size at most 3, or they are of size Ω(n). This is not true
for q < 1, and we will use Lemma 2.23 instead. We will first make one simple
observation.

Lemma 5.2. Let q < 1 and let G ∈ G(n, c/n) with c > 1
1−q . A.a.s., G contains a

giant rigid connected block.

Proof. We will show that the subgraph G′ induced by the vertices of type 1 contains
a giant rigid block: indeed, observe that G′ ∈ G((1 − q)n, c/n) is distributed as

G′ ∈ G((1−q)n, (1−q)c
(1−q)n ). Since we are interested in the asymptotic behavior of such

graphs, we may replace (1−q)n by n, and the asymptotic behavior of such a graph is

the same as the one of G′ ∈ G(n, (1−q)c
n ) = G(n, c′/n) for some c′ > 1. By standard

results (see for example [2]), a.a.s., G(n, c
′−(c′−1)/2

n ) contains a giant connected

component, and by adding a fresh random graph G′′ ∈ G(n, (1+o(1))(c′−1)/2
n ), a.a.s.

at least one cycle will be added. Hence, by possibly removing edges, we may pick a
connected subgraph H of linear size containing exactly one cycle. H is the desired
rigid block, since |V (H)| = |E(H)|, and every subgraph of H satisfies the sparsity
condition. The statement follows. �

Lemma 5.2 proves the first part of Theorem 2.10 for q ≤ 1/2. For q > 1/2, a bit
more work is needed. When q = 1, the graphs contain only type 2 vertices, and fall
in the framework of [8]; thus c∗(1) is the threshold called c2 = 3.588 . . . in [8]. We
will need the following simple lemma:

Lemma 5.3. Let c < c∗(1), and G ∈ G(n, c/n). Then G is Laman sparse a.a.s.
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Proof. For this lemma we may assume that we have only type 2 vertices, since
Laman sparsity makes no distinction between type 1 and type 2. If G were not
Laman sparse, then deterministically, by Lemma 4.2 of [8], G has a rigid component
of size at least 4. But since c < c∗(1), by Lemma 5.1 of [8], G has no rigid component
of size 4 or larger. Hence, G is Laman sparse a.a.s. �

We are now able to prove the counterpart to Lemma 5.1.

Lemma 5.4. Let G ∈ G(n, c/n) with c > c∗(q). Then, a.a.s. G contains a giant
rigid connected block.

Proof. We have shown in Theorem 2.15 that the threshold for 1.5-orientability c∗(q)
satisfies c∗(q) = 1

1−q for q ∈ [0, 1/2] and c∗(q) < min(c∗(1), 1
1−q ) for q ∈ (1/2, 1].

The case q ∈ [0, 1/2] was already dealt with in Lemma 5.2.
We may therefore assume q > 1/2, c∗(q) ≤ c < c∗(1) and c < 1

1−q , and have to

show that in this case a.a.s. G contains a giant rigid connected block H, imply-
ing the statement for all c > c∗(q) since the property of containing a giant rigid
connected block is monotone. First, c < c∗(1), hence Lemma 5.3 ensures that G
is Laman sparse a.a.s. Since we are interested in a statement that holds a.a.s., we
assume in the following that G is Laman sparse.

Since c > c∗(q), thus a.a.s. G is not 1.5 orientable, and by Proposition 2.14,
there exists a.a.s. a subgraph H ⊆ G with n′1 vertices of type 1, n′2 vertices of type
2, such that |E(H)| = m′ > n′1 +2n′2. Among all such subgraphs, let H be minimal
with respect to the number of vertices for this property (if there are several choices,
pick an arbitrary such H). By minimality, H is connected. Since now c < 1

1−q ,

by Lemma 2.23, a.a.s., |V (H)| ≥ αn for some α = α(q, c − 1
1−q ). Now we have

to construct a giant rigid connected block starting from H. We first show that
any arbitrary subgraph H̃ ⊆ H with V (H̃) 6= V (H) fulfils the sparsity condition.

Consider an arbitrary subgraph H̃ ⊆ H with V (H̃) 6= V (H), and let ñ1 and ñ2 be

the numbers of type 1 and type 2 vertices of H̃, respectively. By minimality of H,

|E(H̃)| ≤ ñ1 + 2ñ2.

Since G is Laman sparse and H̃ is a subgraph of G, we have

|E(H̃)| ≤ 2ñ1 + 2ñ2 − 3.

Combining these two inequalities, we have

|E(H̃)| ≤ ñ1 + 2ñ2 + min(0, ñ1 − 3),

which exactly means that H̃ verifies the sparsity condition.
In order to construct a giant rigid block, we now only have to remove some edges

from H, to obtain a new subgraph H ′ which has exactly the right number of edges
for minimal rigidity. Of course, all proper subgraphs of H ′ also verify the sparsity
condition. Furthermore, since |E(H)| ≥ |V (H)|, H contains a spanning tree, and
we can remove edges without disconnecting H ′. Finally, H ′ is minimally rigid,
connected, and since |V (H ′)| ≥ αn for some α = α(q, c − 1

1−q ), H ′ provides the

giant rigid connected block. �

Combining Lemma 5.1 and Lemma 5.4, we see that the thresholds for 1.5-
orientability and rigidity coincide, and together with Theorem 2.15 the proof of
the first part of Theorem 2.10 is completed.
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We turn now to the uniqueness statement of Theorem 2.10, adapting the proof
of [8]. First, since the size of each giant rigid connected block is at least n/ωn
for some function ωn that tends arbitrarily slowly to ∞ as n → ∞, and since by
Lemma 3.1(i) any two rigid blocks intersect in at most one vertex, there can be
at most ωn(1 + o(1)) such blocks (we suppose connected blocks here to be giant
inclusion-wise maximal connected blocks).

We generate G ∈ G(n, c/n) as follows. Start with the empty graph; order the
edges of Kn randomly; then sequentially add the first m edges according to this
ordering, with m ∼ Bin(

(
n
2

)
, c/n). At time t, the graph under construction thus

has t edges.
Define s := ω3

n log n and suppose now that at some time t0 we have two connected
rigid blocks R1 and R2, each of size at least n/ωn for some function ωn that tends
to infinity arbitrarily slowly as n → ∞, such that R1 ∪ R2 is not yet a connected
rigid block. Lemma 3.9 ensures that it is enough to add 3 pairwise disjoint edges
between R1 and R2 to make R1∪R2 a giant connected rigid block. The probability
that R1 ∪R2 is not a connected rigid block by time t0 + s is at most

(1− Ω((
1

ωn
))2)s = O(n−ωn).

Since there are at most r := ωn(1 + o(1)) (giant inclusion-wise maximal) connected
rigid blocks, after r − 1 mergings the union of all such blocks forms a unique
connected rigid block: this can be seen by considering an auxiliary graph whose
vertices are giant connected rigid blocks, and an edge between two vertices is added
if the union of the blocks is a connected rigid block; once this auxiliary graph is
a tree, the union of all blocks is also a connected rigid block. Therefore, with
probability 1−O(ωnn

−ωn) = 1−O(n−ωn) there are in total at most ωn(1 + o(1))s
steps with more than one giant connected rigid block.

The probability that m equals any fixed number of edges is O(1/
√
n), and hence

the probability that m equals one fixed number having one more than one giant
connected rigid block is at most O(sωn/

√
n) = o(1). Since after exactly m steps we

obtain G ∈ G(n, c/n), a.a.s. there is only one unique rigid giant connected block in
G, and thus a.a.s. clearly also one unique giant rigid component, and Theorem 2.10
follows.

6. Proof of Theorem 2.12

Collecting all previous results, it is now not hard to prove Theorem 2.12.
Consider first the case 1 > q > 1/2. Since the threshold for the existence of

a giant rigid component c∗(q) satisfies c∗(q) < c∗(1) < 1
1−q , by monotonicity of

the property of having a giant rigid component, it suffices to show the claim for
c < c∗(1). By looking at the proof of Lemma 5.4, we see that the size of the
rigid giant component H which is found is at least αn, for some α > 0 given by
Lemma 2.23. Thus, the transition is discontinuous for all q > 1/2, and the first
part of the statement of Theorem 2.12 follows.

Consider now the case q ≤ 1/2. Denote by H the largest rigid component.
Consider c = 1

1−q + ε for any fixed ε > 0. By Lemma 5.2, for c′ = 1
1−q + ε/2,

the subgraph of the vertices of type 1 contains a giant component. Moreover, by a
result of [1], this subgraph contains a.a.s. a path of length at least (ε/2)2(1−q)n/5.

By adding a fresh random graph G′′ ∈ G(n, (1+o(1))(ε/2)
n ) (as before, the o(1) term
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is for the intersection, so that we end up with G ∈ G(n, c/n)), a.a.s. among these
vertices a cycle of length µε2n for some small µ > 0 is created. Since this is a cycle
containing vertices of type 1 only, this cycle is a rigid block, and hence Rn(q, c)/n
is at least µε2. Suppose now that this cycle of type 1 vertices is not included in
H: if one of the vertices of the cycle were included in H and n1(H) ≥ 3, then we
could add all other vertices of the cycle in a path like way, that is, for each vertex
of the cycle not yet present add the vertex together with exactly one incident edge,
and the graph remains minimally rigid (in particular, if for a vertex both of its
neighbors on the cycle are already there, add just one edge; in particular, the cycle
of type 1 is contained in H). Similarly, if one vertex of the cycle were included in
H and n1(H) = 2, we could add all vertices of the cycle, including the edge closing
the cycle (so that the total number of edges is right). If one vertex of the cycle were
included in H and n1(H) = 1, by adding

√
n random edges, one would modify c

by O(1/
√
n) only, and a.a.s. induce at least one edge between a vertex of the cycle

of type 1 vertices not yet in H and a vertex of type 2 already in H, and sparsity
and minimal rigidity remain true. So suppose no vertex is included in H (which
is then also at least of size µε2n). Then by adding

√
n random edges, one would

modify c by O(1/
√
n) only, and a.a.s. induce at least three pairwise vertex-disjoint

edges between the cycle of type 1 vertices and H. If we had n1(H) ≥ 3, keep one
of the newly added edges and remove one edge of the cycle, if n1(H) = 2, keep
one added edge, if n1(H) = 1, keep two edges, and if n1(H) = 0, keep three edges,
without removing any edge in the last three cases. One can check that in all cases
one obtains a minimally rigid block, as the total number of edges is correct and
every subgraph is sparse. Hence we may assume that the cycle of type 1 vertices
is included in H. Since the cycle of vertices of type 1 forms part of the 2.5-core,
we know that the 2.5-core of H is not empty. Then by Lemma 3.5, H ⊆ Core+.
Now, by Theorem 2.21 and Remark 2.22, we know that the size of Core+/n tends
to 0 when c→ 1

1−q , and the second part of the statement of Theorem 2.12 follows.

7. Proof of Theorem 2.17

Proof. The proof is an easy generalization of the argument in [6], see [13]. We
repeat the argument here for the convenience of the reader.

The 2.5-core of an arbitrary finite graph can be found by removing vertices of
type 1 with degree < 2 and vertices of type 2 with degree < 3, in arbitrary order,
until no such vertices exist. Let us call a vertex of type 1 with degree < 2 or of type
2 with degree < 3 a light vertex, and let us call it a heavy vertex otherwise. We
still obtain the 2.5-core by removing edges where one endpoint is light, and then
finally removing all isolated vertices.

Regard each edge as consisting of two half-edges, each half-edge having one
endpoint. We say that a half-edge is light or heavy when its endpoint is. As long
as there is any light half-edge, choose one such half-edge uniformly at random and
remove the edge it belongs to. When there are no light half-edges left, we stop.
Then all light vertices are isolated and the heavy vertices with the remaining edges
form the 2.5-core of the original graph.

We apply this algorithm to a random multigraph with given degree sequence
(di)

n
1 (the configuration model, see [6], Section 2 for a precise definition). We

observe the half-edges but not how they are connected into edges. At each step,
we thus select a light half-edge at random. We then reveal its partner, which is
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random and uniformly distributed over the set of all other half-edges. We then
remove these two half-edges and repeat as long as there is any light half-edge.

We now regard vertices as bins and half-edges as balls. Each bin inherits the
type of its vertex. In each step, we remove first one random ball from the set of
balls in light bins (i.e., bins of type 1 with < 2 balls or bins of type 2 with < 3 balls)
and then a random ball without restriction. We stop when there are no non-empty
light bins and the 2.5-core consists precisely of the heavy bins at the time we stop.

We thus alternately remove a random light ball and a random ball. We may just
as well say that we first remove a random light ball. We then remove balls in pairs,
first a random ball and then a random light ball, and stop with the random ball
leaving no light ball to remove.

We now run this deletion process in continuous time such that, if there are j
balls remaining, then we wait an exponential time with mean 1/j until the next
pair of deletions. In other words, we make deletions at rate j. Let L(t), H(t) denote
the numbers of light and heavy balls at time t, respectively; further let H1(t) and
H2(t) be the number of heavy bins of type 1 and 2, respectively.

Let τ be the stopping time of this process. As in [6], we first consider the total
number of balls. This is a death process with rate 1 and jumps of size 2, so that
by Lemma 4.3 in [6], we have:

sup
t≤τ
|L(t) +H(t)− 2me−2t| = op(n).

We now concentrate on heavy balls. As shown in [6] (see Section 6), the same results
can be applied if the degree sequence is not given, but converges in probability. In
particular, the degree sequence of G ∈ G(n, c/n) is random, and it converges in
probability to a Poisson distribution with mean c. Let U1

r (t) (resp. U2
r (t)) be the

number of heavy bins of type 1 (resp. 2) with exactly r balls at time t. Then by

Lemma 4.4 in [6], we get (we use the fact that
∑
k≥j ke

−λ λk

k! = λQ(λ, j − 1)):

sup
t≤τ
|
∑
r≥2

rU1
r (t)/n− (1− q)ce−tQ(ce−t, 1)| = op(1)

sup
t≤τ
|
∑
r≥3

rU2
r (t)/n− qce−tQ(ce−t, 2)| = op(1)

We define

h(x) = (1− q)cxQ(cx, 1) + qcxQ(cx, 2)

h1(x) = (1− q)Q(cx, 2)

h2(x) = qQ(cx, 3).

Since we have H(t) =
∑
r rU

1
r (t) + rU2

r (t), we get:

sup
t≤τ
|H(t)/n− h(e−t)| = op(1)

sup
t≤τ
|H1(t)/n− h1(e−t)| = op(1)

sup
t≤τ
|H2(t)/n− h2(e−t)| = op(1)

Hence we deduce that

sup
t≤τ
|L(t)/n+ h(e−t)− ce−2t| = op(1).
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In case (a), we have cx2−h(x) > 0 for all x > 0, so that as in [6], we conclude that
τ → ∞ a.a.s., H(τ)/n = H1(τ)/n = H2(τ)/n = op(1), and hence case (a) follows.

In case (b), again following [6], we have τ → − log
(
ξ̃/c
)

, and the claim follows. �

8. Proof of Theorem 2.21

To prove Theorem 2.21, we need to prove that for a pair of vertices a and b
chosen uniformly at random, we have:

Pr (a in 2.5+1.5-core) = (1 + o(1))
(

1− e−ξ̃ − qξ̃e−ξ̃
)
,

and

Pr (a and b in 2.5+1.5-core) ≤ (1 + o(1))
(

1− e−ξ̃ − qξ̃e−ξ̃
)2

,(8)

and the statement follows by Chebyshev’s inequality.
To prove the first statement, we first consider the extended 2.5-core C(a) ob-

tained as in the previous section by removing vertices of type 1 with degree < 2
and vertices of type 2 with degree < 3 except for vertex a, that is, a is considered
as always heavy (but its half-edges might be deleted as part of a random half-edge
deletion). Clearly the resulting graph contains the 2.5-core. We point out that if
we condition the resulting graph on its degree sequence, it is still a configuration
model (see Theorems 10 and 11 in [13]).

We have:

(i) if a is of type 1 (resp. 2) and has degree 0 (resp. 0 or 1) in C(a), then a is
not in the 2.5 + 1.5-core.

(ii) if a is of type 1 (resp. 2) and has degree ≥ 2 (resp. ≥ 3) in C(a), then a is
in the 2.5-core.

(iii) if a is of type 1 (resp. 2) and has degree 1 (resp. 2) in C(a), then we can
remove a and then continue the algorithm by removing vertices of type 1
with degree < 2 and vertices of type 2 with degree < 3 to get the 2.5-core.

In the case of (iii), if the graph induced by a and the vertices removed during this
second phase is a tree, then it follows that a is part of the 2.5 + 1.5-core. As long
as the number of vertices removed during this second phase is o(n1/3), the graph
induced by a and the removed vertices is a tree a.a.s.: for each vertex the probability
to connect to one of the o(n1/3) vertices is o(n−2/3 log n), and by a union bound
over all vertices the desired result follows.

We clearly have

Pr (a in 2.5+1.5-core) ≤ Pr (a has degree at least t(a) in C(a)),(9)

where t(a) ∈ {1, 2} is the type of a. Hence, we need to compute the probability that
a has at least 1 neighbor in C(a) in the case of being of type 1 (at least 2 neighbors in
C(a) in the case of being of type 2). When changing only one vertex a to be always
heavy, the functions h(x), h1(x), h2(x) change only by an additive O(log n/n), and

thus c̃(q) and ξ̃(q) also change by at most an additive o(1). Hence, for c > c̃(q), as in

the previous proof, for the stopping time τ we still have τ ∼ − log(ξ̃/c). Therefore,
we have to compute the probability that at time τ , a has at least 1 neighbor in
C(a) in the case of being of type 1 (at least 2 in the case of being of type 2). Since
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a is heavy, the probability for each half-edge incident to a to be alive at time t is
e−t. Since a is chosen uniformly at random, we have

Pr (a has degree at least t(a) in C(a))

= (1 + o(1))
∑
k≥0

(
e−cck

k!

(
(1− q)(1− (1− e−τ )k) + q(1− (1− e−τ )k − ke−τ (1− e−τ )k−1)

))
= (1 + o(1))

(
1− e−ξ̃ − qξ̃e−ξ̃

)
.

We now prove (8). Consider two special vertices a and b, chosen uniformly at
random, and consider them both heavy. By the same reasoning as above, the
functions c̃(q), ξ̃(q), h(x), h1(x), h2(x) change only by additive terms of o(1). Again,
observe that in order for both a and b to be in the 2.5+1.5-core, it is necessary but
not sufficient for both a and b to have at time τ still 1 incident edge in the case of
being of type 1 (2 incident edges in the case of being of type 2). Hence,

Pr (a and b in 2.5+1.5-core)

≤ (1 + o(1))
(

1− e−ξ̃ − qξ̃e−ξ̃
)2

.

We now prove that (9) is tight. First, we compute the degree distribution in
C(a). We use the same notation as in the proof of Theorem 2.17. It follows from
Lemma 4.4 in [6] (see also Lemma 12 in [13]) that we have

U1
r (t)

n
= (1− q) (ce−t)

r
e−ce

−t

r!
+ o(1), r ≥ 2

U2
r (t)

n
= q

(ce−t)
r
e−ce

−t

r!
+ o(1), r ≥ 3.

In particular, at τ = − log
(
ξ̃/c
)

+ o(1), the stopping time of the process, we have

U1
r (τ)

n
= (1− q) ξ̃

re−ξ̃

r!
+ o(1), r ≥ 2,

U2
r (τ)

n
= q

ξ̃re−ξ̃

r!
+ o(1), r ≥ 3.

As computed above, the total number of half-edges is∑
r≥2

rU1
r (τ) +

∑
r≥3

rU2
r (τ) = nh(ξ̃/c) + o(n) = n

ξ̃2

c
+ o(n).

Hence, when choosing a ball uniformly at random among the balls in bins corre-
sponding to heavy vertices, the probability of picking a vertex of type 1 with degree
2 is

p1
2 =

2U1
2 (τ)∑

r rU
1
r (τ) + rU2

r (τ)
= (1− q)e−ξ̃c+ o(1),

and similarly, the probability of picking a vertex of type 2 with degree 3 is

p2
3 =

3U2
3 (τ)∑

r rU
1
r (τ) + rU2

r (τ)
= q

ξ̃c

2
e−ξ̃ + o(1).

Consider a new vertex of type t ∈ {1, 2}, picked up during the second phase of
the algorithm in case (iii); as long as the neighborhood of a explored in this second
phase is a tree, this new vertex has at least t+ 1 half-edges, since it is heavy. If it
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has exactly t+ 1 half-edges, it becomes light after removal of one half-edge and the
algorithm continues: a type 1 vertex then induces one more half-edge to remove,
and a type 2 vertex two more half-edges. So to show that this branching exploration
process is o(n1/3), it suffices to prove that it is subcritical, that is,

2p2
3 + p1

2 < 1,

and this will imply that (9) is indeed tight. We have

2p2
3 + p1

2 = qξ̃ce−ξ̃ + (1− q)e−ξ̃c+ o(1),

and we will now show that this is indeed less than 1 for c > c̃(q). Recall that for

c > c̃(q) (the case of interest here), ξ̃(c, q) > 0 is the largest solution of the equation

(10) c = ψ(ξ; q) with ψ(ξ; q) =
ξ

1− e−ξ − qξe−ξ
.

Then, necessarily at the point (ξ̃(c, q), q), we have

(11)
∂ψ

∂ξ
=
eξ(−qξ2 − ξ + eξ − 1)

(qξ − eξ + 1)2
≥ 0,

as otherwise (10) would have a larger solution (observe that ψ(ξ; q)→∞ as ξ →∞).
Furthermore, if q ≤ 1/2, ∂ψ/∂ξ has no strictly positive root, and in this case, for

c > c̃(q), ∂ψ∂ξ > 0 at the point (ξ̃(c, q), q). Now, if q > 1/2, ∂ψ/∂ξ has a single strictly

positive root: indeed, for ξ > 0, ∂ψ/∂ξ(ξ) = 0 iff g(ξ) := eξ−1− qξ2− ξ = 0. Now,
g′(ξ) = eξ−1−2qξ and g′′(ξ) = eξ−2q, and hence g(ξ) is convex for ξ ≥ log(2q) > 0
and concave otherwise. Also, g(0) = g′(0) = 0, and since g′′(0) < 0, the function
is first decreasing, and then increasing with g(ξ)→∞ as ξ →∞, therefore passing
exactly once by 0, giving the single strictly positive root. This root is a minimum
of ψ and equal to ξ̃(c̃(q), q); indeed, recall the definition of c̃(q):

c̃(q) = inf
ξ>0

ψ(ξ; q).

Hence for c > c̃(q), ∂ψ/∂ξ cannot vanish at the point (ξ̃(c, q), q), thus it is strictly
positive. Using (11), this is equivalent to

e−ξ̃
(

1 + ξ̃ + qξ̃2
)
< 1,

and therefore

ξ̃
(
qe−ξ̃ ξ̃ + (1− q)e−ξ̃

)
< (1− q)(1− e−ξ̃) + q(1− e−ξ̃ − ξ̃e−ξ̃).

Thus, the expression 2p2
3 + p1

2 at c > c̃(q) is

ξ̃e−ξ̃
(
qξ̃ + (1− q)

)
(1− q)(1− e−ξ̃) + q(1− e−ξ̃ − ξ̃e−ξ̃)

< 1,

as desired.
The result follows.
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9. Proof of Lemma 2.23

In order to prove Lemma 2.23, we first need to prove the following auxiliary
lemma:

Lemma 9.1. There exists an absolute constant C such that for any τ ≤ 1, for any
r, s, t = τs ∈ N and any s1, . . . , sr ∈ N such that

∑r
i=1 si = τs and

∑r
i=1 isi = s,

we have
r∏
i=1

1

ssii
≤ Cτs/(τ2s)τs.

Proof. It is sufficient to prove
r∑
i=1

si log si ≥ τs log τs+ τs log τ − τs logC.

We first normalize si. Writing zi = si/(τs), the constraints are
r∑
i=1

zi = 1,

r∑
i=1

izi =
1

τ
.

We will show that we can find C > 0 independent of r and τ such that

(12)

r∑
i=1

zi log zi ≥ log τ − logC.

For a fixed r, we maximize
∑r
i=1−zi log zi subject to

∑r
i=1 zi = 1 and

∑r
i=1 izi =

1/τ . Applying Lagrange multipliers gives the system of equations

log zi + 1 + λ1 + iλ2 = 0, i = 1, . . . , r,

and thus an optimal solution has to satisfy zi = abi for some a, b ∈ R. It is enough
to show (12) for all zi of this form.
The two constraints translate into the two following equations, repeatedly used
in the following (the first expression obtained for a is plugged into the second
constraint):

a =
1− b

b(1− br)
,

1− (r + 1)br + rbr+1

(1− b)(1− br)
=

1

τ
.

We distinguish several (slightly overlapping) cases.
Case 1: 1/τ ≥ r/5.
In this case, we may ignore the constraint

∑r
i=1 izi = 1/τ . Clearly,

∑r
i=1 zi log zi

is minimized by the uniform distribution zi = 1/r. Hence
r∑
i=1

zi log zi ≥ − log r ≥ log τ − C1, with C1 = log 5,

and we are done.
Case 2: r < 4.
Reasoning as in the previous case, we obtain

r∑
i=1

zi log zi > − log 4 ≥ log τ − C2, with C2 = log 4,
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and we are done as well.
Case 3: b ≥ 1 and r ≥ 4.
We always have

r∑
i=br/2c

zi ≤
∑r
i=1 izi
br/2c

.

If b ≥ 1, zi is non-decreasing, thus the left hand side is larger than 1/2. Hence
(1/τ) =

∑r
i=1 izi ≥ br/2c/2 ≥ r/5 (we have used here r ≥ 4). Thus Case 3 is

actually part of Case 1.
Case 4: b ≤ 1/2, and r ≥ 4.
We have

a =
1

b(1 + b+ . . .+ br−1)
=

1

b(1 + c(b)b)

with 1 ≤ c(b) ≤ 2. Using
∑r
i=1 zi log zi =

∑r
i=1 zi(log a + i log b) = log a + 1

τ log b
we obtain
(13)
r∑
i=1

zi log zi = log a+
1

τ
log b = (

1

τ
− 1) log b− log(1 + c(b)b) ≥ (

1

τ
− 1) log b− log 2.

Using that (1− b)(1− br) ≥ 1
4 , we get

1

τ
=

1− (r + 1)br + rbr+1

(1− b)(1− br)
1

τ
− 1 =

b− rbr + (r − 1)br+1

(1− b)(1− br)
≤ 4

(
b+ (r − 1)br+1

)
≤ 4b(1 + 0.25) = 5b,

where we used that for r ≥ 4, we have (r − 1)br ≤ (r − 1)(1/2)r ≤ 3/16 < 0.25.
Thus, (

1

τ
− 1

)
log b ≥ 5b log b ≥ −3 log 2,

since 5b log b ≥ −3 log 2 for b ∈ [0, 1/2]. Combining this last estimate with (13),
the desired inequality holds, with C4 = 4 log 2.
Case 5: 1/2 ≤ b < 1 and 1/τ ≤ r/5.
Using log a = log(1− b)− log b− log(1− br) ≥ log(1− b), we obtain

r∑
i=1

zi log zi = log a+
1

τ
log b ≥ log(1− b) +

1

τ
log b.

Consider first (log b)/τ . If τ ≥ 1/2, then (log b)/τ ≥ 2 log b ≥ −2 log 2, and we have
the desired bound. Assume then τ < 1/2. Observe that

(14)
1− b
τ

= 1− r b
r(1− b)
1− br

,

and hence (1 − b)/τ ≤ 1, or equivalently, log b ≥ log(1 − τ). Also, since τ < 1/2,
log(1− τ) ≥ −2τ . Hence,

log b

τ
≥ −2,

and we are done with this term.
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Let us turn to the log(1− b) term. For any i, we have zi ≥ abr, and hence

r

5
≥ 1

τ
=

r∑
i=1

izi ≥ abr
r(r + 1)

2
.

Thus
2b

5
≥ (r + 1)

br(1− b)
1− br

,

and since br/(r + 1) ≤ 1, also

2

5
≥ r b

r(1− b)
1− br

.

Inserting this into (14), we have

1− b
τ
≥ 1− 2

5
.

Thus log(1− b) ≥ log τ + log 3
5 . Putting things together, we obtain

r∑
i=1

zi log zi ≥ log τ − C5, with C5 = 2 + log
5

3
.

Cases 1 to 5 cover all possible situations; thus collecting the various estimates,
the lemma is proved with logC = max{C1, C2, C4, C5}. �

We need the following two lemmas.

Lemma 9.2. [2][Corollary 5.8]
Let G ∈ G(n, p) with p = c/n and 0 < c < 1. The following holds a.a.s.:

• G contains only trees and unicyclic components.
• The number of vertices in unicyclic components is at most ωn, for some

arbitrarily slowly growing function ωn.

The following lemma can easily be derived from Corollary 5.11 and Theorem 5.5
of [2], by extending it to non-constant values of k:

Lemma 9.3. Let G ∈ G(n, p) with p = c/n and 0 < c < 1. Let Tk be the number of
components which are trees of size k in G. Let ωn be an arbitrarily slowly growing
function with n. The following holds a.a.s.:

• Tk = 0 for k = ω(log n).

• For any 1 ≤ k = O(log n) with nkk−2

k! ck−1e−kc ≥ ωn, Tk = nkk−2

k! ck−1e−kc(1+
o(1)).

We need one more lemma, in the spirit of Theorem 5.10 of [2].

Lemma 9.4. Let G ∈ G(n, p) with p = c/n and 0 < c < 1. Let η > 0 be
a sufficiently small constant. Let ωn be any function growing with n arbitrarily
slowly, and let k0 := bν log nc be the smallest integer k satisfying ηωn ≤ E(Tk) =

(1 + o(1))nk
k−2

k! ck−1e−kc ≤ ωn (since 0 < c < 1, such an integer must exist
for sufficiently small η). Then a.a.s., there exists a constant C > 0 such that∑
k≥k0 Tk ≤ CE(Tk0).
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Proof. Clearly, E(Tk0) ≤
∑
k≥k0 E(Tk). By Stirling’s formula,∑

k≥k0

E(Tk) = (1 + o(1))(ce1−c)k0
n√
2πc

∑
i≥0

(ce1−c)i

(i+ k0)2.5

≤ (1 + o(1))(ce1−c)k0
n√

2πck2.5
0

∑
i≥0

(ce1−c)i

= (1 + o(1))E(Tk0)
1

1− (ce1−c)i
.

Writing Tk as a sum of indicator variables over all k-tuples of vertices, we see
that when considering two disjoint trees of size at most O(log n), at most O(log n)
non-edges incident to each vertex of the second tree are exposed when given the
first. Hence, the probability of having no edge adjacent to any of the vertices
changes only by a factor (1+o(1)), and thus E((

∑
k≥k0 Tk)2) = 2E(

∑
`>k≥k0 TkT`)+

E(
∑
k≥k0 T

2
k ) = (1 + o(1))

∑
k≥k0 E(Tk)

∑
`≥k0 E(T`) = (1 + o(1))(

∑
k≥k0 E(Tk))2.

By Chebyshev’s inequality, the result follows. �

We turn now to the proof of Lemma 2.23.

Proof. For a subgraph of size u, let n1 be its number of vertices of type 1 and n2 its
number of vertices of type 2 (in order to ease notation, we write simply n1 and n2

instead of n′1 and n′2, and we do not explicitly refer to the size nor to the subgraph,
since it is clear from the context). Let Xu denote the number of subgraphs of
size u ≤ αn with more than n1 + 2n2 edges (and any possible values for n1 and
n2). Our goal is to show that for a randomly chosen graph G ∈ G(n, p) we have∑
u≤αnXu = 0 a.a.s. To simplify the notation, we set r = 1− q. Let ωn denote a

function tending to infinity arbitrarily slowly, as n→∞.
We start with the relatively easy cases where u is small enough, or n2 is large

enough.

Small u: u = o(log n/ log log n).
The expected number of subgraphs of size u = o(log n/ log log n) on n1 vertices
of type 1 and n2 vertices of type 2 (with n1 and n2 being arbitrary) and at least
n1 + 2n2 + 1 edges, conditional on the fact that there are (1 + o(1))qn vertices
of type 2 (note that by Chernoff bounds there are a.a.s. (1 + o(1))qn vertices of
type 2, and since we aim for a statement that holds a.a.s., we may assume this is
deterministically) is at most

logn/(ωn log logn)∑
n1=0

logn/(ωn log logn)∑
n2=0

(
rn(1 + o(1))

n1

)(
qn(1 + o(1))

n2

)( (
n1+n2

2

)
n1 + 2n2 + 1

)
pn1+2n2+1

≤
logn/(ωn log logn)∑

n1=0

logn/(ωn log logn)∑
n2=0

(
rne

n1

)n1
(
qne

n2

)n2
(

ce(n1 + n2)2

2n(n1 + 2n2 + 1)

)n1+2n2+1

≤
logn/(ωn log logn)∑

n1=0

logn/(ωn log logn)∑
n2=0

(
1

n

)n2+1

(O(n1 + n2))
n1+2n2+1

≤ log2 n

n
(O(log n))(2 logn/ωn log logn) = o(1),
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where here and below for ni = 0 we define (1/ni)
ni = 1, as this corresponds to

the value of the corresponding binomial coefficients. Thus, by Markov’s inequality,
a.a.s. there is no such subgraph.

Let K ′ = K ′(c − 1/r) be a constant (the existence of such a constant is given
by Lemma 9.3 Part (i)) so that a.a.s. all trees are of size at most K ′ log n, and let
K = K(K ′) be a sufficiently large constant (in fact, K depends on q and c, and
it is the largest constant appearing throughout this proof; all constants appearing
later in the proof or constants appearing in the statements of Lemma 9.1 and the
constant C of the statement of Lemma 9.4 are independent of K, and all functions
and combinations of these constants we use are always smaller than certain powers
of K). We now make a case distinction depending on whether or not n2 > n1/K
holds.

Large n2: n2 > n1/K.
Also, a subgraph with more than n1+2n2+1 edges and total size at most αn cannot
exist, if the density of vertices of type 2 is too big: more precisely, if n2 > n1/K =:
ξn1 for some constant ξ > 0, then by Proposition 4 of [20] (a close inspection of the
proof there shows that the assumption c > a made there can be left out) applied

with a = 1+2ξ
1+ξ > 1, there exists a constant t(a, c) = ( 2a

c )a/(a−1)e−(a+1)/(a−1), such

that a.a.s. G ∈ G(n, c/n) has no subgraph with n1 + 2n2 edges of size at most
t(a, c)n.
Remaining cases: u = Ω(log n/ log log n) and n2 ≤ n1/K.

We need one more observation: take any subgraph H with ni vertices of type
i (i = 1, 2) and more than n1 + 2n2 edges, and consider now the connected com-
ponents induced by the vertices of type 1 in the original graph G; let us call these

components {C(1)
k }. Each such component either has an empty intersection with

H, or is contained in H, or is partially included in H. We construct the subgraph
H ′ from H by completing these partially included components. In this completion
process, we add at least the same number of edges as vertices, and the resulting
subgraph H ′ has n′1 vertices of type 1, n2 vertices of type 2 (clearly still satisfying
n2 ≤ n′1/K), and still has more than n′1+2n2 edges. We define Yu to be the random
variable counting the number of subgraphs H of size u with more than n1 + 2n2

edges (ni denoting as usual the number of vertices of type i of the considered sub-

graph), and for which the components {C(1)
k } are contained in H or have an empty

intersection with H. From the above considerations, we see that Yu = 0 for all
u = Ω(log n/ log log n) implies that Xu = 0 for all u = Ω(log n/ log log n). From
now on, our task is thus to compute Yu, for u = Ω(log n/ log log n) and n2 ≤ n1/K
(there is no condition such as u ≤ αn for Yu).

Denote by Ti the number of components which are trees of size i of this subgraph
induced by the vertices of type 1. By Lemma 9.3, a.a.s., T1 = rne−rc(1 + o(1)) ≤
(rnrce1−rc) 1

rc , and using Stirling’s formula, for each 2 ≤ i = O(log n) satisfying
rnii−2

i! (rc)i−1e−irc ≥ ωn, a.a.s., Ti = (1 + o(1)) rni
i−2

i! (rc)i−1e−irc ≤ rn(rce1−rc)i 1
rc .

For the remaining number of components that are trees of size i = Θ(log n), let
i0 := bν log nc throughout the proof be the smallest integer i satisfying

ηωn ≤ E(Ti) = 1 + o(1))
rnii−2

i!
(rc)i−1e−irc = (1 + o(1))

rn(rce1−rc)i√
2πrci2.5

≤ ωn
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for some sufficiently small η > 0 (as remarked before, such i0 exists for small
enough η > 0; observe also that η depends only on c and q). By the proof of
Lemma 9.4, the number of components that are trees of size at least i0 is a.a.s. at
most (1 + o(1)) 1

1−cre1−crE(Ti0) ≤ (1 + o(1)) 1
1−cre1−cr rn(rce1−rc)i0 . Finally, once

more by Lemma 9.3, the total number of trees of size i = ω(log n) is 0 a.a.s.
Consider now any graph on n vertices, for which the subgraph induced by

(1 + o(1))rn vertices (that will then correspond to vertices of type 1) is deter-
ministically given: it consists only of trees and unicyclic components, the number
of components that are trees of size i < i0 is at most rn(rce1−rc)i 1

rc , the total
number of components that are trees of size i = Θ(log n) for i ≥ i0 is at most
(1 + o(1)) 1

1−cre1−cr rn(rce1−rc)i0 , the number of trees of size ω(log n) is 0, and the
number of vertices in unicyclic components is at most ωn. We will show below that
starting with any such graph, when exposing the random edges between the qn
vertices of type 2 and edges between type 1 and type 2 (as before, each such edge
being present with probability p), with probability 1+o(1) in the whole graph there
are no subgraphs Yu with more than n1 + 2n2 edges. The lemma will then follow,
since the randomly chosen graph G ∈ G(n, p), as shown above, a.a.s. satisfies these
properties.

It remains now to show that any graph on (1 + o(1))rn vertices (of type 1) with
the above mentioned properties has a.a.s. no subgraphs with more than n1 + 2n2

edges. By definition, we can bound the number of such components of each size
in the subgraph induced by the vertices of type 1. We then have to combine
them with the choices for the n2 vertices. If there are t tree components in the
subgraph induced by the vertices of type 1, the number of additional edges needed
to surpass n1 + 2n2 is 2n2 + t + 1. Call tree components of size i < i0 small,
and call tree components of size i0 ≤ i = Θ(log n) medium. For any subgraph with
n1 = Ω(log n/ log log n) vertices of type 1, write n1 = nt+z, where nt is the number
of vertices belonging to tree components and z is the number of vertices belonging
to unicyclic components. Recall that z ≤ ωn and that by our assumption on n1,
z = o(n1). Next, for small tree components of size i < i0, let si be the number of tree
components of size i in the subgraph of the n1 vertices, and denote by si0 the number
of medium tree components (of size at least i0) in the subgraph of the n1 vertices.

Let
∑i0
i=1 isi = s, and let

∑i0
i=1 si = τs for τ ≤ 1. Observe that s is therefore

a lower bound on the number of vertices in tree components in the subgraph of
the n1 vertices; also, all medium sized tree components are of size Θ(log n), and
therefore s ≥ 0.99νn1/K

′ and still z = o(s).) Define now Y s,τu s, n1, n2, z to be the
number of subgraphs with n1 vertices of type 1, n2 vertices of type 2, satisfying∑i0
i=1 isi = s, and

∑i0
i=1 si = τs, furthermore having z ≤ ωn vertices in unicyclic

components and having in total more than n1 + 2n2 edges (the previously imposed
restrictions s ≥ 0.99νn1/K

′, n2 ≤ n1/K, n1 = Ω(log n/ log log n), and the fact that

the components of type 1 vertices C
(1)
k are taken entirely or not at all still hold; as

before, we may also assume that there are (1 + o(1))qn vertices of type 2). Hence,
with C1, C2, . . . here and below denoting constants that are all independent of K,
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we obtain

E(Y s,τs,n1,n2,z
u ) ≤

∑
∑
si=τs,

∑
i isi=s

((
ωn
z

)∏
i

(
rn(rce1−rc)iC1

si

)(
qn(1 + o(1))

n2

)(
n1n2 +

(
n2

2

)
2n2 +

∑
si + 1

)
p2n2+

∑
si+1

)

≤2ωn(C2n)τs(rce1−rc)s
(
qen(1 + o(1))

n2

)n2
((

C3sn2 + 1
2n

2
2

)
ec

(2n2 + τs)n

)2n2+τs+1∏
i

1

ssii
,

where we used the fact that there are at most 2τs possibilities to obtain
∑
si = τs

and also that
(
ωn

z

)
≤ 2ωn . By Lemma 9.1,

∏
i

1
s
si
i

≤
(
C4

τ2s

)τs
for some C4 > 0, and

writing n2 = βτs (since n2 ≤ n1/K and s ≥ 0.99νn1/K
′, we still have βτ ≤ K ′/K,

and this is still sufficiently small for large enough K = K(K ′)), we have1

2−ωnE(Y s,τs,n1,n2,z
u ) ≤

(
Cτ5 rce

1−rc(βτs2)τ

(τ2s)τ (2βτs+ τs)τ )

)s(
C6

(
βτs2

)2
βτs(2βτs+ τs)2n

)βτs
C7βs

(2β + 1)n

≤
(
Cτ8 rce

1−rcβτ

τ2τ (1 + 2β)τ
(C9βs)

βτ

(1 + 2β)2βτ (τn)βτ

)s
.

We distinguish now three cases. If β ≥ K ′/K3/4, then τ ≤ 1/K1/4. Then, we have

2−ωnE(Y s,τs,n1,n2,z
u ) ≤

(
(rce1−rc)Cτ10((C11s)

βτ

τ2τββτ (τn)βτ

)s
.

The base of the last expression is clearly monotone increasing in s, and so we may
plug in our upper bound on s ≤ u ≤ n. Considering the base only and taking
logarithms, we obtain

log(rce1−rc)− 2τ log τ − βτ log(βτ) + τ logC10 + βτ logC11.

We have x log x → 0 as x → 0, and thus, if K and thus also K1/4 is sufficiently
large, both τ and βτ are sufficiently small. Then the first term dominates in
absolute value, and since rce1−rc < 1, the expression is negative.

Otherwise, either β < K ′/K3/4 and τ ≤ 1/K1/4 hold, or τ > 1/K1/4 (and hence
β < K ′/K3/4). In both cases,

2−ωnE(Y s,τs,n1,n2,z
u ) ≤

(
(rce1−rc)Cτ12s

βτββτ+τ

τ2τ+βτnβτ

)s
.

If β < K ′/K3/4 and τ ≤ 1/K1/4, reasoning as before, we obtain

log(rce1−rc) + (βτ + τ) log β − (2τ + βτ) log τ + τ logC12.

The second term is negative, and among the others, for K large enough, the first
term dominates them in absolute value, and hence the expression is negative.

Finally, if τ > 1/K1/4 (and hence β < K ′/K3/4), we obtain

log(rce1−rc) + (βτ + τ) log β − (2τ + βτ) log τ + τ logC12

= log(rce1−rc) + βτ log(β/τ) + τ log(C12β/τ
2).

1For the sake of clarity we opt here and below for leaving some terms involving β and τ even
though they might be asymptotically negligible.
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Once more for K large enough, β < τ , and the second term is negative. Also, for
K large enough, C12 < K1/4/K ′, and thus C12β < 1/K1/2, and therefore Cβ < τ2,
and the last expression is negative as well. In all cases, since we have s = Θ(u),

2−ωnE(Y s,τs,n1,n2,z
u ) ≤ ρs ≤ ρC13u

for some 0 < ρ < 1 and some constant C13 > 0. Clearly,

E(Yu) =
∑

s,τs,n1,n2,z

E(Y s,τs,n1,n2,z
u ) ≤ 2ωnu5ρC13u.

Finally, ∑
log logn≤u≤n

E(Yu) ≤ 2ωn

∑
log logn≤u≤n

u5ρC13u = o(1).

By Markov’s inequality Yu = 0 a.a.s., and the lemma follows. �

Remark: Since we have not used the condition of having at most αn vertices
in the last setup, this shows that the result is actually stronger than stated in the
statement of the lemma: a.a.s. there are no subgraphs Xu on n1 vertices of type 1,
n2 vertices of type 2, with more than n1 + 2n2 edges, and at the same time having
n2 ≤ n1/K.
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