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Abstract

“Spectral methods” capture generally the class of algorithms which cast
their input data as a matrix and then employ eigenvalue and eigenvec-
tor techniques from linear algebra. Empirically, spectral methods have
been shown to perform successfully in a variety of domains, e.g., text
classification [DDL+90], website ranking [PB98, Kle99]. On the other
hand, not many theoretical guarantees have been given for spectral al-
gorithms, and there remains a lot of work to be done to obtain a real
understanding why these approaches work as well as they do.

In this thesis we use the framework of reconstruction problems to
gain such an understanding of these approaches: the basic idea of re-
construction problems is given some input data which are generated ac-
cording to some model, the task is to recover some of the model param-
eters. Clearly, algorithms for these problems do not know the hidden
structure and are supposed to reconstruct the structure with the plain
information of the data. One main advantage of reconstruction prob-
lems is that they allow to compare and to validate algorithms: typically,
in reconstruction problems there are a few parameters that measure
the difficulty of the reconstruction task. An algorithm is better, if it can
provably solve the problem for a wider range of parameters (note that
the generating data model is known for the purpose of the analysis of
the algorithm). Moreover, many algorithms that have been proven to
perform well on reconstruction problems (e.g., in computer graphics,
see [Dey04]) also work nicely on real world data.

We provide data models and design spectral algorithms for which we
show that they often provably reconstruct the model parameters. In
particular, we formulate the partitioning problem and the preference
elicitation problem as reconstruction problems and provide theoretical
guarantees for the correct reconstruction of the hidden structure using
our algorithms.
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Zusammenfassung

“Spektrale Methoden” umfassen die Klasse von Algorithmen, die ihre
Eingabedaten in Matrixform darstellen und dann Eigenwert- bzw. Eigen-
vektortechniken der linearen Algebra anwenden. In zahlreichen Ar-
beiten wurde der empirische Erfolg spektraler Methoden aufgezeigt,
unter anderem in den Bereichen Textklassifizierung [DDL+90] sowie
Ranking von Webseiten [PB98, Kle99]. Auf der anderen Seite gibt es
wesentlich weniger Arbeiten, die theoretisch den Erfolg spektraler Meth-
oden erklären. Es fehlt ein wirkliches Verständnis, warum diese Metho-
den so gut funktionieren.

In dieser Arbeit versuchen wir, mit Hilfe von Rekonstruktionsproble-
men ein solches Verständnis spektraler Methoden zu gewinnen. Rekon-
struktionsprobleme können so zusammengefasst werden: gegeben seien
Eingabedaten, die einem bestimmten Datenmodell folgen; die Aufgabe
ist es, einige der Modellparameter ohne Kenntnis des zugrundeliegen-
den Modells zu rekonstruieren. Algorithmen, die auf solchen Daten
arbeiten, kennen die zugrundeliegende Struktur nicht und sollen diese
ohne zusätzliche Information, lediglich auf Grund der Eingabedaten,
herausfinden. Ein wesentlicher Vorteil von Rekonstruktionsproblemen
ist, dass sie es ermöglichen, Algorithmen hinsichtlich ihrer Qualität zu
bewerten und zu vergleichen: typischerweise gibt es in Rekonstruktion-
sproblemen einige Parameter, die die Schwierigkeit der Rekonstruk-
tionsaufgabe messen. Ein Algorithmus ist besser, wenn er für einen
grösseren Wertebereich der Parameter beweisbar das Rekonstruktion-
sproblem lösen kann (man beachte, dass das generierende Datenmod-
ell zum Zweck der Analyse des Algorithmus als bekannt vorausgesetzt
werden kann). Darüber hinaus hat sich in zahlreichen Anwendungen
(z.B. Computergraphik, vgl. [Dey04]) gezeigt, dass Algorithmen, die
sich (beweisbar) gut auf Rekonstruktionsproblemen verhalten, auch auf
realen Daten gut funktionieren.

In der Arbeit präsentieren wir Datenmodelle und entwerfen spektrale
Algorithmen, von denen wir beweisen können, dass sie oft die Mod-
ellparameter rekonstruieren. Im Speziellen formulieren wir das Parti-
tionierungsproblem von Objekten sowie das Präferenzerhebungsprob-
lem als Rekonstruktionsprobleme und geben für die hier vorgestellten
Algorithmen theoretische Garantien.
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Chapter 1

Introduction

Reconstruction problems are a general class of problems of the follow-
ing type: given data obeying a certain model, the task is to reconstruct
the model parameters. In other words, we are given some input data
of which we assume that they contain some latent structure which we
try to recover. The algorithms clearly do not know the hidden struc-
ture and try to recover the structure using the information in the data
only. Turning to reconstruction problems allows to compare and vali-
date algorithms whose quality otherwise is difficult to assess. An impor-
tant example of a reconstruction problem is the surface reconstruction
problem in computer graphics [Dey04]: given a finite sample from the
surface of some solid, compute a surface from the sample that has the
same topology as the original surface and is geometrically close to it.
Obviously the surface reconstruction problem can only be solved if the
surface and the sample obey certain conditions, i.e., if they follow a
certain model. However it turned out that many of the algorithms for
which guarantees can be proven in a restricted model also work nicely
on real world data that almost never meet the conditions of the model.
Here we try to do something similar for partitioning problems and the
preference elicitation problem, namely, turning them into reconstruc-
tion problems by providing a reasonable model. We strongly believe
that the framework of reconstruction problems has further applications
beyond the scope of partitioning, preference elicitation and surface re-
construction problems.

The results of this thesis are primarily obtained using spectral meth-

1



2 Chapter 1. Introduction

ods. Spectral algorithms basically work as follows: at first the input
data are transformed into a matrix M (in such a way that one column
corresponds to one data point). Then, the top k eigenvalues and eigen-
vectors (or in general singular values and singular vectors) of M are
computed. In this thesis we work primarily with the projector onto
the space spanned by the top k eigenvectors. The idea is that if M is
“close” (in terms of a certain matrix norm) to a rank k matrix then the
top k eigenvalues and eigenvectors contain most information which is
contained in M. In particular, the restriction to the top k eigenvectors
captures the structured part of M and leaves out the additional noise
on top of this structure. Finally, spectral algorithms use these eigen-
vectors (in our case the projector) as a basis for the reconstruction and
recover the structure hidden in M by comparing different data points
according to the (dis)similarity of their corresponding entries in these
eigenvectors (in our case the projector, respectively).

Empirically, spectral algorithms have been shown to perform well
in several domains, e.g., text classification [DDL+90], website rank-
ing [PB98,Kle99]. On the theoretical side, however, much less is known
so far why these algorithms perform so well. In this thesis we provide
data models for reconstruction problems in which we can prove that
our spectral algorithms perform well.

1.1 Summary and organization

The rest of the thesis is divided into three chapters, according to the
general theme of the results stated. Here we give a short summary for
each chapter.

1.1.1 Preliminaries

In Chapter 2 we recapitulate some concepts and results from discrete
probability theory and from linear algebra which are used throughout
the thesis. We also introduce notation used later on. The concepts and
results are mostly standard and can be found in the following literature:

• Discrete probability theory: [Wel02], [AS00]

• Linear algebra: [Str88], [SS90], [Gut05]
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1.1.2 Reconstructing planted partitions

Chapter 3 can be considered as the main part of this thesis. In this chap-
ter we present three different spectral algorithms for partitioning data.
The algorithms are analyzed in the so called planted partition model
which was introduced by [McS01]. The basic idea of this model is the
formulation of the partitioning problem as a reconstruction problem:
since there is no single criterion to assess the quality of a partitioning
algorithm we assume a partition to be given (planted) and measure the
algorithm’s quality by its ability to reconstruct the given partition. For
the first algorithm, presented in section 2.3, we can prove the best re-
construction guarantees of all three algorithms, but the running time
of the algorithm is not polynomial in the size of the input data. The
second algorithm (section 2.4) comes with slightly weaker guarantees
(still improving before known bounds), and its running time is polyno-
mial in the size of the input data. Finally, the third algorithm (section
2.5) is also polynomial and gives improved guarantees with respect to a
different correctness criterion. Moreover, we prove in section 2.6, that
if the number of partitions exceeds a certain value, no algorithm will be
able to reconstruct the planted partitions with high probability.

The results of this chapter are joint work with Joachim Giesen, and
are presented in [GM05b], [GM05c] and [GM05a].

1.1.3 Collaborative ranking

In Chapter 4 we present a spectral algorithm for the collaborative rank-
ing problem: given a set of products and a set of users, each user is
asked a usually small subset of all possible product pairs {x, y} and has
to decide whether he prefers product x over y or the other way around.
Assuming that all users belong to a certain user type, the problem is to
reconstruct

• the user type to which each user belongs

• the typical ranking of all products of any user type

In this chapter we first show how this problem can be represented in a
matrix form and then present a spectral algorithm to solve this problem.
As in Chapter 3, we formulate this problem as a reconstruction problem
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and introduce a model in which our algorithm can be analyzed rigor-
ously.

The results of this chapter are joint work with Joachim Giesen and
Eva Schuberth, and are presented in [GMS07].



Chapter 2

Preliminaries

In this chapter we will give a short presentation of concepts we will use
throughout this thesis and which include some topics from linear alge-
bra and discrete probability theory. The goal is not to make a complete
survey, but nevertheless we still attempt to make it as self-contained as
possible.

Notation. Throughout the thesis log always denotes the natural log-
arithm. ‖.‖2 denotes the L2 matrix norm, i.e., ‖M‖2 := max|x|=1 |Mx|.
We also use the Frobenius norm ‖.‖F, which is defined as ‖M‖F :=√∑

i,j M2
ij. For asymptotic analysis of algorithms we use the Landau

symbols: for two functions f, g : R → R, we have f(n) ∈ O(g(n)), if
there exists a constant c1 ∈ R+, such that ∀n ≥ n0, f(n) ≤ c1g(n).
Also, f(n) ∈ Ω(g(n)), if there exists a constant c2 ∈ R+, such that
∀n ≥ n0, f(n) ≥ c2g(n). If both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)),
then f(n) ∈ Θ(g(n)). Next, f(n) ∈ o(g(n)) (f(n) ∈ ω(g(n)), respec-
tively), if limn→∞

f(n)
g(n) = 0 (limn→∞

f(n)
g(n) = ∞, respectively). Finally

we say that an event holds asymptotically almost surely, or just a.a.s., if
it holds with probability tending to 1 as n tends to infinity.

5



6 Chapter 2. Preliminaries

2.1 Discrete probability

Definition 1 (Probability space). A probability space is a pair (Ω,Pr)
where Ω is a set and Pr is a mapping Ω → R+

0 such that
∑

ω∈Ω

Pr[ω] = 1.

Every subset A of Ω is called an event, and the mapping Pr is extended to
events by setting

Pr[A] :=
∑

ω∈A

Pr[ω].

The elements in Ω are called elementary events. If Ω is finite and Pr[ω] =
1/|Ω| for all ω ∈ Ω, then Pr is called uniform distribution on Ω. We use
Ω+ for the set of elementary events with positive probability, i.e.,

Ω+ := {ω ∈ Ω | Pr[ω] > 0}.

Definition 2 (Random variable). Given a probability space (Ω,Pr), a
random variable is a real-valued function defined on the elementary events
of a probability space, i.e.,

X : Ω → R.

If A is an event, then

ω 7→ [ω ∈ A]

is the indicator variable for event A, where for a statement S we have
[S] := 1 if S is true and [S] := 0 if S is false.

Definition 3 (Independence). A collection Xi, 1 ≤ i ≤ n of random
variables on a common probability space is called mutually independent
or simply independent if

Pr[Xi1
= xi1

∧ . . . ∧ Xik
= xik

] = Pr[Xi1
= xi1

] . . . Pr[Xik
= xik

]

for all k ∈ {2, . . . , n}, 1 ≤ i1 ≤ . . . ≤ in, and (xi1
, . . . , xik

) ∈ Rk.

Definition 4 (Expectation and variance). Let X be a random real-
valued variable. The expectation of X is defined as

E[X] :=
∑

x∈X(Ω+)

x Pr[X = x]
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provided this infinite sum exists. The variance of X is defined as

var[X] := E[[X − E[X]]2] = E[X2] − E[X]2.

Fact 1 (Linearity of Expectation). Let X and Y be random variables
defined on a common probability space and let c ∈ R. Then

E[cX] = cE[X] and E[X + Y] = E[X] + E[Y],

provided E[X] and E[Y] exist.

Lemma 1 (Chebyshev’s inequality). Let X be a random variable with
finite variance var[X]. Then for any λ ∈ R+,

Pr[|X − E[X]| ≥ λ
√

var[X]] ≤ 1

λ2
.

Definition 5 (Conditional probability). Let A and B be events in a
probability space with Pr[B] > 0. The conditional probability of A, given
B, is defined to be

Pr[A|B] :=
Pr[A ∩ B]

Pr[B]
.

Lemma 2 (Chernoff bound). Let X =
∑n

i=1 Xi where the Xi’s are mu-
tually independent {0, 1}-valued random variables with Pr[Xi = 1] = pi

such that E[X] is positive. Then for any δ ∈ (0, 1],

Pr[X < (1 − δ)E[X]] ≤ e−δ2E[X]/2

and for any ξ ∈ R+

Pr[X > (1 + ξ)E[X]] ≤ (
eξ

(1 + ξ)1+ξ
)E[X].

For our purposes the following (weaker, but more concise) corollary
is sufficient.

Corollary 1. For X and Xi as in Lemma 2 and 0 < δ < 1 we have

Pr[X < (1 − δ)E[X]] ≤ e−δ2E[X]/4

and

Pr[X > (1 + δ)E[X]] ≤ e−δ2E[X]/4.
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Proof. The lower tail follows trivially from Lemma 2.
For the upper tail, note that ( eδ

(1+δ)1+δ )E[X] = (eδ−(1+δ) log(1+δ))E[X].

Since the Taylor expansion of log(1+δ) is
∑

i≥1
δi

i (−1)i+1, we get (just
considering the exponent) that

δ − (1 + δ) log(1 + δ) =
∑

i≥2

δi

i(i − 1)
(−1)i+1.

For 0 < δ < 2e−1 this series is less than −δ2/4, which yields the desired
bound.

2.2 Linear algebra

Definition 6 (Vector space). A vector space over a field F is a nonempty
set V together with two operations vector addition v,w ∈ V 7→ v+w ∈ V

and scalar multiplication α ∈ F, v ∈ V 7→ αv ∈ V satisfying the following
axioms:

• vector addition forms an abelian group (i.e., it is associative, com-
mutative, has an identity element and for every element an inverse
element)

• for all α ∈ F, v, w ∈ V, α(v + w) = αv + αw.

• for all α, β ∈ F, v ∈ V, (α + β)v = αv + βv.

• for all α, β ∈ F, v ∈ V, α(βv) = (αβ)v.

• for all v ∈ V , we have 1v = v, where 1 is the multiplicative identity
of F.

Definition 7 (Subspace). A nonempty set U of a vector space V over a
field F is called a subspace, if for all u, v ∈ U and all α ∈ F,

x + y ∈ U, and αx ∈ U.

Fact 2. Every subspace is a vector space.

Definition 8 (Linear independence and basis). A set of vectors v1, . . . , vm

of a vector space V over F is called linearly independent , if for any γi ∈ F,∑m
i=1 γivi = o implies that γ1 = . . . = γm = 0. A set of linearly indepen-

dent vectors v1, . . . , vm is called a basis of V, if any v ∈ V can be written
as

∑m
i=1 γivi for some γi ∈ F.
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Definition 9 (Dimension). The number of basis vectors (in every basis)
of a vector space V is called the dimension of V.

Definition 10 (Linear mapping). A mapping M : V → W,v 7→ Mv

between two vector spaces V and W over F is called linear, if for any
v,w ∈ V and any α ∈ F,

M(v + w) = Mv + Mw, M(αv) = α(Mv).

In this thesis we primarily consider matrices which are linear map-
pings M between the same vector space V, i.e., M : V → V, v 7→ Mv.

Definition 11 (Eigenvalue and Eigenvector). The number λ ∈ F is
called eigenvalue of a matrix M : V 7→ V , if there exists an eigenvector
v ∈ V, v 6= o, such that

Mv = λv.

The subspace spanned by k eigenvectors v1, . . . , vk with corresponding
eigenvalues λ1, . . . , λk is called the eigenspace corresponding to λ1, . . . , λk.

Definition 12 (Eigenbasis). A basis of eigenvectors of M is called eigen-
basis of M.

In the following the underlying field F is always R. A matrix M is
called real, if mij ∈ R for all i, j and is called symmetric if mij = mji

for all i, j.

Fact 3. Any real symmetric n× n-matrix M has n real eigenvalues λ1 ≥
. . . ≥ λn and Rn has a corresponding eigenbasis. The eigenbasis can be
chosen to be orthogonal, i.e., we have vectors v1, . . . , vn such that Mvi =
λivi, i = 1, . . . , n and vT

i vj = 0 for all i 6= j.

In this thesis the eigenvalues of a real symmetric n× n-matrix M are
always assumed to be ordered such that λ1(M) ≥ . . . ≥ λn(M) (or
simply λ1 ≥ . . . ≥ λn if M is understood).

Fact 4. For any real symmetric matrix n× n-matrix M,

‖M‖F ≤
√

rk(M)‖M‖2,

where rk(M) is the rank of the matrix M, i.e., the number of linearly
independent columns of M.
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The next theorem (see [Vu05] and also [FK81] for previous work) is
central for our investigations.

Theorem 1 (Vu [Vu05]). Let mij, 1 ≤ i ≤ j ≤ n, be independent (but
not necessarily identical) random variables with the properties

• |mij| ≤ K, for all 1 ≤ i ≤ j ≤ n,

• E[mij] = 0, for all 1 ≤ i < j ≤ n,

• var[mij] ≤ σ2, for all 1 ≤ i < j ≤ n,

where K and σ are fixed. Define mji := mij and consider the matrix
M = (mij). Then there is a positive constant c = c(σ,K) such that

λ1(M) ≤ 2σ
√

n + cn1/4 log n

holds asymptotically almost surely.

Remark 1. A short glance at the proof of Theorem 1 tells us that also

E[λ1(M)] ≤ 2σ
√

n + cn1/4 log n,

since Theorem 1 is proven by applying Wigner’s trace method to bound the
expected number of walks of a certain length.

Lemma 3 (Alon, Krivelevich and Vu [AKV02]). For M as in Theorem 1
and t ∈ ω(1) we have

Pr[|λ1(M) − E[λ1(M)]| ≥ t] ≤ e−(1−o(1))t2/32.

Corollary 2. For M as in Theorem 1,

λ1(M) ≤ 4σ
√

n

with probability at least 1 − e−(1−o(1))σ2n/8.

Proof. By the remark following Theorem 1,

E[λ1(M)] ≤ 2σ
√

n + cn1/4 log n.

Thus, by Lemma 3, for t = (1 − o(1))2σ
√

n,

Pr
[
λ1(M) ≥ 4σ

√
n
]

≤ Pr
[
λ1(M) ≥ E[λ1(M)] + (1 − o(1)) 2σ

√
n
]

≤ Pr
[
|λ1(M) − E[λ1(M)]| ≥ (1 − o(1)) 2σ

√
n
]

≤ e−(1−o(1))σ2n/8.
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Theorem 2 (Weyl). Let M and M̂ be two symmetric matrices ∈ Rn×n

with corresponding eigenvalues λ1 ≥ . . . ≥ λn and λ̂1 ≥ . . . ≥ λ̂n, respec-
tively. Then

max{
∣∣λi − λ̂i

∣∣ | i ∈ {1, . . . , n}} ≤ ‖M − M̂‖2.

Definition 13 (Spectral separation). The spectral separation δk(M) of
a symmetric matrix M ∈ Rn×n with eigenvalues λ1 ≥ . . . ≥ λn is defined
as

δk(M) := λk − λk+1.

Definition 14 (Projection matrix). The projection matrix Pk
M onto the

space spanned by the k largest eigenvalues of a real symmetric matrix M

is defined as

Pk
M :=

k∑

i=1

viv
T
i ,

where vi is the eigenvector corresponding to the i’th largest eigenvalue of
M.

Theorem 3 (Stewart [SS90]). Let M and M̂ be two symmetric matrices
∈ Rn×n and let P (and P̂, respectively) be the projection matrices onto the
space spanned by the k largest eigenvalues of M (M̂, respectively). Then

‖P − P̂‖2 ≤ 2‖M − M̂‖2

δk(M) − 2‖M − M̂‖2

if δk(M) > 4‖M − M̂‖2.
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Chapter 3

Reconstructing planted
partitions

3.1 Introduction

The partition reconstruction problem that we study here is related to
the k-partition problem. In the latter problem the task is to partition
the vertices of a given graph into k equally sized classes such that the
number of edges between the classes is minimized. This problem is al-
ready NP-hard for k = 2, i.e., in the graph bisection case [GJS76]. Thus
researchers, see for example [CK01, BS04] and the references therein,
started to analyze the problem in specialized but from an application
point of view still meaningful graph families – especially families of
random graphs. The random graph families typically assume a given
partition of the vertices of the graph aka planted partition, which is ob-
scured by random noise. In general the planted partition need not be
an optimal solution of the k-partition problem. Nevertheless, we want
to assess the quality of a partitioning algorithm not in terms of the prob-
ability that it computes or well approximates an optimal k-partition but
in terms of its ability to reconstruct a planted partition. The intuition
is that for a “meaningful” random graph family the planted partition
is with high probability also optimal. The random graph families usu-
ally are parameterized, e.g., by the number of vertices n and number of
classes k. Two measures to assess the quality of a partitioning algorithm

13



14 Chapter 3. Reconstructing planted partitions

in terms of these parameters are:

(1) the probability that the algorithm can reconstruct a planted parti-
tion (perfect reconstruction), and

(2) the number of items that the algorithm misclassifies (with a suited
definition of misclassification).

The best studied random graph family for the partition reconstruction
problem is the following: an edge in the graph appears with probability
p if its two incident vertices belong to the same planted class and with
probability q < p otherwise, independently from all other edges. The
probabilities p and q control the density / sparsity of the graph and
can depend on the number of vertices n. In general there is a trade-
off between the sparsity of the graph and the number of classes k that
can be reconstructed, i.e., the sparser the graph the less classes can be
reconstructed correctly and vice versa the larger k the denser the graph
has to be in order to reconstruct the classes correctly. Here we assume
that p and q are fixed, i.e., we deal with dense graphs only. That leaves
only k as a free parameter. We believe that this should be enough to
assess the power of most partitioning algorithms.

Related work. In this model the most powerful efficient (polyno-
mial in n) algorithms known so far are the algorithm of Shamir and
Tsur [ST02], which builds on ideas of Condon and Karp [CK01], and the
algorithm of McSherry [McS01]. Both algorithms can asymptotically
almost surely reconstruct correctly up to k = O(

√
n/ log n) planted

classes. The algorithm of McSherry falls into the category of spectral
clustering algorithms that make use of the eigenvalues and eigenvec-
tors of the adjacency matrix of the input graph. The use of spectral
methods for clustering has become increasingly popular in recent years.
The vast majority of the literature points out the experimental success
of spectral methods, see for example the review by Meila et al. [MV].
On the theoretical side much less is known about the reasons why spec-
tral algorithms perform well in partitioning problems. In 1987 Bop-
pana [Bop87] presented a spectral algorithm for recovering the optimal
bisection of a graph. Much later Alon et al. [AKS98] showed how the
entries in the second eigenvector of the adjacency matrix of a graph can
be used to find a hidden clique of size Ω(

√
n) in a random graph. Spiel-

man and Teng [ST96] showed how bounded degree planar graphs and
d-dimensional meshes can be partitioned using the signs of the entries
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in the second eigenvector of the adjacency matrix of the graph or mesh,
respectively.

3.2 The model and some spectral properties

3.2.1 The planted partition model

In this section we introduce the planted partition reconstruction prob-
lem formally and define two quality measures that can be used to com-
pare different partitioning algorithms. We first introduce the A(ϕ,p, q)
distribution, see also McSherry [McS01].

A(ϕ,p, q) distribution. Given a surjective function ϕ : {1, . . . , n} →
{1, . . . , k} and fixed probabilities p, q ∈ (0, 1) with p > q. The A(ϕ,p, q)
distribution is a distribution on the set of n×n symmetric, 0-1 matrices
with zero trace. Let Â = (âij) be a matrix drawn from this distribution.
We have âij = 0 if i = j and for i 6= j,

Pr(âij = 1) = p if ϕ(i) = ϕ(j)
Pr(âij = 0) = 1 − p if ϕ(i) = ϕ(j)
Pr(âij = 1) = q if ϕ(i) 6= ϕ(j)
Pr(âij = 0) = 1 − q if ϕ(i) 6= ϕ(j),

independently. The matrix of expectations A = (aij) corresponding to
the A(ϕ,p, q) distribution is given as

aij = 0 if i = j

aij = p if ϕ(i) = ϕ(j) and i 6= j

aij = q if ϕ(i) 6= ϕ(j)

Since σ2 := max{p(1 − p), q(1 − q)} ≤ 0.25, by Corollary 2 we imme-
diately get the following observation.

Observation 1. For A and Â as before

‖A − Â‖2 ≤ 2
√

n

with probability at least 1 − e−(1−o(1))σ2n/8.
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Planted partition reconstruction problem. Given a matrix Â drawn
from the A(ϕ, p, q) distribution. Assume that all classes ϕ−1(l), l ∈
{1, . . . , k} have the same size n/k (we assume w.l.o.g. that n is an in-
teger multiple of k). Then the function ϕ is called a partition func-
tion. The planted partition reconstruction problem asks to reconstruct
ϕ up to a permutation of {1, . . . , k} only from Â (up to permutations of
{1, . . . , k}).

Quality of a reconstruction algorithm. A planted partition reconstruc-
tion algorithm takes a matrix Â drawn from the distribution A(ϕ,p, q)
as input and outputs a function ψ : {1, . . . , n} → {1, . . . , k ′}. There are
two natural measures to assess the quality of the reconstruction algo-
rithm.

(1) The probability of perfect reconstruction, i.e.,

Pr [ϕ = ψ up to a permutation of {1, . . . , k}] .

(2) The distribution of the number of elements in {1, . . . , n} misclas-
sified by the algorithm. The definition for the number of misclas-
sifications used here (see also Meila et al. [MV]) is as the size of
a maximum weight matching on the weighted, complete bipartite
graph whose vertices are the classes ϕ−1(i), i ∈ {1, . . . , k}, and
the classes ψ−1(j), j ∈ {1, . . . , k ′}, produced by the algorithm. The
weight of the edge {ϕ−1(i), ψ−1(j)} is |ϕ−1(i) ∩ ψ−1(j)|, i.e., the
size of the intersection of the classes. The matching gives a pair-
ing of the classes defined by ϕ and ψ. Assume without loss of
generality that always ϕ−1(i) and ψ−1(i) are paired. Then the
number of misclassifications is given as

n −

min{k,k ′}∑

i=1

|ϕ−1(i) ∩ψ−1(i)|.

3.2.2 Spectral properties

Here we are concerned with two types of real symmetric matrices. First,
any matrix Â drawn from an A(ϕ,p, q) distribution. Second, the matrix
A of expectations corresponding to the distribution A(ϕ,p, q).
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We want to denote the eigenvalues of Â by λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n and
the vectors of a corresponding orthonormal eigenbasis of Rn (which
exists by Fact 3) by v1, . . . , vn.

For the sake of the analysis we want to assume here without loss
of generality that the matrix A of expectations has a block diagonal
structure, i.e., the elements in the i’th class have indices in {n

k (i − 1) +
1, . . . , n

k i} (all indices are in {1, . . . , n}). It is easy to verify that the eigen-
values λ1 ≥ . . . ≥ λn of A are (n

k −1)p+(n− n
k )q, n

k (p−q)−p and −p

with corresponding multiplicities 1, k−1 and n−k, respectively. Hence,
δk(A) = n

k (p − q). A possible orthonormal basis of the eigenspace cor-
responding to the k largest eigenvalues of A is ui, i = 1, . . . , k, whose
j’th coordinates are given as follows,

uij =

{ √
k
n , j ∈ {n

k (i − 1) + 1, . . . , n
k i}

0, else.

Denote by P (P̂, respectively) the projection matrix that projects any
vector in Rn onto the eigenspace spanned by the k eigenvectors corre-
sponding to the k largest eigenvalues of the matrix A (Â, respectively).
The entries of P can be characterized explicitly: its entries are given as

pij =

{
k
n , ϕ(i) = ϕ(j)
0, ϕ(i) 6= ϕ(j)

For the analysis of our algorithms we need the following three lemmas
that relate the eigenvalues of Â and the parameters p, q and k.

Lemma 4. All the k largest eigenvalues of Â are larger than 2
√

n and all
the n−k smallest eigenvalues of Â are smaller than 2

√
n with probability

at least 1 − e−(1−o(1))σ2n/8 provided that n is sufficiently large and k <
p−q

8

√
n.

Proof. Plugging in our assumption that k < p−q
8

√
n gives that the k

largest eigenvalues of A are larger than 8
√

n − p > 4
√

n. By Ob-
servation 1 we have ‖A − Â‖2 ≤ 2

√
n with probability at least 1 −

e−(1−o(1))σ2n/8. Now it follows from Theorem 2 that the k largest
eigenvalues of Â are larger than 2

√
n with probability at least 1 −

e−(1−o(1))σ2n/8. Since the n − k smallest eigenvalues of A are −p it
also follows that the n − k smallest eigenvalues of Â are smaller than
2
√

n with probability at least 1 − e−(1−o(1))σ2n/8.
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Lemma 5. With probability at least 1 − e−(1−o(1))σ2n/8,

q ≤ k

k − 1

λ̂1

n
+

k

k − 1

2√
n

=: q+ and

q ≥ k

k − 1

λ̂1

n
−

k

k − 1

(
2√
n

+
1

k

)
:= q−.

and with the same probability

p ≤ kλ̂2 + k
k−1 λ̂1

n − k
+

2k
√

n

(n − k)(k − 1)
+

2k
√

n

n − k
:= p+ and

p ≥ kλ̂2 + k
k−1 λ̂1

n − k
−

2k
√

n

(n − k)(k − 1)
−

n

(n − k)(k − 1)
−

2k
√

n

n − k
:= p−.

Proof. We know that λ1 = (n
k −1)p+(n− n

k )q. By Theorem 2 and Obser-
vation 1, respectively, it holds |λ1 − λ̂1| ≤ 2

√
n with probability at least

1 − e−(1−o(1))σ2n/8. Thus with probability at least 1 − e−(1−o(1))σ2n/8,

λ̂1 ∈
[(n

k
− 1

)
p +

(
n −

n

k

)
q − 2

√
n,

(n

k
− 1

)
p +

(
n −

n

k

)
q + 2

√
n
]
.

From this we get with the same probability (using 0 ≤ p ≤ 1)

q ≤ k

k − 1

λ̂1

n
+

k

k − 1

2√
n

and q ≥ k

k − 1

λ̂1

n
−

k

k − 1

(
2√
n

+
1

k

)
,

which proves the statement for q.

Again by Theorem 2 and Observation 1, respectively, it holds

λ̂2 ∈
[n

k
(p − q) − p − 2

√
n,

n

k
(p − q) − p + 2

√
n
]

with probability at least 1 − e−(1−o(1))σ2n/8. From this we get with the
same probability (using our previously established estimates of q)

p ≤ kλ̂2 + k
k−1 λ̂1

n − k
+

2k
√

n

(n − k)(k − 1)
+

2k
√

n

n − k
and

p ≥ kλ̂2 + k
k−1 λ̂1

n − k
−

2k
√

n

(n − k)(k − 1)
−

n

(n − k)(k − 1)
−

2k
√

n

n − k
,

which proves the statement for p.
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Lemma 6. With probability at least 1 − e−(1−o(1))σ2n/8 it holds

n

k
(p − q) − p − 2

√
n ≤ λ̂2 and λ̂2

k

n
−

2k√
n
≤ p − q,

provided n is sufficiently large.

Proof. It holds λ2 = n
k (p − q) − p. By combining Theorem 2 and Ob-

servation 1 we get that with probability at least 1 − e−(1−o(1))σ2n/8 it
holds

λ̂2 ∈
[n

k
(p − q) − p − 2

√
n,

n

k
(p − q) − p + 2

√
n
]
.

Hence with the same probability

λ̂2
k

n
−

2k√
n
≤ p − q ≤ λ̂2

k

n
+

2k√
n

+
k

n
,

where we used p ≤ 1 for the upper bound and p ≥ 0 for the lower
bound.

In the following three sections we design three spectral algorithms for
the planted partition reconstruction problem.

The first algorithm in section 3.3 gives the best reconstruction guaran-
tees among all three algorithms, but its running time is not necessarily
polynomial in n. It runs in time Ck/2 poly(n), for some constant C > 0.
We prove that this algorithm asymptotically almost surely reconstructs
a planted partition if k ≤ c

√
n, where c is another sufficiently small

constant. Note that the running time adapts to the difficulty of the
problem, i.e., it takes longer if k gets larger. For k ≤ c

√
n the running

time is subexponential in the size of the input.

The second algorithm in section 3.4 asymptotically almost surely re-
constructs a planted partition with k classes if k ≤ c

√
n/ log log n for

some constant c in polynomial time. At the core of this algorithm is
a spectral algorithm with weaker guarantees. This algorithm uses a
small random submatrix of the adjacency matrix of the input graph
to correctly reconstruct a large fraction of the planted classes. Iterat-
ing this algorithm allows us to reconstruct the remaining classes. Do-
ing this in a naive way would allow us to correctly reconstruct up to
k = O(

√
n/ log n) classes, which would exactly match the bounds ob-

tained in the papers of [ST02] and [McS01]. In order to boost the
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power of the algorithm we prune from the small random submatrix the
algorithm is currently working with all entries that correspond to classes
already reconstructed in earlier iterations. This means that the number
of entries in this matrix corresponding to a not yet reconstructed class
is increasing relatively to the size of the matrix. This makes the recon-
struction problem easier and thus the relative fraction of classes that
the algorithm reconstructs increases in every iteration.

Finally, the third algorithm in section 3.5 builds on similar ideas as
the second one though we cannot provide as good guarantees for this
algorithm when it comes to perfect reconstruction. Instead we get for
this algorithm that the relative number of misclassifications for k =
o(
√

n) goes to zero asymptotically almost surely when n goes to infinity
– for polynomial-time algorithms this further extends the range of k for
which non-trivial guarantees can be given.

3.3 Perfect reconstruction in superpolynomial
time

In this section we address the first quality measure, namely perfect re-
construction. The algorithm given here is not guaranteed to run in poly-
nomial time (in n). In the first part of the section we give a pseudocode
together with some explanation of the algorithm. Since the running
time is not polynomial, the second subsection is devoted to the running
time analysis of the algorithm. The third subsection then deals with the
correctness of the algorithm.

3.3.1 The algorithm

For convenience, we assume here that the input to the algorithm is a
4n× 4n matrix Â drawn from the A(ϕ,p, q) distribution, where ϕ is a
surjective function from {1, . . . , 4n} → {1, . . . , k}.

GRIDRECONSTRUCT(Â)
1 k := number of eigenvalues λ̂i of Â that are larger than 4

√
n.

2 α := c0/
√

k.
3 Randomly partition {1, . . . , 4n} into four subsets I11, I12, I21
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and I22 of equal size.
4 for i, j = 1, 2 do
5 Âij := restriction of Â to index set Iij.
6 end for

In the first six lines of the algorithm we do some preprocessing. We
compute the eigenvalues of Â and use them in line 1 to estimate the
number of planted partitions. According to Lemma 4 our estimate k is
asymptotically almost surely the correct number of planted partitions.
In line 2 we use the value of k to set the value α, which is an essential
parameter of the algorithm; c0 is a small constant > 0.

In line 3 we randomly partition the set {1, . . . , 4n} into four equally
sized subsets. One way to compute such a random partition is to com-
pute a random permutation π of {1, . . . , 4n} and assign

I11 = {π(1), . . . , π(n)}, I12 = {π(n + 1), . . . , π(2n)},
I21 = {π(2n + 1), . . . , π(3n)}, I22 = {π(3n + 1), . . . , π(4n)}.

For the sake of the analysis we will use a slightly different method: we
first put every vertex into one of the four parts with equal probability 1

4
(independently from all other vertices) and later redistribute randomly
chosen elements to make the partition sizes equal. In Lemma 8 below
we formalize this. The only reason to partition {1, . . . , 4n} into four sets
is for the sake of the analysis where we need independence at some
point. The main idea behind our algorithm needs only a partitioning
into two sets.

In lines 4 to 6 we compute the restrictions of the matrix Â to the index
sets Iij. Note that the Âij are n× n matrices.

The following lines 7 to 30 make up the main part of the algorithm.

7 for i, j = 1, 2 do
8 l := 1

9 {v1, . . . , vk} := orthonormal eigenbasis of the eigenspace (⊂ Rn)
of Âij that corresponds to the k largest eigenvalues.

10 for all (λ1, . . . , λk) ∈ (αZ)k with
∑k

s=1 λ2
s ≤ 1 do

11 Ĉ
ij
l := ∅

12 v :=
∑k

s=1 λsvs /
∣∣∣∑k

s=1 λsvs

∣∣∣
13 I := subset of the index set Iij that corresponds to the
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n/k largest coordinates of v (break ties arbitrarily).
14 for all t ∈ Ii(j mod2+1) do
15 if

∑
s∈I âst ≥ t(n, k, λ̂1, λ̂2) do

16 Ĉ
ij
l := Ĉ

ij
l ∪ {t}

17 end if
18 end for
19 if |Ĉ

ij
l | ≤ 3

4

(
1 + 3(kn−3/4)1/3

)
n
k do

20 l := l − 1

21 else
22 for 1 ≤ l ′ < l do
23 if Ĉ

ij
l ∩ Ĉ

ij
l ′ 6= ∅ do

24 Ĉ
ij
l ′ := Ĉ

ij
l ′ ∪ Ĉ

ij
l ; l := l − 1; break

25 end if
26 end for
27 end if
28 end for
29 l := l + 1

30 end for

The idea in the main part of the algorithm is to sample the unit ball
of the eigenspace of a matrix Âij on a grid with grid spacing α. The
intuition behind this approach is that for every indicator vector of a class
there is a vector in the sample that approximates the indicator vector
well. We basically search through all grid vectors in the unit ball to find
the ones that are good approximations of characteristic vectors. Every
vector in the sample is used to form a class Ĉ

ij
l of indices in Ii(j mod2+1).

That is, for the algorithm we pair the index sets I11 with I12 and I21

with I22. Thus the vectors of the matrix Aij, which corresponds to the
index set Iij, are used to reconstruct the classes in the partner index
set Ii(j mod2+1). The unit ball is sampled in line 12 and elements are
taken into class Ĉ

ij
l in lines 15 to 17 using a threshold test. Note that

the threshold value t(n, k, λ̂1, λ̂2) is a function of values that all can be
computed from Â.

This way we would form too many classes and elements that belong to
one class would be scattered over several classes in the reconstruction.
To prevent this we reject a class Ĉ

ij
l in lines 19 to 21 if it contains too

few elements. We know that the correct reconstruction has to contain
roughly n/k elements. In lines 22 to 26 we check if the set Ĉ

ij
l is a
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(partial) reconstruction that already has been partially reconstructed.
If this is the case then there should exist Ĉ

ij
l ′ with l ′ < l such that

Ĉ
ij
l ∩ Ĉ

ij
l ′ 6= ∅. We combine the partial reconstructions in line 24 and

store the result in the set Ĉ
ij
l ′ . With the break statement in line 24 we

leave the for-loop enclosed by lines 22 and 26.

In lines 31 to 49 we postprocess the reconstructions that we got in the
main part of the algorithm.

31 for all l ∈ {1, . . . , k} do
32 Ĉl := Ĉ11

l

33 for all l1 ∈ {1, . . . , k} do
34 if

∑
i∈Ĉ11

l

∑
j∈Ĉ21

l1

âij > s(n, k, λ̂1, λ̂2) do

35 Ĉl := Ĉl ∪ Ĉ21
l1

36 for all l2 ∈ {1, . . . , k} do
37 if

∑
i∈C21

l1

∑
j∈Ĉ12

l2

âij > s(n, k, λ̂1, λ̂2) do

38 Ĉl := Ĉl ∪ Ĉ12
l2

39 for all l3 ∈ {1, . . . , k} do
40 if

∑
i∈C12

l2

∑
j∈Ĉ22

l3

âij > s(n, k, λ̂1, λ̂2) do

41 Ĉl := Ĉl ∪ Ĉ22
l3

42 end if
43 end for
44 end if
45 end for
46 end if
47 end for
48 end for
49 return all Ĉl

After the main part of the algorithm the reconstruction of a class Cl

is distributed into four sets corresponding to the four index sets Iij.
The purpose of the postprocessing is to unite these four parts. This
is again done using thresholding with threshold value s(n, k, λ̂1, λ̂2),
which again can be computed from Â. In line 49 we finally return the
computed reconstructions.
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3.3.2 Running time analysis

The running time of the algorithm GRIDRECONSTRUCT is essentially
bounded by the number of points (λ1, . . . , λk) ∈ (αZ)k with

∑k
s=1 λ2

s ≤
1.

Lemma 7. The number of points (λ1, . . . , λk) ∈ (αZ)k with
∑k

s=1 λ2
s ≤ 1

is asymptotically bounded by 1√
πk

(
π2e
c2

0

)k/2

.

Proof. We want to bound the number of points (λ1, . . . , λk) ∈ (αZ)k

that are contained in the k-dimensional ball centered at the origin with
radius 1. This number is asymptotically the number of such points in the
cube [−1, 1]k times the volume of the k-dimensional unit ball divided by
the volume of the cube, which is 2k. The volume of the k-dimensional
unit ball is

πk/2

k/2 Γ(k/2)

and the number of points (λ1, . . . , λk) ∈ (αZ)k that are contained in
[−1, 1]k is (2/α)k. Plugging in α = c0/

√
k and using Stirling’s formula

(Γ(x) ∼
√

2πe−xxx−1/2) asymptotically gives for the number of points
in the unit ball

πk/2

k/2 Γ(k/2) 2k

2kkk/2

ck
0

=
(kπ)k/2

k/2 Γ(k/2) ck
0

∼
1√
2π

(2πek)k/2

√
k/2 (kc2

0)k/2

=
1√
πk

(
2πe

c2
0

)k/2

.

Remark 2. The time needed for the preprocessing in the algorithm is
polynomially bounded in n. The same holds for the postprocessing.
The time we have to spend on the main part is polynomial in n for
every point in the intersection of (αZ)k with the k-dimensional unit
ball. That is, the running time of the whole algorithm is asymptotically
bounded by

1√
πk

(
2πe

c2
0

)k/2

poly(n) = Ck/2 poly(n),

for some constant C > 0.
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3.3.3 Correctness proof

In this subsection we prove the following

Theorem 4. A.a.s., the algorithm GRIDRECONSTRUCT reconstructs all k

classes correctly, provided k ≤ c
√

n for a small enough constant c > 0.

In the following Aij and Âij always refer to the restrictions of the
matrices A and Â, respectively, to the index set Iij. The corresponding
projectors onto the space spanned by the k largest eigenvectors are de-
noted as Pij and P̂ij. Also, C

ij
l = Cl ∩ Iij is the restriction of Cl to Iij.

Lemma 8. Let l ∈ {1, . . . , k}. The size of C
ij
l is contained in the interval

[(
1 − 3(kn−3/4)1/3

) n

k
,
(
1 + 3(kn−3/4)1/3

) n

k

]

with probability at least 1 − e−c ′n1/4

for some c ′ > 0.

Proof. As stated in the description of the algorithm, we will proceed in
two steps. In the first step we put every element in Cl into a fixed Iij

with probability 1
4 , independently from all other vertices. Define Xs as

the random variable which is 1 if the s’th element of partition l is put
into Iij and 0 otherwise. Let X :=

∑4n/k
s=1 Xs denote the random variable

|C
ij
l |. We get E[X] = n

k , and since the Xs are independent, we get using
Chernoff’s bound (Corollary 1) for any 0 < δ < 1

Pr
[
X ≤ (1 − δ)E[X]

]
< e− δ2

4 E[X] = e−δ2n/4k

and similarly

Pr
[
X ≥ (1 + δ)E[X]

]
< e− δ2

4 E[X] = e−δ2n/4k.

By the same Chernoff bound argument we obtain (1 − δ)n ≤ |Iij| ≤
(1 + δ)n with probability at least 1 − 2e−δ2n/4 (for any 0 < δ < 1).
In the second step we move some elements between the different sets
Ii ′j ′ , i ′, j ′ = 1, 2, to make them all of the same size. One way to achieve
this is the following: take all sets Ii ′j ′ , i ′, j ′ = 1, 2, with more than n el-
ements and redistribute |Ii ′j ′ |−n randomly chosen elements from these
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sets Ii ′j ′ among all other sets Ii ′j ′ with |Ii ′j ′ | < n such that all sets Ii ′j ′ ,
i ′, j ′ = 1, 2, have exactly n elements after redistribution.
Assuming that both X and |Iij| take values between the stated upper
and lower bounds, we redistribute in the second step at most δn many
elements for Iij. Conditioning under these facts we can bound the prob-
ability that one element from Iij to be redistributed belongs to Cl by
(1+δ)n/k

n from above, since in every step there are at most (1 + δ)n/k

elements of C
ij
l left, and there are more than n elements left in Iij in

total (otherwise nothing is redistributed).
Let Ys be the indicator variable which is 1 if the s’th element of C

ij
l

is redistributed and 0 otherwise. We also define an auxiliary indicator
variable Zs which dominates Ys, i.e., Ys = 1 implies Zs = 1, but Zs has
exactly probability (1+δ)n/k

n to happen: if Pr[Ys = 1] <
(1+δ)n/k

n we
(virtually) add some “dummy” elements to Iij (belonging to Cl as well
as belonging to the complement of Cl) in every step by some arbitrary
but deterministic rule such that Pr[Zs = 1] is exactly the desired value.
Furthermore, let Zs be defined for s = 1, . . . , (1 + δ)n/k, whereas the

actual size of C
ij
l might be smaller. Let Y =

∑|Cij
l |

s=1 Ys denote the num-
ber of redistributed elements of C

ij
l and set Z =

∑(1+δ)n/k
s=1 Zs. Clearly,

Z ≥ Y. Provided that the conditions from above hold we assume the
worst case that indeed δn elements have to be redistributed to decrease
the size of Iij down to n. We get that E[Z] =

(1+δ)n
kn δn = δ(1 + δ)n

k .
Since the Zs are all independent, by Chernoff’s bound,

Pr[Z ≥ (1 + δ)E[Z]] ≤ e−δ2E[Z]/4

= e−δ2δ(1+δ)n/4k.

This upper bound holds also for Y.
Combining the probabilities, we obtain that after the second step, with
probability at least 1−e−c ′δ3n/k for any 0 < δ < 0.1 and some constant
c ′ > 0,

n

k
(1 − 3δ) <

n

k
((1 − δ) − δ(1 + δ)2)

≤ |C
ij
l |

≤ n

k
((1 + δ) + δ(1 + δ)2)

<
n

k
(1 + 3δ).
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Setting δ = (kn−3/4)1/3 gives the stated result.

Lemma 9. The spectral separation δk(Aij) is at least
(
1 − 3(kn−3/4)1/3

) n

k
(p − q)

with probability at least 1 − ke−c ′n1/4

.

Proof. Let Aq be the n×n-matrix with q everywhere except on the main
diagonal where it is zero and let Al be the n×n-matrix, which has entry
p − q at positions whose indices both are mapped to the value l by ϕ

(except on the main diagonal where it is zero), and zero otherwise. It
holds

Aij = Aq +

k∑

l=1

Al.

By Theorem 2, we have for the k’th largest eigenvalues λk(Aij) of Aij,

λk(Aij) ≥ λk

(
k∑

l=1

Al

)
+ λn(Aq).

By construction the spectrum of the sum
∑k

l=1 Al of matrices is the
union of the spectra of the matrices Al. The spectrum of one such
matrix is (p − q)(rk(Al) − 1) with multiplicity one, −(p − q) with mul-
tiplicity rk(Al) − 1 and zero with multiplicity n − rk(Al). Furthermore,
λn(Aq) = −q. By Lemma 8, with probability at least 1 − e−c ′n1/4

,

rk(Al) ≥
(
1 − 3(kn−3/4)1/3

) n

k
.

Hence taking a union bound we have that with probability at least 1 −

ke−c ′n1/4

,

λk

(
k∑

l=1

Al

)
≥

(
1 − 3(kn−3/4)1/3

) n

k
(p − q) − (p − q),

and thus
λk(Aij) ≥

(
1 − 3(kn−3/4)1/3

) n

k
(p − q) − p
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with the same probability. On the other hand it is easy to see that

λk+1(Aij) = . . . = λn(Aij) = −p,

by explicitly constructing n − k orthogonal eigenvectors for the eigen-
value −p. Hence

δk(Aij) ≥
(
1 − 3(kn−3/4)1/3

) n

k
(p − q)

with probability at least 1 − ke−c ′n1/4

.

Lemma 10. For every unit vector v ∈ Rn with Pijv = v the angle θ

between v and P̂ijv is bounded by

θ < arccos
(√

1 − ε
)

, and ε =
4
√

n(
1 − 3(kn−3/4)1/3

)
n
k (p − q) − 4

√
n

.

with probability at least
(
1 − e−(1−o(1))σ2n/8

)(
1 − ke−c ′n1/4

)
.

Proof. Theorem 3, Observation 1 and Lemma 9 together imply that

|(Pij − P̂ij)v|
2 < ε

with probability at least
(
1 − e−(1−o(1))σ2n/8

)(
1 − ke−c ′n1/4

)
. It fol-

lows

ε > 1 + |P̂ijv|
2 − 2vT P̂ijv

= 1 + |P̂ijv|
2 − 2|P̂ijv| cos θ,

which in turn gives

cos θ >
1 + |P̂ijv|

2 − ε

2|P̂ijv|
.

As a function of |P̂ijv| the cosine of θ is minimized at |P̂ijv| =
√

1 − ε.
Thus we have cos θ >

√
1 − ε, which gives that the stated bound on θ

holds with the stated probability.

Lemma 11. For every vector w in the image of the projector P̂ij there is
a vector v computed in line 12 of the algorithm GRIDRECONSTRUCT such
that the angle θ between w and v is bounded by θ < arccos

(
1 − α

√
k/2

)
.
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Proof. Observe that every v constructed in the algorithm is contained
in the image of P̂ij, because it is a linear combination of an eigenbasis
corresponding to the k largest eigenvalues of Âij and this eigenbasis
spans the image of P̂ij. Since we are only interested in angles we can
assume that w is a unit vector. By construction w must have a vector v ′

with

v ′ =

k∑

s=1

λsvs with (λ1, . . . , λk) ∈ (αZ)k and
k∑

s=1

λ2
s ≤ 1,

at Euclidean distance at most α
√

k/2. Scaling the vector v ′ to get v does
not change the angle between w and v ′. Using the law of cosines we
get for the angle θ between w and v ′

cosθ >
1 +

(
1 − α

√
k/2

)2

− α2k/4

2

= 1 − α
√

k/2,

which gives the bound on θ.

Lemma 12. For any l ∈ {1, . . . , k} there is a vector v computed in line 12
of the algorithm GRIDRECONSTRUCT such that with probability at least(
1 − e−(1−o(1))σ2n/8

)(
1 − ke−c ′n1/4

)
at least

(
1 − 4(1 − cosβ)

(
1 + 3(kn−3/4)1/3

)) n

k

of the indices corresponding to the n/k largest entries in v are mapped to
l by ϕ, where β = arccos

(
1 − α

√
k/2

)
+ arccos

(√
1 − ε

)
and ε as in

Lemma 10.

Proof. Let cl ∈ Rn be the normalized characteristic vector of the class
C

ij
l . By construction it holds Pijcl = cl. Thus the angle between

cl and P̂ijcl is bounded by arccos(
√

1 − ε) with probability at least(
1 − e−(1−o(1))σ2n/8

)(
1 − ke−c ′n1/4

)
by Lemma 10. For the vector

P̂ijcl there exists by Lemma 11 a vector as constructed in line 12 of
the algorithm such that the angle between P̂ijcl and v is bounded by
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arccos
(
1 − α

√
k/2

)
. Using the triangle inequality for angles we thus

get

cT
l v ≥ cos

(
arccos

(
1 − α

√
k/2

)
+ arccos

(√
1 − ε

))
= cosβ.

Since cl and v are both unit vectors we can get an upper bound on the
length of |cl − v| from the lower bound on the dot product cT

l v. First
we decompose v into the projection of v onto cl and the orthogonal
complement v⊥ of this projection. Since v is a unit vector we have
1 = (cT

l v)2 + |v⊥|2. Thus |v⊥|2 is bounded from above by 1 − (cosβ)2.
Also, |(cT

l v)cl − cl|
2 is bounded from above by (1 − cosβ)2 since cl is a

unit vector. Combining the two inequalities we get

|v−cl|
2 = |v⊥|2+|(cT

l v)cl−cl|
2 ≤ 1−(cosβ)2+(1−cosβ)2 = 2(1−cosβ).

Let x = |C
ij
l | be the size of C

ij
l and let y be the number of indices whose

corresponding entries in the vector v are among the x largest, but that
are not mapped to l by ϕ. The number y is maximized under the upper
bound on |v−cl|

2 if the entries that are “large” in cl but are “small” in v

have a value just smaller than 1
2

√
1/x in v and if the entries whose value

is 0 in cl, but “large” in v, have a value just larger than 1
2

√
1/x in v and

if all other entries coincide. For such a vector v it follows |v− cl|
2 = 2y

4x ,
which implies

y ≤ 4x(1 − cosβ).

Since by Lemma 8 it holds x ≤ (
1 + 3(kn−3/4)1/3

)
n
k with probability

at least 1 − e−c ′n1/4

we have

y ≤ 4(1 − cosβ)
(
1 + 3(kn−3/4)1/3

) n

k

with probability at least 1 − ke−c ′n1/4

(taking a union bound). This is
also an upper bound on the number of indices whose corresponding en-
tries in the vector v are among the n/k largest, but that are not mapped
to l by ϕ.

Remark 3. If k ≤ c
√

n and α = c0/
√

n then for sufficiently small
constants c and c0 = c0(c) and for large enough n

(
1 − 4(1 − cosβ)

(
1 + 3(kn−3/4)1/3

))
≥ 3

4
.

That is, asymptotically almost surely at least 3/4 of the indices corre-
sponding to the n/k largest entries in v are mapped to l by ϕ.
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Lemma 13. Let vij be a unit vector constructed in round (i, j) in line 12
of the algorithm GRIDRECONSTRUCT. Let I be subset of the index set Iij

that corresponds to the n/k largest entries in v.

If at least νn/k of the indices in I are mapped to the same element
l ∈ {1, . . . , k} by ϕ then for t ∈ C

i(j mod2+1)
l it holds

∑

s∈I

âst ≥ (νp + (1 − ν)q)
n

k
(1 − δ)

with probability at least 1 − e− δ2

4 (νp+(1−ν)q) n
k (for any 0 < δ < 1).

If at most µn/k of the indices in I are mapped to the same element l ∈
{1, . . . , k} by ϕ then for t ∈ C

i(j mod2+1)
l it holds

∑

s∈I

âst ≤ (µp + (1 − µ)q)
n

k
(1 + δ)

with probability at least 1 − e− qδ2

4
n
k (for any 0 < δ < 1).

Proof. The entries âst of Â, where t ∈ C
i(j mod2+1)
l is fixed and s ∈ I,

are independent Poisson variables for which

Pr(âst = 1) = p if ϕ(s) = l

Pr(âst = 0) = 1 − p if ϕ(s) = l

Pr(âst = 1) = q if ϕ(s) 6= l

Pr(âst = 0) = 1 − q if ϕ(s) 6= l.

Let X be the random variable

X =
∑

s∈I

âst

with t ∈ Il
i(j mod2+1). If at least νn/k of the indices in I are mapped to

the same element l ∈ {1, . . . , k} by ϕ then

E[X] ≥ (νp + (1 − ν)q)
n

k

and we get using Chernoff’s bound (Corollary 1)

Pr
[
X ≤ (1 − δ)(νp + (1 − ν)q)

n

k

]
≤ P [X ≤ (1 − δ)E[X]]

< e− δ2

4 E[X]

< e− δ2

4 (νp+(1−ν)q) n
k
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for any 0 < δ < 1.
If at most µn/k of the indices in I are mapped to the same element
l ∈ {1, . . . , k} by ϕ then

q
n

k
≤ E[X] ≤ (µp + (1 − µ)q)

n

k

and we get using Chernoff’s bound

Pr
[
X ≥ (1 + δ)(µp + (1 − µ)q)

n

k

]
≤ P [X ≥ (1 + δ)E[X]]

< e− δ2

4 E[X]

< e− qδ2

4
n
k

for any 0 < δ < 1.

Remark 4. If we choose ν = 3/4 and µ = 2/3 and let 0 < δ <
(ν−µ)(p−q)

(ν+µ)(p−q)+2q then

(νp + (1 − ν)q)
n

k
(1 − δ) > (µp + (1 − µ)q)

n

k
(1 + δ)

asymptotically almost surely. That is, if we choose the threshold in line
15 of the algorithm GRIDRECONSTRUCT in the interior of the interval

[
µp + (1 − µ)q)

n

k
(1 + δ), (νp + (1 − ν)q)

n

k
(1 − δ)

]

then asymptotically almost surely the test in line 15 is only passed for
vectors v (as constructed in line 12 of the algorithm) that have at least
2
3

n
k indices corresponding to the n/k largest entries in v that are mapped

to the same element by ϕ. Assume this element is l ∈ {1, . . . , k}. The
elements that pass the test (and are subsequently put into a class) are
all mapped to l by ϕ. The only problem is that it is possible that
for some vector v only some of the elements that are mapped to l by
ϕ and that take the test also pass it. But from Remark 3 we know
that for every l ∈ {1, . . . , k} there is a vector v such that asymptotically
almost surely (taking a union bound) all elements that are mapped to
l by ϕ and that take the test also pass it. That is the reason for the
postprocessing in lines 19 to 28 of the algorithm. It remains to show
how a good threshold value can be found. Only obstacle to that is that
we do not know the values of p and q when running the algorithm.
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Remark 5. Asymptotically almost surely we can approximate q arbi-
trarily well by k

k−1
λ̂1

n for growing n if k ∈ ω(1), see Lemma 5. That is
not the case for p. If k = c

√
n then we can approximate p asymptoti-

cally by kλ̂2+ k
k−1 λ̂1

n−k only up to a constant that depends on c. But for
sufficiently small c if we choose

0 < δ <

(
3
4p− + 1

4q−
)

−
(

2
3p+ + 1

3q+
)

(
3
4p+ + 1

4q+
)

+
(

2
3p+ + 1

3q+
) ,

which is positive for sufficiently large n, the algorithm GRIDRECON-
STRUCT asymptotically almost surely reconstructs for k ≤ c

√
n (and

k ∈ ω(1)) all the classes C
ij
l for all l ∈ {1, . . . , k} (up to a permutation

of {1, . . . , k}) if we choose the threshold

t(n, k, λ̂1, λ̂2) =

(
2

3
p+ +

1

3
q+

)
n

k
(1 + δ)

in line 15 of the algorithm.

Lemma 14. Let 0 < δ < 1 be a constant. It holds asymptotically almost
surely

∑

i∈Ĉ11
l

∑

j∈Ĉ21
l ′

âij ≥
(
1 − 3(kn−3/4)1/3

)2 n2

k2
(1 − δ)p

if ϕ(l) = ϕ(l ′), and it holds asymptotically almost surely

∑

i∈Ĉ11
l

∑̂
j∈Ĉ21

l ′
≤

(
1 + 3(kn−3/4)1/3

)2 n2

k2
(1 + δ)q

if ϕ(l) 6= ϕ(l ′).

Proof. By construction the following two events are independent.

(1) For all l = 1, . . . , k the index sets Ĉ11
l are correct reconstructions

of classes C11
l ′ .

(2) For all l = 1, . . . , k the index sets Ĉ21
l are correct reconstructions

of classes C21
l ′ .
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By Remark 5 both events happen asymptotically almost surely. By Lemma 8
the sizes of all the classes Ĉ11

l and Ĉ21
l ′ are a.a.s. contained in the inter-

val [(
1 − 3(kn−3/4)1/3

) n

k
,
(
1 + 3(kn−3/4)1/3

) n

k

]
.

Let X be the following sum of independent Poisson variables
∑

i∈Ĉ11
l

∑

j∈Ĉ21
l ′

âij.

Asymptotically almost surely (using Lemma 8) we have for the expec-
tation of X,

E[X] ≥
(
1 − 3(kn−3/4)1/3

)2 n2

k2
p

if ϕ(l) = ϕ(l ′), and

E[X] ≤
(
1 + 3(kn−3/4)1/3

)2 n2

k2
q

if ϕ(l) 6= ϕ(l ′). Using Chernoff’s bound we find that a.a.s.

X ≥
(
1 − 3(kn−3/4)1/3

)2 n2

k2
(1 − δ)p

if ϕ(l) = ϕ(l ′), and

X ≤
(
1 + 3(kn−3/4)1/3

)2 n2

k2
(1 + δ)q

if ϕ(l) 6= ϕ(l ′).

Remark 6. Analogous results hold for the index sets Ĉ21
l and Ĉ12

l ′ with
l, l ′ ∈ {1, . . . , k} and for the index sets Ĉ12

l and Ĉ22
l ′ with l, l ′ ∈ {1, . . . , k}.

Proof of Theorem 4. If δ < (p − q)/(p + q) and n sufficiently large then

(
1 − 3(kn−3/4)1/3

)2 n2

k2
(1 − δ)p >

(
1 + 3(kn−3/4)1/3

)2 n2

k2
(1 + δ)q.

Again in order to use this result to derive a computable threshold value
we have to approximate the unknown probabilities p and q by p± and
q±, which are functions of the known (or almost surely known) quan-
tities n, k, λ̂1 and λ̂2 (see Lemma 5). If we choose

δ < (p− − q+)/(p+ + q+)
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and the threshold

s(n, k, λ̂1, λ̂2) =
(
1 + 3(kn−3/4)1/3

)2 n2

k2
(1 + δ)q+

then the algorithm GRIDRECONSTRUCT asymptotically almost surely finds
the correct reconstruction of the planted partition (up to a permutation
of {1, . . . , k}).

3.4 Perfect reconstruction in polynomial time

In this section we also address the first quality measure, namely, perfect
reconstruction. In the first part of this section we present a polynomial-
time algorithm which is then analyzed in a second part.

3.4.1 The algorithm

Here is the description of our first polynomial-time algorithm to solve
the planted partition reconstruction problem.

BOOSTEDRECONSTRUCT(Â)
1 k̂, k ′ := number of eigenvalues λ̂i of Â that are larger than 2

√
n.

2 p̂ := k̂
k̂−1

λ̂1

n

3 q̂ :=
k̂λ̂2+ k̂

k̂−1
λ̂1

n−k̂

4 m := n/c log log n

5 Randomly partition {1, . . . , n} into c log log n equal size subsets Ii.
6 i := 1; C := ∅
7 while i < c log log n − 1 do
8 Âi := restriction of Â to Ii.
9 P̂i := projector onto the space spanned by the k ′ largest

eigenvectors of Âi.
10 mi := |Ii|

11 for j := 1 to mi do
12 for l := 1 to mi do

13 (cj)l :=

{
1 : (P̂i)lj ≥ k̂

2m
0 : otherwise

14 end for
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15 if 0.89m
k̂
≤ |cj|

2 ≤ 1.11m
k̂

do
16 mark the element of rank j in Ii.
17 end if
18 end for
19 while {l ∈ Ii : l marked} 6= ∅ do
20 choose arbitrary l ∈ {l ′ ∈ Ii : l ′ marked} and unmark l.

21 C1 :=
{

l ′ ∈ Ii : l ′ marked, crki(l)
Tcrki(l ′) ≥ 0.79m

k̂

}

22 if 0.89m
k̂
≤ |C1| ≤ 1.11m

k̂
do

23 C2 :=
{
l ∈ Ii+1 :

∑
l ′∈C1

âll ′ ≥ 3
4 |C1|p̂ + 1

4 |C1|q̂
}

24 if |C2| ≥ 3
4

m
k̂

do
25 C3 :=

{
l ∈ Ii+2 :

∑
l ′∈C2

âll ′ ≥ 3
4 |C2|p̂ + 1

4 |C2|q̂
}

26 C4 :=
{
l ∈ Ii+3 :

∑
l ′∈C3

âll ′ ≥ 3
4 |C3|p̂ + 1

4 |C3|q̂
}

27 C1 :=
{
l ∈ Ii :

∑
l ′∈C3

âll ′ ≥ 3
4 |C3|p̂ + 1

4 |C3|q̂
}

28 C2 :=
{
l ∈ Ii+1 :

∑
l ′∈C4

âll ′ ≥ 3
4 |C4|p̂ + 1

4 |C4|q̂
}

29 C := C1 ∪ C2 ∪ C3 ∪ C4

30 for j := 1 to c log log n do
31 if j /∈ {i, i + 1, i + 2, i + 3} do
32 C := C ∪ {

l ∈ Ij :
∑

l ′∈C âll ′ ≥ 3
4 |C|p + 1

4 |C|q
}

33 end if
34 Ij := Ij \ (Ij ∩ C)
35 end for
36 C := C ∪ {C}; k ′ := k ′ − 1

37 end if
38 end if
39 end while
40 i := i + 4

41 end while
42 return C

In a nutshell the algorithm BOOSTEDRECONSTRUCT works as follows:
in lines 1 to 6 we do some preprocessing. The main loop of the algo-
rithm is enclosed by lines 7 and 41. In lines 8 to 18 we compute binary
vectors cj of size mi that potentially are close in Hamming distance to
characteristic vectors of planted classes C` restricted to the index set
Ii. Note that very likely these vectors are not exactly characteristic vec-
tors of planted classes. To account for this we have to work with four
index sets Ii, . . . , Ii+3. In lines 19 to 39 we use the vectors cj to re-
construct whole classes, i.e., not just the restriction to Ii ∪ . . . ∪ Ii+3.
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Removing reconstructed elements from not yet processed index sets Ij

in line 34 boosts the performance of the algorithm as a potential source
of inter class noise between an already reconstructed and a not yet re-
constructed class gets removed. That is, in subsequent iterations we
expect to get (seen as a relative fraction of all vectors) more vectors
that are close to characteristic vectors of restricted planted classes. Our
subsequent analysis shows that this is indeed the case.

The running time of the algorithm is determined by c log log n times
the time to compute the k ′ largest eigenvectors of an m×m matrix. In
the following we give a more detailed description of the algorithm.

PREPROCESSING: In line 1 we estimate the number of classes k by
the number of eigenvalues of Â larger than 2

√
n, which by Lemma 4 is

a.a.s. correct. In lines 2 and 3 we estimate the parameters p and q of the
A(ϕ,p, q) distribution from which the matrix Â is drawn. By Lemma 5
these estimates almost surely converge to the true values when n goes
to infinity, provided k = o(

√
n). In line 5 we randomly partition the

index set {1, . . . , n} into c log log n sets of equal size. We choose the
constant c such that m and c log log n are integers and c log log n is
divisible by 4. In line 6 we initialize the C that is going to contain
the reconstructed classes.

MAIN LOOP: In line 9 we compute the projector P̂i onto the space
spanned by the eigenvectors that correspond to the k ′ largest eigenval-
ues of Âi. In the variable k ′ we store the number of classes that still has
to be reconstructed. In lines 11 to 18 we compute for every column of
P̂i a binary vector cj. If we did this for the projector derived from the
unperturbed adjacency matrix Ai then these vectors cj would be the
characteristic vectors of planted classes C` restricted to the index set Ii.
Thus for small noise most of the vectors should be close to characteristic
vectors. In lines 15 to 17 we discard cj if it does not have the right size
in order to be close to a characteristic vector. In the loop enclosed by
lines 19 and 39 the actual reconstruction takes place. In lines 20 and 21
we use the binary vectors that belong to marked elements in Ii to com-
pute a first rough reconstruction C1 of some class C` restricted to Ii. In
order to do so we have to use the rank function rki(·), which gives the
rank of an element in Ii, to map the elements of Ii into {1, . . . , mi}, i.e.,
the set that contains the column indices for P̂i. The intuition behind the
computations in line 21 is that if crki(l) and crki(l ′) are close in Ham-
ming distance to the characteristic vector of the same class C` restricted
to Ii then their dot product should be large. Note that very likely C1
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does not contain all elements from C` ∩ Ii and may contain elements
from other classes than C`. If C1 contains roughly as many elements as
we expect to be in C` ∩ Ii then it likely contains many elements from
C` and few elements from other classes. In this case we compute in line
23 a set C2 that contains the elements from Ii+1 whose corresponding
columns in Â have many entries that are 1 at row indices in C1. We
will show that with high probability C2 contains only elements from
C` ∩ Ii+1, but maybe not all these elements. If C2 is large enough then
we can use it in line 23 to compute (as we computed C2 from C1) a
set C3 ⊂ Ii+2, for which we can show that asymptotically almost surely
C3 = C` ∩ Ii+2. Similarly we compute C4 and re-compute C1 from C3

and re-compute C2 from C4. We will show that asymptotically almost
surely it also holds that C1 = C`∩Ii, C2 = C`∩Ii+1 and C4 = C`∩Ii+3.
The reason for computing four sets is that we need some probabilistic
independence in the analysis of the algorithm. In practice it probably is
sufficient to re-compute C1 from C2 and afterwards C2 from C1. Sim-
ilarly we will show that we compute asymptotically almost surely the
set C` ∩ Ij in line 32 and put it into the reconstruction C of C`. In line
34 we remove all elements in C from the sets Ij. In line 36 we add C to
the set of reconstructed classes.

3.4.2 Analysis of the algorithm

In the following we use the notation as in the algorithm BOOSTEDRECON-
STRUCT and let C`i = C` ∩ Ii for Ii as computed in line 5 of the algo-
rithm. Here is a short outline of the proof, which is by induction on
the number of iterations of the algorithm. The induction is anchored in
Lemmas 17 and 18 and the induction step is proven in Theorem 5 and
Corollary 4. But at first we state two technical lemmas, whose proofs
are analogous to proofs of similar statements in the previous section,
and derive a simple corollary from them.

Lemma 15. The size of C`1 is contained in the interval
[
(1 − δ)

m1

k
, (1 + δ)

m1

k

]
with δ := 3(km

−3/4
1 )1/3.

with probability at least 1 − e−c ′′n1/4

for some c ′′ > 0.

Proof. See the proof of Lemma 8.
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Lemma 16. The spectral separation δk(A1) is a.a.s. at least

(1 − δ)
m1

k
(p − q),

where δ as in Lemma 15.

Proof. See the proof of Lemma 9.

Corollary 3. If k < c ′
√

m then a.a.s.

‖P1 − P̂1‖2
2 <

(
(1 − δ) (p − q)

√
m

4k
− 1

)−1

=: ε,

where δ as in Lemma 15.

Proof. Follows immediately by combining Theorem 3, Observation 1
and Lemma 16.

In the following we will use δ and ε from Lemma 15 and Corollary 3,
respectively. Note that δ goes to 0.

Dangerous element. Let x ∈ C`i and ri(x) be the rank of x in Ii. The
element x is called dangerous if the ri(x)’th column in the matrix Pi − P̂i

has more than 1
10

m
k entries whose absolute value is at least 1

3
k
m .

Safe class. A class C` is called safe with respect to Ii if it satisfies the
following two conditions:

(1) At most 1
10

m
k elements of C`i are dangerous.

(2) At most 1
10

m
k columns of P̂i whose index is the rank ri(·) of an

element in Ii \ C` have at least 1
10

m
k entries of value at least 1

3
k
m

at row indices that are the ranks of elements in C`i.

Lemma 17. If k < c ′
√

m then a.a.s. there are at least (1 − 3600ε)k
classes C` that are safe with respect to I1, provided that c ′ is small enough
such that 3600ε ¿ 1.
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Proof. The event whose probability we want to bound from above here
can also be stated as: there are at most 3600εk classes C` that are not
safe with respect to I1. Here it is easier to work with the latter formu-
lation of the event. For a class to be not safe either condition (1) or
condition (2) in the definition of a safe class has to be violated.

For condition (1), observe that for every dangerous element x ∈ C`1

the contribution of the r1(x)’th column to the Frobenius norm ‖P1−P̂1‖2
F

is at least ( k
3m )2 m

10k = k
90m . Hence, for a class C` to violate condition

(1), the contribution to ‖P1 − P̂1‖2
F is at least k

90m
m

10k = 1
900 . Since we

have chosen c ′ sufficiently small Corollary 3 gives ‖P1 − P̂1‖2 < ε < 1

a.a.s. This implies that a.a.s. ‖P1 − P̂1‖2
2 ≤ ‖P1 − P̂1‖2. By Fact 4 applied

to P1 − P̂1 and given that the rank rk(P1 − P̂1) is at most 2k with the
probability stated in Observation 1, we have for the Frobenius norm
‖P1 − P̂1‖2

F ≤ 2εk a.a.s. Thus we obtain for the number y of classes
violating condition (1), 1

900y ≤ 2εk and equivalently y ≤ 1800εk a.a.s.

For condition (2), let C` be a class that violates condition (2). That
is, there are at least m

10k elements x ∈ I1 \ C` such that the columns
with index rank r1(x) each have at least m

10k entries of value at least
k

3m at row indices that are the ranks of elements in C`1. Hence the
contribution of these columns to the Frobenius norm ‖P1 − P̂1‖2

F is at
least ( k

3m )2 m
10k

m
10k = 1/900. If we denote by y the number of classes

violating condition (2), we get using as above that ‖P1 − P̂1‖2
F ≤ 2εk

a.a.s. that 1
900y ≤ 2εk and equivalently y ≤ 1800εk a.a.s.

In combination we get that a.a.s. there are at most 3600εk classes
which are not safe with respect to I1. This proves the statement of the
lemma.

Lemma 18. A.a.s., the following holds, provided k < c ′
√

m:

(1) Every class C` that is safe with respect to I1 is reconstructed correctly.

(2) Every class C` that is not safe with respect to I1 is either recon-
structed correctly or none of its elements gets removed from any in-
dex set Ii.

Proof. The proof is a case analysis depending on the element l chosen
in line 20 of the algorithm, where l ∈ C`1 for some ` ∈ {1, . . . , k}.



3.4. Perfect reconstruction in polynomial time 41

Case 1. Assume that C` is safe with respect to I1 and that l is not dan-
gerous. By Lemma 15, a.a.s. (1−δ)m

k ≤ |C`1| ≤ (1+δ)m
k . Hence, a.a.s.,

by the definition of dangerous in line 21 of the algorithm all other not
dangerous elements in C`1 are put into C1 and all other not dangerous
elements in I1 \ C`1 are not put into C1. Also, by the definitions of
dangerous element and safe class, a.a.s. there are at most m

10k elements
l ′ ∈ I1 \C`1 for which it holds that crk(l)

Tcrk(l ′) ≥ 0.79m
k . Hence, a.a.s.

0.89m
k ≤ |C1| ≤ 1.11m

k and C1 contains at least 0.89m
k elements of C`.

That implies that a.a.s. the fraction of elements in C1 belonging to C` is
strictly larger than 3

4 . Since the entries in Â with index in I1× I2 all are
independent Poisson trials we get by using Chernoff’s bound that a.a.s.
every column of Â with index in C`2 has more than 3

4 |C1|p + 1
4 |C1|q

entries that are 1 at row indices in C1. By Lemma 5 and our assumption
that k < c ′

√
m we can approximate p and q asymptotically arbitrarily

well by p̂ and q̂, respectively. Hence we even have that this number
of 1 entries is a.a.s. larger than 3

4 |C1|p̂ + 1
4 |C1|q̂. Likewise, every col-

umn with index in I2 \ C` a.a.s. has less than 3
4 |C1|p̂ + 1

4 |C1|q̂ entries
that are 1 at row indices in C1. Hence, a.a.s. C2 = C`2. Applying
Lemma 15 to C`2, we get that a.a.s. |C2| ≥ 3

4
m
k . Applying a similar

Chernoff bound argument as for C`2 we get that a.a.s. in lines 25-28
(note that by construction all entries of Â that we use in these com-
putations are probabilistically independent of the ones that we used in
previous computations) and in line 32 of the algorithm all elements of
C`j, j = 1, . . . , c log log n and no other elements are put into C. Thus C

is a.a.s. the correct reconstruction of C`.

Case 2. Assume that C` is safe with respect to I1 and that l is dan-
gerous. In this case it is possible that only some elements in C`1 are
put into C1 in line 21 of the algorithm, and it is also possible that ele-
ments in I1 \ C`1 are put into C1. If not 0.89m

k ≤ |C1| ≤ 1.11m
k then no

new class is produced by the algorithm. Otherwise, by using Chernoff’s
bound for independent Poisson trials and the approximation guaran-
tee for p and q by p̂ and q̂, respectively, we have that if a column of
Â with index x ∈ I2 such that ϕ(x) = ` ′ for some ` ′ ∈ {1, . . . , k} has
more than 3

4 |C1|p̂ + 1
4 |C1|q̂ entries 1 at row indices in C1 then a.a.s.

at least 2
3 of the elements in C1 are also mapped to ` ′ by ϕ. Hence,

a.a.s. there is at most one class ` ′ whose elements in I2 are put into C2

in line 23 of the algorithm. Thus, C2 a.a.s. contains only elements of
C` ′2. If |C2| ≥ 3

4
m
k , again using Chernoff’s bound, C3 a.a.s. contains

all elements of C` ′3 and no other elements. Similarly we can argue for
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C4, C1, C2 and C. Thus C is a.a.s. the correct reconstruction of C` ′ ,
where ` ′ may be different from `.

Case 3. Assume that C` is not safe with respect to I1 and that l is not
dangerous. By the same arguments that we used in the analysis of the
first case C1 as computed in line 21 a.a.s. contains only elements of
C`1. Thus, if the test in line 22 is passed then as in the analysis of the
first case a.a.s. C = C`. Otherwise no new class is computed.

Case 4. Assume that C` is not safe with respect to I1 and that l is
dangerous. The analysis of this case is the same as for the second case.

In any case whenever a new class C is computed by the algorithm then
a.a.s. C = C` for some ` ∈ {1, . . . , k}, i.e., we reconstruct C` correctly.
Furthermore, any safe class C` gets reconstructed since at some point l

chosen in line 20 has to be a not dangerous element in C`1, i.e., we are
in the first case.

Lemma 18 basically states that after the first iteration of the outer
while-loop of the algorithm all classes C` that are safe with respect to
I1 (but possibly even more classes) are reconstructed correctly. Thus
we get from Lemma 17 that after the first iteration of the outer while-
loop a.a.s. at least (1 − 3600ε)k classes are reconstructed correctly, or
equivalently a.a.s. at most 3600εk classes remain to be reconstructed.

Theorem 5. A.a.s., after the j’th iteration of the outer while loop of the
algorithm BOOSTEDRECONSTRUCT there remain at most

(3600ε ′)2(1.5j−1)k with ε ′ =
4
√

m(1 + δ)
m
k (p − q)(1 − δ) − 4

√
m(1 + δ)

classes to be reconstructed and all other classes have been reconstructed
correctly, provided k < c ′

√
m and c ′ sufficiently small.

Proof. The proof is by induction on j. For j = 1, by Lemma 17 and
Lemma 18, after the first step, a.a.s. at most 3600εk ≤ 3600ε ′k classes
remain to be reconstructed. Thus the statement of the theorem holds
for j = 1. The induction hypothesis is that after the (j − 1)’th iteration
of the outer while-loop a.a.s. at most k ′ ≤ (3600ε ′)2(1.5j−1−1)k =: k ′′

classes remain to be reconstructed and all other classes have been re-
constructed correctly. Now we study the j’th iteration of the outer while-
loop. The value of i within this iteration is i = 4(j − 1) + 1. By the in-
duction hypothesis we have a.a.s. that for any so far not reconstructed
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class C` it holds that C`i = C` ∩ Ii. This did not change during the pre-
vious iterations of the outer while-loop, i.e., the only elements removed
from Ii belong to correctly reconstructed classes. Thus we can apply
Lemma 15 to get a.a.s. (1 − δ)m

k ≤ |C`i| ≤ (1 + δ)m
k . This implies that

a.a.s. we have

k ′(1 − δ)
m

k
≤ mi = |Ii| ≤ k ′′(1 + δ)

m

k
.

If we adapt the proof of Lemma 16 with mi instead of m1 and k ′ instead
of k then a.a.s. we find for the spectral separation δk ′(Ai), where Ai is
the restriction of A to Ii,

δk ′(Ai) ≥ (1 − δ)
m

k
(p − q).

Let Pi be the projector onto the space spanned by the k ′ largest eigen-
vectors of Ai. Applying Theorem 3 and Observation 1 to the matrix
Pi − P̂i, we get a.a.s. by plugging in the bounds on mi and k ′,

‖Pi − P̂i‖2 ≤ 4
√

mi

δk ′(Ai) − 4
√

mi

≤ 4
√

k ′′(1 + δ)m
k

m
k (p − q)(1 − δ) − 4

√
k ′′(1 + δ)m

k

=
4
√

(3600ε ′)2(1.5j−1−1)m(1 + δ)
m
k (p − q)(1 − δ) − 4

√
(3600ε ′)2(1.5j−1−1)m(1 + δ)

≤ 4
√

(3600ε ′)2(1.5j−1−1)m(1 + δ)
m
k (p − q)(1 − δ) − 4

√
m(1 + δ)

= ε ′
√

(3600ε ′)2(1.5j−1−1).

The last expression is less than 1 if k < c ′
√

m and c ′ is sufficiently
small. Thus we also have a.a.s.

‖Pi − P̂i‖2
2 ≤ ε ′

√
(3600ε ′)2(1.5j−1−1).

With the probability that Observation 1 holds we have that the rank of
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Pi − P̂i is at most 2k ′′. Thus we get a.a.s. for the Frobenius norm

‖Pi − P̂i‖2
F ≤ rk(Pi − P̂i)‖Pi − P̂i‖2

2

≤ 2(3600ε ′)2(1.5j−1−1)kε ′
√

(3600ε ′)2(1.5j−1−1)

= 2ε ′k
(
(3600ε ′)2(1.5j−1−1)

)1.5

= 2ε ′k
(
(3600ε ′)2(1.5j−1.5)

)
.

We use this bound to show that a.a.s. at most 1800(3600ε ′)2(1.5j−1.5)ε ′k
not yet reconstructed classes violate condition (1) of a safe class with
respect to Ii and at most 1800(3600ε ′)2(1.5j−1.5)ε ′k classes violate con-
dition (2). By a similar argument as in the proof of Lemma 17 we can
show that both events occur a.a.s., because if any of the two events does
not hold we get

‖Pi − P̂i‖2
F > 1800(3600ε ′)2(1.5j−1.5)ε ′k

(
k

3m

)2
m

10k

m

10k

= 2ε ′k(3600ε ′)2(1.5j−1.5),

which a.a.s. does not happen. Hence, a.a.s. after the (j − 1)’th iteration
of the outer while-loop at most (3600ε ′)2(1.5j−1)k of the not yet recon-
structed classes are not safe with respect to Ii. We can now argue as
in the proof of Lemma 18 that a.a.s. all not yet reconstructed classes
that are safe with respect to Ii get correctly reconstructed in the j’th
iteration of the outer while-loop. A not safe class a.a.s. either also gets
correctly reconstructed or none of its elements gets removed from any
index set Iı, ı = 1, . . . , c log log n. That is, a.a.s. after the j’th iteration
of the outer while-loop at most (3600ε ′)2(1.5j−1)k classes remain to be
reconstructed and all other classes have been reconstructed correctly.
That is, what we had to prove.

Note that in the statement of Theorem 5 the boosting reflects itself in
the double exponential dependence of the decrease factor on j. With-
out boosting we would only have a single exponential dependence on
j. A careful look into the proof of Theorem 5 and its preceding lemmas

shows that the statement holds not just a.a.s., but it holds with probabil-
ity 1− e−cnα

for some c, α > 0. Therefore, for the j as in Theorem 5 we



3.5. Bounding the number of misclassifications 45

can also plug in the value j = Θ(log log n) and we obtain the following
corollary.

Corollary 4. A.a.s., the algorithm BOOSTEDRECONSTRUCT reconstructs
all k classes correctly, provided k ≤ c ′

√
n

log log n for a small enough constant
c ′.

Proof. By Theorem 5, we have that after the
(

c
4 log log n

)
’th iteration of

the outer while-loop, a.a.s. the number of not yet reconstructed classes
is at most (3600ε ′)2(1.5

c
4

log log n−1)k. If c ′ is small enough then we have
3600ε ′ ¿ 1 and

lim
n→∞

(3600ε ′)2(1.5
c
4

log log n−1)k = 0.

Hence, for n sufficiently large, (3600ε ′)2(1.5
c
4

log log n−1)k is strictly less
than 1. Since the number of not yet reconstructed classes is an integer, it
has to be 0 for n large enough. Thus a.a.s. all classes are reconstructed
correctly.

3.5 Bounding the number of misclassifications

In contrast to the previous two sections, in this section we address the
second quality measure, namely, bounding the number of misclassifica-
tions. As before, we present a polynomial-time algorithm in the first
part of this section and its analysis in the second part.

3.5.1 The algorithm

Here is the description of our second polynomial-time spectral algo-
rithm to solve the planted partition reconstruction problem.

BOUNDEDERRORRECONSTRUCT(Â)
1 k ′ := number of eigenvalues of Â that are larger than 2

√
n.

2 P̂ := projection matrix computed from the k ′ largest eigenvectors
v1, . . . , vk ′ of Â.

3 for i = 1 to n do
4 Ri := set of row indices which are among the n

k ′ largest entries
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of the i’th column of P̂.
5 for j = 1 to n do

6 cij :=

{
1, j ∈ Ri

0, else
7 end for
8 ci := (ci1, . . . , cin)T

9 end for
10 I := {1, . . . , n}; l := 1

11 while exists an unmarked index i ∈ I do
12 Cl := ∅
13 for each j ∈ I do
14 if cT

i cj > 4n
5k ′ do

15 Cl := Cl ∪ {j}

16 end if
17 end for
18 if |Cl| ≥

(
1 −

√
320

√
n

λ̂2−6
√

n

)
n
k ′ do

19 I := I \ Cl; l := l + 1

20 else
21 mark index i.
22 end if
23 end while
24 Cl := I

25 return C1, . . . , Cl

In line 1 the number of planted classes k ′ is estimated. The estimate
is motivated by Lemma 4. In line 2 the projection matrix P̂ that belongs
to Â is computed. From line 3 to line 9 for each column i of Â a vector
ci ∈ {0, 1}n with exactly n

k ′ entries that are 1 is computed. In lines
10 to 24 the actual partitioning takes place. Roughly speaking, two
indices i, j are put into the same class if the Hamming distance of the
corresponding vectors ci and cj is small (test in line 14). A class as
created in lines 12 to 17 is not allowed to be too small (test in line 18),
otherwise its elements get distributed into other classes that are going
to be constructed in future executions of the body of the while-loop.
Notice that the algorithm runs in time polynomial in n and only makes
use of quantities that can be deduced from Â, i.e., it does not need to
know the values of p, q and k.
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3.5.2 Analysis of the algorithm

Stable vector. A vector ci ∈ {0, 1}n as produced by the algorithm
BOUNDEDERRORRECONSTRUCT is called stable with respect to ϕ if more
than 9

10 of the indices in {1, . . . , n} that correspond to entries that are
1 in ci are mapped by ϕ to ϕ(i), i.e., all these elements belong to the
same class. A vector ci is called unstable if it is not stable.

Lemma 19. In the algorithm BOUNDEDERRORRECONSTRUCT with prob-
ability at least 1 − e−(1−o(1))σ2n/8 at most

320n
√

n
k (p − q) − 4

vectors ci ∈ {0, 1}n are constructed that are unstable if k < p−q
8

√
n.

Proof. Let x be the number of unstable vectors ci that are computed
within the algorithm BOUNDEDERRORRECONSTRUCT from the projec-
tion matrix P̂. If ci is an unstable vector then at least n

10k of the n
k largest

entries in the i’th column of P̂ correspond to row indices j ∈ {1, . . . , n}

such that the entries pij in P are zero, i.e., these entries are not among
the n

k largest entries in the i’th column of P. That is, at least x n
10k of

the large entries in P become small entries in P̂, i.e., they do no longer
belong to the n

k largest entries in their column. We denote the number
of such entries by y and can bound it by using the Frobenius norm of
the matrix P − P̂. In order to bound the Frobenius norm of P − P̂ we
first bound its L2 norm,

‖P − P̂‖2 ≤ 2‖A − Â‖2

δk(A) − 2‖A − Â‖2

=
2‖A − Â‖2

n
k (p − q) − 2‖A − Â‖2

≤ 4
√

n
n
k (p − q) − 4

√
n

=
4

√
n

k (p − q) − 4
< 1,

where we use Theorem 3 in the first inequality, Definition 13 in the first
equality, Observation 1 in the second inequality and our assumption on
k in the last inequality. Note, that the second inequality only holds with
probability at least 1 − e−(1−o(1))σ2n/8. From Lemma 4 it follows that
the k ′ chosen in line 1 of the algorithm BOUNDEDERRORRECONSTRUCT

is exactly k with probability at least 1−e−(1−o(1))σ2n/8. Hence the rank
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of P − P̂ is at most 2k with probability at least 1− e−(1−o(1))σ2n/8. That
gives

‖P − P̂‖2
F ≤ 2k‖P − P̂‖2

2 < 2k‖P − P̂‖2 ≤ 8k
√

n
k (p − q) − 4

,

where the first inequality only holds with probability at least

1 − e−(1−o(1))σ2n/8.

In order for a large entry in P to become a small entry in P̂ this entry
must become at least as small in P̂ as some other entry in the same
column which is zero in P. The number of large/small pairs in a column
of P that become small/large pairs in P̂ can be maximized for a given
bound on the Frobenius norm ‖P − P̂‖2

F if the large entry, which is k
n in

P, and the small entry, which is zero in P, both become k
2n in P̂. By this

argument the number y of such pairs can be bounded from above by

(
k

2n
)2y ≤ 8k

√
n

k (p − q) − 4
, that is y ≤ 32n2

k√
n

k (p − q) − 4
.

Putting everything together we get

x
n

10k
≤ y ≤ 32n2

k√
n

k (p − q) − 4
, that is x ≤ 320n

√
n

k (p − q) − 4
.

This inequality holds with the same probability that the bound on the
Frobenius norm ‖P − P̂‖2

F holds. The latter probability is at least 1 −

e−(1−o(1))σ2n/8.

Notation. To shorten our exposition we set in the following

α =
320

√
n

k (p − q) − 4
.

Lemma 20. With probability at least 1− e−(1−o(1))σ2n/8 in at least (1−√
α)k classes we have at least (1 −

√
α)n

k associated stable vectors if k <
p−q

8

√
n.
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Proof. The proof of the lemma is equivalent to showing that the com-
plementary event that there are less than (1 −

√
α)k classes with at

least (1 −
√

α)n
k associated stable vectors occurs with probability at

most e−(1−o(1))σ2n/8. In case of the complementary event there are
more than

√
αk classes, which contain more than

√
αn

k unstable vec-
tors each. Thus we get in total more than

√
αk
√

αn
k = αn unstable

vectors. By Lemma 19, however, this happens only with probability at
most e−(1−o(1))σ2n/8.

Covered vectors and split classes. A vector ci covers a vector cj and
vice versa if cT

i cj > 4n
5k . A class C = ϕ−1(l), l ∈ {1, . . . , k} is split by

an unstable vector cj if there exists a stable vector ci with i ∈ C that is
covered by cj. An unstable vector ch almost splits C if it does not split
C, but there exists an unstable vector cj which splits C and covers ch.

Lemma 21. Every unstable vector can split or almost split at most one
class.

Proof. Let cj be an unstable vector and let ci be a stable vector covered
by cj, i.e., cT

i cj > 4n
5k . By the definition of stable vectors more than 9

10
n
k

of the indices corresponding to the one entries in ci are mapped by ϕ

to ϕ(i). That is, at least
(

4

5
−

1

10

)
n

k
=

7

10

n

k
>

n

2k

of the indices corresponding to the one entries of cj are mapped by
ϕ to ϕ(i). That shows there cannot be another stable vector ch with
ϕ(i) 6= ϕ(h) covered by cj. Thus cj can split at most one class.

It remains to show that an unstable vector can almost split at most one
class. Let cj be an unstable vector and let ci be an unstable vector that
splits a class and is covered by cj. That is, cT

i cj > 4n
5k and there exists a

stable vector ch such that at least 7
10

n
k of the indices corresponding to

the one entries of ci are mapped by ϕ to ϕ(h). That is, more than
(

7

10
−

1

5

)
n

k
=

n

2k

of the indices corresponding to the one entries of cj are mapped by ϕ to
ϕ(h). That shows that cj can split or almost split at most one class.
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Lemma 22. With probability at least 1 − e−(1−o(1))σ2n/8 at most
√

αk

classes are split or almost split by more than
√

αn
k unstable vectors, pro-

vided k < p−q
8

√
n.

Proof. The proof of the lemma is equivalent to showing that the com-
plementary event that more than

√
αk classes are split or almost split

by more than
√

αn
k unstable vectors occurs with probability at most

e−(1−o(1))σ2n/8. If this is the case, since by Lemma 21 every unsta-
ble vector splits or almost splits at most one class, the total number of
unstable vectors that split or almost split a class is more than

√
αk
√

α
n

k
= αn.

That is, the number of unstable vectors is more than αn. By Lemma 19,
however, this happens only with probability at most e−(1−o(1))σ2n/8.

Stable class. A class ϕ−1(m),m ∈ {1, . . . , k} is called stable if it con-
tains more than (1 −

√
α)n

k indices of stable vectors and if it is split or
almost split by at most

√
αn

k unstable vectors.

Lemma 23. For any stable class C = ϕ−1(m),m ∈ {1, . . . , k}, with
probability at least 1 − e−(1−o(1))σ2n/8, the algorithm BOUNDEDERROR-
RECONSTRUCT outputs a class Cl that contains at least

(
1 −

√
α −

√
2α

) n

k

indices in C corresponding to stable vectors, provided k < p−q
16

√
n.

Proof. Let ci be vector which is used in line 14 of the algorithm BOUND-
EDERRORRECONSTRUCT to create a class Cl. A stable vector cj with
j ∈ C can only be put into the class Cl if either ci is another stable
vector with i ∈ C or if ci is an unstable vector that splits C. We discuss
the two cases now.

Assume ci is a stable vector with i ∈ C. Then all stable vectors ch

with h ∈ C will also be drawn into Cl since we have

cT
i ch >

(
1 − 2

1

10

)
n

k
=

4n

5k
.
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That is, Cl will contain all stable vectors whose index is in C. It remains
to show that Cl will pass the test in line 18 of the algorithm. But this
follows from our definition of stable class and

1 −
√

α = 1 −

√
320

√
n

k (p − q) − 4

≥ 1 −

√√√√ 320
√

n
k

(
λ̂2

k
n − 2k√

n

)
− 4

= 1 −

√
320

√
n

λ̂2 − 6
√

n
,

where we used the lower bound on p − q from Lemma 6.

Now assume that ci is an unstable vector that splits C. Then ci can
draw some of the stable vectors whose index is in C into Cl and it can
draw some unstable vectors that either split or almost split C. Assume
that Cl passes the test in line 18. Since by the definition of a stable class
it can draw at most

√
αn

k unstable vectors, it has to draw at least
(

1 −

√
320

√
n

λ̂2 − 6
√

n

)
n

k
−
√

α
n

k

stable vectors with an index in C. Using that with probability at least
1 − e−(1−o(1))σ2n/8 it holds

n

k
(p − q) − p − 2

√
n ≤ λ̂2,

see Lemma 6, we find that with the same probability

1 −

√
320

√
n

λ̂2 − 6
√

n
≥ 1 −

√√√√ 320
√

n
k (p − q) − p√

n
− 8

≥ 1 −

√√√√ 320

1
2

(√
n

k (p − q) − 4
) = 1 −

√
2α,

where we used
1

2

√
n

k
(p − q) ≥ p√

n
+ 6,
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which follows from k < p−q
16

√
n. Combining everything we get that Cl

with probability at least 1 − e−(1−o(1))σ2n/8 contains at least

(
1 −

√
α −

√
2α

) n

k

indices in C corresponding to stable vectors.

Theorem 6. With probability at least 1 − e−(1−o(1))σ2n/8 at most
(
3
√

α +
√

2α
)

n

indices are misclassified by the algorithm BOUNDEDERRORRECONSTRUCT

provided k < p−q
16

√
n.

Proof. By combining Lemmas 20 and 22 we get with probability at least
1 − e−(1−o(1))σ2n/8 at least

(
1 −

√
α −

√
α
)
k =

(
1 − 2

√
α
)
k

stable classes. From each stable class at least
(
1 −

√
α −

√
2α

) n

k

indices of stable vectors are grouped together by the algorithm with
probability at least 1 − e−(1−o(1))σ2n/8, see Lemma 23. Thus in total
with probability at least 1 − e−(1−o(1))σ2n/8 at least

(
1 −

√
α −

√
2α

) n

k

(
1 − 2

√
α
)
k >

(
1 − 3

√
α −

√
2α

)
n

indices of stable vectors are grouped together correctly. Hence, by the
definition of the number of misclassifications via a maximum weight
matching, with probability at least 1 − e−(1−o(1))σ2n/8 at most

(
3
√

α +
√

2α
)

n

elements are misclassified.
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Discussion. Note that the theorem is non-trivial only if

k <
p − q

3524 + 1920
√

2

√
n.

The theorem implies that if k = o(
√

n) then the relative number of
misclassifications goes to zero asymptotically almost surely as n goes
to infinity. That is the first non-trivial polynomial-time result for k =

ω
( √

n
log log n

)
. But also in the case k = c

√
n for a small constant c the

theorem provides useful information. It basically says that on average
the percentage of elements per class that get misclassified by the algo-
rithm becomes arbitrarily small if c is small enough.

3.6 A lower bound for minimality of k-partition

In this section we give, in contrast to the previous three sections, some
sort of “negative” result: we show that for a certain value of k there is
no algorithm that can recover the planted k-partition a.a.s. Intuitively,
it is clear that it becomes harder to recover the planted k-partition when
the difference between p and q gets smaller and when k gets bigger. If
we assume as before, that both p and q are constant values, p > q (and
thus the difference p − q is in this case also constant), the only param-
eter left to control the difficulty of the problem is k. If the planted k-
partition is not minimal anymore, one can not hope to find an algorithm
that recovers this planted k-partition asymptotically almost surely. To
prove this statement in a precise way, we will make use of the following
theorem ( [Bol01], Theorem 1.5):

Theorem 7. Let pn ≥ 1 and m := pn + h < n, where h > 0. Define
β := 1

12m + 1
12(n−m) and η := 1√

2πp(1−p)n
. Then

(
n

m

)
pm(1 − p)n−m > η e

− h2

2p(1−p)n
− h3

2(1−p)2n2 − h4

3p3n3 − h
2pn −β

.

In particular, we will prove the following theorem:

Theorem 8. Let p and q to be fixed constants, p > q. For k ≥ c n
log n

(for some constant c = c(p, q) > 0), a.a.s. the planted k-partition is not
a minimum k-partition anymore.
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Proof. The proof follows the idea of [CO06] where it is proven that if

p(n) and q(n) satisfy p(n) − q(n) = o(
√

p log n
n ), a planted bisection is

a.a.s. not a minimal bisection anymore. To keep the exposition of the
proof simpler, we fix p = 0.5 and q = 0.25 and prove Theorem 8 for this
special case. For this choice of p and q, we can prove the theorem with
the particular value of c = 7 (no attempt has been made to optimize
c). For other fixed values of p and q, only constants change. Assume
w.l.o.g. that k ∈ ω(1) ∩ o(n).

To prove Theorem 8, define the indicator variable Cij to be 1 if two
vertices vi and vj are such that vi ∈ Pr, vj ∈ Ps, Pr 6= Ps, and if
additionally the swap of vertex vi with vertex vj decreases the total
number of edges going between vertices of different partition classes.
We have

Pr [Cij = 1] ≥ Pr [E1 = 1 ∧ E2 = 1 ∧ E3 = 1 ∧ E4 = 1] , (3.1)

where the events Ei have the following meaning: E1 is the indicator
event that |N(vi) ∩ Pr| ≤ (n

k − 1)p + (n
k − 1)ζ, E2 is the indicator event

that |N(vi) ∩ (Ps \ {vj})| ≥ (n
k − 1)p + (n

k − 1)ζ + 1, E3 is the indicator
event that |N(vj) ∩ Ps| ≤ (n

k − 1)p + (n
k − 1)ζ, and E4 is the indicator

event that |N(vj)∩ (Pr \ {vi})| ≥ (n
k − 1)p + (n

k − 1)ζ + 1; the value of ζ

is fixed below.
Since the (non)edge joining vertices vi and vj is excluded from all
events, all these four events are independent, and by symmetry,

Pr[E1 = 1∧E2 = 1∧E3 = 1∧E4 = 1] = (Pr[E1 = 1])2(Pr[E2 = 1])2.

(3.2)

Now, to compute Pr[E1 = 1], choose ζ = 0.1p (note that 0.1 is also a
constant that might have to be changed for a large p). Clearly, all the
edges between vi and other vertices inside Pr are independent Bernoulli
trials with parameter p. Therefore

E[|N(vi) ∩ Pr|] = (
n

k
− 1)p,

and since the total variance is (n
k − 1)p(1 − p), for k ∈ o(n), by Cheby-

shev’s inequality (Lemma 1), Pr[E1 = 1] tends to 1 for n sufficiently
large.
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To compute Pr[E2 = 1], note first

Pr
[
|N(vi) ∩ (Ps \ {vj})| ≥ (n

k − 1)p + ζ(n
k − 1) + 1

]
≥ Pr

[
(n

k − 1)(p + ζ) + 1 ≤ |N(vi) ∩ (Ps \ {vj})| ≤ (1 − ζ)(n
k − 1)

]

=
∑(1−ζ)( n

k −1)

i=( n
k −1)p+ζ( n

k −1)+1

(
n/k−1

i

)
qi(1 − q)n/k−1−i,

where the upper bound of the summation index in the second line is
used for technical reasons to apply Theorem 7 for each term of the
sum. Indeed, set n := n

k − 1, and hi := i − (n
k − 1)q, for i = (n

k −
1)p + ζ(n

k − 1) + 1, . . . , (1 − ζ)(n
k − 1). Choosing ζ = 0.1p as before

and recalling that p = 0.5 and q = 0.25, we have hi ≤ (n
k − 1)0.7,

for i = (n
k − 1)p + ζ(n

k − 1) + 1, . . . , (1 − ζ)(n
k − 1). Now for each

term, by Theorem 7 (with q playing the role of p in the statement of
the theorem) and the upper bound on hi we have for some constants
c, c ′ > 0

(
n/k − 1

i

)
qi(1 − q)n/k−1−i > c

√
k

n
e

− 0.72n
(3/8)k

− 0.73n
(9/8)k

− 0.74n
(3/64)k

−O(1)

≥ c ′
√

k

n
e− 37877n

5625k .

Since there are Θ
(

n
k

)
terms that are summed up, we get

Pr[E2 = 1] ≥ Ω

(√
n

k
e− 37877n

5625k

)
. (3.3)

Plugging in (3.3) into (3.2) and then (3.2) into (3.1) and noting that
Pr[E1 = 1] tends to 1 we obtain

Pr[Cij = 1] ≥ Ω

((√
n

k
e− 37877n

5625k

)2
)

.

Using our assumption that k ≥ 7n/ log n, the term Ω

((√
n
k e− 37877n

5625k

)2
)

is at least Ω
(
n−75754/39375

)
. Now, defining C :=

∑
i<j Cij we get by

linearity of expectation

E[C] =
∑

i<j

E[Cij] =

(
k

2

)
(
n

k
)2Pr[Cij = 1] ∼

n2

2
Pr[Cij = 1].
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Again, by the previously established bounds and the assumption on k,
we get for n sufficiently large that

E[C] ≥ Ω
(
n2− 75754

39375

)
= Ω

(
n2996/39375

)
.

To show that C > 0 a.a.s. we will bound the variance of C, i.e., we
apply the second moment method. We compute E[C2]:

E[C2] =
∑

i<j

∑

l<m

Pr[Cij = 1 ∧ Clm = 1] (3.4)

Now, if all four vertices vi, vj, vl and vm are different and additionally
all four vertices belong to different partition classes, then

Pr[Cij = 1 ∧ Clm = 1] = Pr[Cij = 1]Pr[Clm = 1].

We now split the terms contributing to E[C2] on the right hand side of
(3.4) and first consider those 4-tuples of vertices which all belong to
different partition classes. For these we have

∑

i<j

∑

l<m

Pr[Cij = 1 ∧ Clm = 1]

=

(
k

2

)(
k − 2

2

)
(
n

k
)4Pr[Cij = 1]Pr[Clm = 1]

= (E[C])2(1 + o(1)).

If all four vertices are different but they belong to at most three different
partition classes,

∑

i<j

∑

l<m

Pr[Cij = 1 ∧ Clm = 1]

= Θ(n4/k)Pr[Cij = 1 ∧ Clm = 1]

= Θ(n4/k) (Pr[Cij = 1] (1 − o(1)))
2
,

where the latter probability estimate follows from the fact that the two
events are “almost” independent in the sense that there is at most a
constant number of edges which is counted twice and there are in total



3.6. A lower bound for minimality of k-partition 57

ω(1) edges going between a vertex and a partition class (since k ∈ o(n)
we have that n

k ∈ ω(1)). Moreover, since k ∈ ω(1), we get

Θ(n4/k) (Pr[Cij = 1] (1 − o(1)))
2

= o (E[C])
2
.

If only three of the vertices vi, vj, vl and vm are different and they are
in three different partition classes, then

∑

i<j

∑

l<m

Pr[Cij = 1 ∧ Clm = 1]

= Θ(n3)Pr[Cij = 1 ∧ Clm = 1]

≤ (E[C])1.5 = o
(
(E[C])2

)
,

where the last inequality follows from the fact that in this case for
the probability Pr[Cij = 1 ∧ Clm = 1] at least three vertices have to
have more neighbours in another partition than in its own whereas for
Pr[Cij = 1] only two vertices are involved. Also, by the same argument
of “almost” independence (now applied when just three vertices are in-
volved) as before, if only three vertices are different and they are in two
different partition classes,

∑

i<j

∑

l<m

Pr[Cij = 1 ∧ Clm = 1]

= Θ(n3/k)Pr[Cij = 1 ∧ Clm = 1]

≤ (E[C])1.5 = o
(
(E[C])2

)
.

Finally, if there are only two different vertices, then

∑

i<j

∑

l<m

Pr[Cij = 1 ∧ Clm = 1]

=

(
k

2

)
(
n

k
)2Pr[Cij = 1]

= E[C] = o
(
(E[C])2

)
.

Combining everything and plugging in all terms into (3.4) we get

E[C2] = (E[C])
2

+ o
(
(E[C])

2
)
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and thus var[C] = o
(
(E[C])

2
)

. By Chebyshev’s inequality (Lemma 1),

for k ≥ 7n/ log n, C > 0 a.a.s. Since C > 0 is a sufficient condition
for the event that a planted k-partition is not optimal, we have proven
Theorem 8.

3.7 Concluding remarks

We presented and analyzed three spectral partitioning algorithms. The
analysis of all three algorithms provided non-trivial guarantees for a
range of parameters where such guarantees were not known before.
As we have presented it, all three algorithms and their analysis are re-
stricted to the case when all classes have exactly the same size. It is
an interesting question whether classes of different sizes can be han-
dled in the same way. For the second algorithm it would also be in-
teresting to see whether the simple technique of sampling and itera-
tion that we used here is applicable to boost the performance of other
partitioning and clustering algorithms, for example the ones described
in [McS01, ST02]. On the other hand, we have shown that for fixed
p and q and k ≥ cn/ log n for some constant c = c(p, q), the planted
k-partition is a.a.s. not a minimal k-partition anymore. Thus, for k ≥
cn/ log n, no algorithm is able to recover a planted k-partition a.a.s.
The natural open question is to design and analyze polynomial or mod-
erately growing superpolynomial algorithms that could work for a big-
ger value of k and/or to show that even for a smaller value of k, the
planted k-partition is a.a.s. not minimal anymore.



Chapter 4

Collaborative ranking

4.1 Introduction

Preference elicitation is daily practice in market research. Its goal is to
assess a person’s preferences concerning a set of products or a distri-
bution of preferences over a population. The products in the set are
usually substitute goods or services, i.e., products that serve the same
purpose and can replace each other.

In applications like market share prediction estimating the distribu-
tion of the population’s preferences is enough whereas in other applica-
tions like recommendation systems, see for example [DKR02, KRRT98,
RV97], one needs to have a good estimate of an individual’s prefer-
ences. Preferences can be captured by a value function that assigns to
every product a value. Every value function induces a ranking of the
products. The higher the value of a product, the higher is the product’s
position in the ranking. A ranking in general contains less information
than a value function. But the direct assessment of a person’s value
function is difficult and often leads to unreliable results. Ranking prod-
ucts is an easier task, especially if the ranking is obtained from pairwise
comparisons (or more general choice tasks), which are popular in mar-
ket research because they often simulate real buying situations. In many
applications a ranking of the products is enough. Sometimes it is even
enough to determine the highest ranking product. But often one is also
interested in the ordering of the in-between products. For example the

59
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highest ranking product for a group of persons might be costly to pro-
duce. If it turns out that there is a product which is much cheaper to
produce but is still high up in the ranking of most of the persons, then
it might be reasonable to produce the latter product.

Here we study the problem of eliciting product preferences from re-
spondents based on pairwise comparison questionnaires. Eliciting a re-
spondent’s ranking would require the respondent to perform Θ(n log n)
comparisons, where n is the number of products. This might be too
much if n exceeds a certain value. If the number of comparisons the
respondents have to perform exceeds their “tolerance threshold” they
either cancel the whole interview or stop to do the comparisons care-
fully. The tolerance threshold does not scale with n but is usually a
small constant. Therefore we want to ask only a constant number of
questions but increase the number of respondents for larger product
sets. According to their answers we assign the respondents to consumer
types. In the end we compute the rankings for the consumer types from
the sparse input.

Related work. Our approach is similar in spirit to work of Drineas,
Kerenidis and Raghavan [DKR02] who studied recommendation sys-
tems. In their work a complete utility function has to be elicited for a
small number of persons. For the remaining persons only a few utility
values have to be assessed to give a good product recommendation. In
our work, however, all respondents are asked only a few questions. The
problem of how to assess utility values directly is not addressed in the
paper of Drineas et al. The algorithm used in [DKR02] is similar to our
algorithm in the sense that it also uses spectral methods. It is different
however since the matrix which serves as a basis for classification of
the users is different from ours. Moreover, the classification of the users
follows a different procedure, and also the products are not ranked at
all.

Another line of work related to ours is in the area of collaborative fil-
tering (see for example [GNOT92, KS04, KS03]), where the main goal
is the preference prediction from historical data whereas our goal is to
elicit preference data. Among the three papers mentionned [KS04] is
the only one which also uses spectral methods. The methods applied
by [KS04] are however rather different from ours (their algorithm is
based on the 1-norm of some columns of a certain correlation matrix,
and these columns are chosen to maximize a certain form of indepen-
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dence between them).

Other papers that also fall into the category of spectral methods for
data analysis include [McS01,AFKS01,AFKM01,DKF+04,CDG+99,PRTV98].
However, a straightforward spectral approach to our problem is very
difficult to analyze since it builds on a random matrix whose entries
are not pairwise independent. In order to avoid these difficulties we
turn to a more sophisticated procedure for which we can provide (up to
constants) as good guarantees as can be expected.

4.2 Ranking algorithm

Given a set of products, we want persons (respondents) to rank the
products by pairwise comparisons. Note that other choice tasks, e.g., a
one out of three choice task, can be interpreted as multiple paired com-
parisons. Often, for example in a web based scenario, we can ask each
respondent to compare only a small number of products since after a
certain number of questions, which is independent of the number of
products, respondents tend to stop answering the questions carefully.
Our approach is to aggregate the answers obtained from the respon-
dents in order to obtain a few rankings that represent the population
of respondents very well. That is, we assume that the population can
be segmented into a small number of (consumer) types, i.e., persons
that belong to the same consumer type have similar preferences and
thus rank the products similarly whereas the rankings of two persons
that belong to different types differ substantially. We call the expected
ranking (mean ranking) of a user type to be the typical ranking of that
user type. At first we describe how we want to elicit preferences.

Elicitation procedure. Let X be a set of n products. We want to in-
fer a ranking of X for consumers who have to answer l different paired
comparison questions (one out of two choice tasks) chosen indepen-
dently at random, i.e., for every respondent we choose a subset of size
l of product pairs in

(
X
2

)
independently at random. We refer to the con-

sumers who have to perform the choice tasks as respondents. Let m be
the number of respondents. Note that here l is a constant independent
of n whereas m is dependent on n (m being the only non-constant pa-
rameter, n is also considered as a constant).
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Next we give an outline of our ranking algorithm. We refer to any
L ⊆ (

X
2

)
of l product pairs shortly as l-tuple. In the following it turns

out to be convenient to consider each product pair as an ordered pair
(x, y) such that we can refer to x as the first product and y as the sec-
ond product of this pair. Our algorithm has four phases. In the first
phase we choose a random l-tuple L and then segment all respondents
that did all comparisons corresponding to the pairs in L into types of
similar preference. In the second phase we use the segmentation of this
subset of respondents to compute typical partial rankings of the prod-
ucts covered by the l-tuple L for each segment. In the third phase we
extend the partial rankings to complete rankings of all products for all
the consumer types that we determined in the second phase. Finally
in the fourth and last phase, we also segment all the respondents into
their respective consumer types that have not been segmented before.

(1) Segmenting the respondents for an l-tuple. Given a randomly
chosen l-tuple L the algorithm SEGMENTRESPONDENTS segments all re-
spondents that did all comparisons corresponding to the pairs in L into
types of similar preference. The algorithm has two parameters:

(1) A parameter 0 < α < 1 that imposes a lower bound of αm on the
size of the smallest consumer type that it can identify. Respon-
dents from smaller types will be scattered among other types.

(2) A symmetric (mL+l)×(mL+l)-matrix B = (bij) that contains the
data collected from the mL respondents, where mL is the number
of respondents that did all comparisons corresponding to the pairs
in L. The column and row indices 1, . . . , mL of B are indexed by
the corresponding respondents and the column and row indices
mL + 1, . . . ,mL + l are indexed by the l ordered product pairs in
L. For i ∈ {1, . . . ,mL}, j ∈ {mL+1, . . . ,mL+l}, we set bji := bij :=
−1, if respondent i prefers in the (j − mL)’th product comparison
the second product over the first one, and bji := bij := 1, if he
prefers the first product over the second. All other entries bij are
set to 0.

SEGMENTRESPONDENTS(B, α)
1 k := number of eigenvalues of B that are larger than some

threshold depending on m, n, and l.
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2 PB := projector onto the eigenspace corresponding to the k most
positive and the k most negative eigenvalues of B.

3 P ′B := restriction of PB onto its first mL columns and mL rows.
4 for r := 1 to mL do
5 for s := 1 to mL do

6 (cr)s :=

{
1 : (P ′B)rs ≥ 0.49

((n
2)
l

)
/m

0 : otherwise
7 end for
8 if 0.99αm ≤ |cr|

2
((n

2)
l

)
do

9 mark r.
10 end if
11 end for
12 I := {1, . . . ,mL}, C := ∅
13 while {j ∈ I : j marked} 6= ∅ do
14 unmark arbitrarily chosen i ∈ {j ∈ I : j marked}

15 C :=
{

j ∈ I : j marked,
〈ci,cj〉
|ci| |cj| ≥ 0.97

}

16 C ′ :=
{

j ∈ I : j marked,
〈ci,cj〉
|ci| |cj| ≥ 0.8

}

17 if |C|
((n

2)
l

) ≥ 0.9αm and |C ′|
((n

2)
l

) ≤ |C|
((n

2)
l

)
+ 0.02αm do

18 I := I \ C

19 C := C ∪ {C}

20 end if
21 end while
22 return C

The threshold in line 1 of the algorithm SEGMENTRESPONDENTS is
used to estimate the number of different consumer types using a care-
fully chosen threshold that only depends on the known quantities m, n

and l. In line 3 the projector is restricted to its first mL rows and first
mL columns, since this allows us to identify the columns of P ′B with re-
spondents. From each column i of P ′B we compute a vector ci ∈ {0, 1}mL

whose j’th entry is 1 if and only if the corresponding entry bij in the ma-

trix B is not less than 0.49
((n

2)
l

)
/m, see line 6. We also check whether

ci does not contain a too small number of 1 entries. The intuition is
that ci is close to a characteristic vector of a typical consumer type. This
idea is exploited in the while-loop enclosed by lines 13 and 21, where
two respondents are grouped together if their corresponding vectors ci

and cj make a small angle, see lines 15 and 16. The use of two sets
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C and C ′ is there to avoid taking a vector ci that is too far from any
characteristic vector of a typical type. All vectors which are never put
into any set C will be discarded.

(2) Computing partial rankings for the segments. For each con-
sumer type computed by the algorithm SEGMENTRESPONDENTS we de-
termine a typical partial ranking of the products covered by the l-tuple
L simply by majority vote. For every ordered product pair (x, y) ∈ L

we say that a type prefers x over y if more than half of the respondents
of this type has stated that they prefer x over y, otherwise we say the
consumer type prefers y over x.

(3) Extending the partial rankings. For a consumer type to extend
the partial ranking of the products covered by L to all products in X,
we proceed as follows: we replace an arbitrary element j ∈ L by an
element in X \

⋃
Y∈L Y. Let L ′ be the resulting set of pairs. We run the

algorithm SEGMENTRESPONDENTS on L ′ to segment all the respondents
that did all comparisons corresponding to the pairs in L ′. The segments
of respondents computed from L and from L ′ will then be merged and
the replacement process is repeated until the typical rankings for all

(
n
2

)
product pairs are determined.

(4) Segmenting all respondents. Finally, all not yet classified respon-
dents, i.e., those respondents corresponding to an l-tuple not used to
determine the typical rankings get also classified. Assume that such a
respondent did pairwise product comparisons for pairs in the l-tuple L∗.
Such a respondent is classified to be of that consumer type whose rank-
ing restricted to L∗ best matches the answers he provided (ties broken
arbitrarily).

Let us summarize all parameters of our ranking algorithm in the fol-
lowing table.
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n number of products
m number of respondents (dependent on n)
l number of comparisons performed by each respondent

(independent of n)
α parameter in (0, 1) that poses a lower bound of αm on the

size of the smallest consumer type that can be identified

4.3 Statistical model

The ranking algorithm that we presented in the last section is formu-
lated independently of a model of population and respondents. But
in order to theoretically analyze any procedure that computes typical
rankings from the input data a model of the population and a model of
the respondents is necessary. As in Chapter 3, providing such a model
gives rise to a reconstruction problem, namely, given data obeying the
model the task is to reconstruct the model parameters.

Population model. We assume that the population can be partitioned
into k types. Let αi ∈ (0, 1) be the fraction of the i’th type in the whole
population. For each type there is a ranking σi, i = 1, . . . , k, i.e., a
permutation, of the n products in X. It will be convenient to encode a
ranking of X as a vector u with

(
n
2

)
components in {±1}, one component

for each product pair (x, y). In the vector the entry at position (x, y)
is 1 if x is preferred over y and −1 otherwise. We will refer to the
vector u also simply as ranking. As a measure of separation of two
permutations we use the Hamming distance which is the number of
inverted pairs, i.e., the number of pairs (x, y), x, y ∈ X, where x ≺ y

in the one permutation and y ≺ x in the other permutation. Here
x ≺ y means that y is ranked higher than x. Obviously the maximum
separation of two permutations is

(
n
2

)
.

Respondent model. We assume that the set of respondents faithfully
represents the population, i.e., αi is also (roughly) the fraction of re-
spondents of type i among all respondents. Given a respondent let σ

be the ranking that corresponds to the type of this respondent. For
any comparison of products x and y, with x ≺ y according to σ, we
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assume that the respondent states his preference of y over x with prob-
ability p > 1/2. In our model each comparison is a random experiment,
independently from all other comparisons, with success probability p,
where success means that a respondent answers according to his type.
Note that this allows the respondents’ answers to violate transitivity,
i.e., we still ask comparisons whose outcome could have been derived
already from transitivity. From a practical perspective this seems mean-
ingful since stated preferences are often not transitive and the amount
of “non-transitivity” is interesting extra information that could be ex-
ploited otherwise.

Let us summarize all parameters of our model in the following table.

k number of types
p probability for a respondent not to deviate from its

type when performing a comparison
δ(ui, uj) separation of typical rankings (vectors) ui and uj

αi fraction of type i-respondents among all respondents
mi αim, i.e., number of respondents of the i’th type

This model allows to analyze procedures that compute typical rank-
ings from the input data. It leads to the ranking reconstruction problem.

Ranking reconstruction problem. Given the data obtained by our
elicitation procedure (see previous section) from a population that fol-
lows the model described above, the ranking reconstruction problem
asks to reconstruct the number k of consumer types, their correspond-
ing typical rankings and to associate every (many) respondent(s) with
his (their) correct type(s).

4.4 Analysis of the algorithm

The reconstruction problem becomes harder if the typical rankings are
not well separated. To make this more precise we introduce the follow-
ing notions of well-separation.
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Well-separation. For 0 < ε < 1 we say that the typical consumer
types are ε-well-separated (or just well-separated if ε is understood) if
for any two different consumer type rankings ui and uj, we have

(1 − ε)

(
n

2

)
≤ 2 δ(ui, uj) ≤ (1 + ε)

(
n

2

)
.

Given a ranking (vector) u and an l-tuple L, we denote the projection of
u onto L by πL(u), i.e., πL(u) is a vector in {±1}l. We say that an l-tuple
L is ε-well-separating (or just well-separating), if for any two different
consumer types with associated rankings ui and uj we have

|〈πL(ui), πL(uj)〉| ≤ 3εl.

In this case, we also say that consumer types i and j are ε-well-separated
(or just well-separated) by L.

Even for well-separated typical rankings it will not always be possible
to solve the ranking reconstruction problem, especially if the number
of respondents m is too small compared to the number of products n.
In the following we show that with high probability (in fact our state-
ments below hold with probability 1−ce−100 or the like, but c as well as
100 were chosen arbitrarily and can be improved to any arbitrary con-
stant) our ranking algorithm solves the ranking reconstruction problem
approximately if:

(1) All parameters besides m are considered constant and the number
m of respondents is large enough as some function of n.

(2) The number of comparisons l depends on α, p and ε, i.e., it is
larger when α (fraction of smallest type) becomes smaller, or
when the non-error probability p gets closer to 1/2, or when ε

(well-separation of the typical types) becomes smaller. Note how-
ever that l does not depend on n, and l is assumed to be much
smaller than

(
n
2

)
.

We start by showing that a randomly chosen l-tuple is well-separating
with high probability.

Lemma 24. Suppose that the typical consumer type rankings are ε-well-
separated and suppose that l = l(p, α, ε) ¿ (

n
2

)
is a large constant but

independent of n. Then with probability at least 1 − e−100, a randomly
chosen l-tuple is ε-well-separating.
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Proof. We fix some order on the
(
k
2

)
consumer type pairs. Let

{u1, v1} , . . . ,
{

u(k
2)

, v(k
2)

}

be the corresponding sequence of consumer type ranking pairs. We will
first bound the probability that for {u1, v1} we have

|〈πL(u1), πL(v1)〉| > 3εl

for a randomly chosen l-tuple L. For r ∈ L define the indicator variable
Cr

1 to be 1 if the consumer type rankings u1 and v1 agree in their prefer-
ence on product pair r, and 0 otherwise. Set C1 =

∑
r∈L Cr

1. Similarly,
define Dr

1 to be 1 if the consumer type rankings u1 and v1 disagree in
their preference on r, and 0 otherwise. Set D1 =

∑
r∈L Dr

1. Note that
C1 = l − D1.

We may assume that the product pairs in L were chosen sequentially.
The i’th product pair is chosen uniformly at random from all

(
n
2

)
−(i−1)

remaining product pairs. Hence, the probability to choose a product
pair on which u1 and v1 agree depends on the previously chosen com-
parisons. However, in any step, the probability to choose an element on
which their preference agrees is at least

p↑ :=
(1 − ε)

(
n
2

)
− 2(l − 1)

2
(
n
2

) ,

since by our assumption on δ(u1, v1) in any step there are at least
(
(1−

ε)
(
n
2

)
− 2(l − 1)

)
/2 product pairs remaining on which u1 and v1 agree

and there are at most
(
n
2

)
product pairs to be chosen from.

We now couple the random variable C1 with an auxiliary random
variable Ĉ which is the sum of l independent 0/1-variables Ĉ1, . . . , Ĉl

with Pr[Ĉi = 1] = p↑ for i = 1, . . . , l, i.e.,

Ĉ =

l∑

i=1

Ĉi.

By linearity of expectation we have E[Ĉ] = p↑l and by Chernoff bounds
(Corollary 1),

Pr[C1 ≤ (1 − γ)p↑l] ≤ Pr[Ĉ ≤ (1 − γ)p↑l]

= Pr[Ĉ ≤ (1 − γ)E[Ĉ]]

≤ e−γ2E[Ĉ]/4 = e
−γ2p↑l/4

.
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Hence with probability at least 1 − e
−γ2p↑l/4 we get that C1 > (1 −

γ)p↑l. By the same reasoning, the probability that u1 and v1 agree in
preference on a randomly chosen product pair is in every step at most

p↓ :=
(1+ε)(n

2)
2(n

2)−2(l−1)
. Again, by coupling, we can see that with probability

at least 1 − e
−γ2p↓l/4 we get that C1 < (1 + γ)lp↓. Combining both

bounds, we see that with probability at least 1 − 2e
−γ2 min{p↑,p↓}l/4 we

have

(1 − γ)lp↑ < C1 < (1 + γ)lp↓.

Consequently we have with probability at least 1 − 2e
−γ2 min{p↑,p↓}l/4

(1 − p↓(1 + γ))l < D1 < (1 − p↑(1 − γ))l.

Since by our assumption, l ¿ (
n
2

)
, we can choose γ = γ(ε) > 0 small

enough such that we have

|C1 − D1|

≤ max{(1 + γ)lp↓ − (1 − p↓(1 + γ))l, (1 − p↑(1 − γ))l − (1 − γ)lp↑}
= max{(2(1 + γ)p↓ − 1)l, (1 − 2(1 − γ)p↑)l}
≤ 3εl

with probability at least 1 − 2e
−γ2 min{p↑,p↓}l/4. Hence with at least the

same probability we have

|〈πL(u1), πL(v1)〉| ≤ 3εl.

We can interpret (1 − 2e
−γ2 min{p↑,p↓}l/4

) as a lower bound on the frac-
tion of all l-tuples on which u1 and v1 are well-separated. Consequently,

β = 2e
−γ2 min{p↑,p↓}l/4

is an upper bound on the fraction of l-tuples on which u1 and v1 (or
any fixed pair) are not well-separated.

Next we determine the probability that all pairs of different consumer
types are well-separated by L. Unfortunately the events for different
pairs of consumer types are not independent. Thus for a fixed pair of
consumer types we have to condition the probability under the event
that all previous pairs are well-separated by L. Let us first consider the
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second pair {u2, v2}. In the worst case all the l-tuples on which u2 and
v2 are not well-separated are well-separating for {u1, v1}. Let ρ denote
the exact fraction of l-tuples that are well-separating for {u1, v1}, i.e.,

Pr
[
|〈u1, v1〉| ≤ 3εl

]
= ρ.

Then the fraction of l-tuples that are well-separating for both {u1, v1}

and {u2, v2} is at least (1 − 2β), and from the definition of conditional
probabilities we get

Pr
[
|〈u2, v2〉| ≤ 3εl|

∣∣〈u1, v1〉| ≤ 3εl
] ≥ (1 − 2β)/ρ.

Hence we get

Pr
[
|〈u1, v1〉| ≤ 3εl

]
Pr

[
|〈u2, v2〉| ≤ 3εl|

∣∣〈u1, v1〉| ≤ 3εl
] ≥ 1 − 2β.

Iterating this argument we get that

Pr
[
L is well-separating

] ≥ 1 −

(
k

2

)
β.

Plugging in our assumption l = l(α, p, ε) ≥ ck2, we get by choosing
c sufficiently large, that with probability at least 1 − 2

(
k
2

)
e−c ′k2 ≥ 1 −

e−100 a randomly chosen l-tuple L is well-separating.

Remark 7. The upper bound on δ(u, v) is primarily needed due to techni-
cal reasons of the analysis. We think that in practice a lower bound should
suffice.

For some l-tuple L let mi
L denote the number of consumers of type

i ∈ {1, . . . , k} that compared exactly the l product pairs in L. We show
next that all mi

L are reasonably large. Note that we assume that mi ≥
αm for all consumer types i. Denote also by mL the total number of
consumers that compared exactly the l product pairs in L.

Lemma 25. Given ξ > 0. For any l-tuple L and any consumer type i it
holds

(1 − ξ)mi ≤
((

n
2

)

l

)
mi

L ≤ (1 + ξ)mi

with probability at least 1 − e−cm for some c = c(ξ) > 0.



4.4. Analysis of the algorithm 71

Proof. Since we assign l-tuples to respondents uniformly at random we
get that the expected number of consumers of fixed type i assigned to a
fixed l-tuple L is

mi/

((
n
2

)

l

)
.

Using Chernoff bounds, we get that

(1 − ξ)mi ≤
((

n
2

)

l

)
mi

L ≤ (1 + ξ)mi (4.1)

with probability at least 1 − 2e−c(ξ)m for some c(ξ) > 0. Taking a
union bound over all possible l-tuples and over all k consumer types
we get that (4.1) holds for all l-tuples L and all consumer types i with
probability at least

1 − k

((
n
2

)

l

)
e−c ′(ξ)αm = 1 − e−c(ξ)m

for some c ′(ξ), c(ξ) > 0, if we use our lower bound αm on any of the
mi.

In order to estimate the number of consumer types k in line 1 of the al-
gorithm SEGMENTRESPONDENTS we want to compute the largest eigen-
values in absolute value of B (see Section 4.2 for the definition of B).
We want to exploit the block structure of B, which can be written as

B =

(
0 A

AT 0

)
,

where A is an mL × l matrix whose rows are indexed by respondents
and whose columns are indexed by product pairs. We are not going to
compute the eigenvalues of B directly but use a perturbation argument
to estimate them. Therefore we compare B with B̂, which we define as
the matrix of expected values for the entries in B, i.e., b̂ij = E[bij]. In
particular that means that for i ∈ {1, . . . , mL} and j ∈ {mL+1, . . . , mL+l}

we have b̂ji = b̂ij = 2p − 1, if respondent i prefers in the (j − mL)’th
product comparison the first product over the second with probability
p, b̂ji = b̂ij = 1 − 2p, if he prefers the second product over the first
with probability p, and b̂ij = 0 otherwise. Note that the structure of B̂

is similar to the structure of B, namely,

B̂ =

(
0 Â

ÂT 0

)
.
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Observation 2. The matrix B has a spectrum symmetric to 0.

Proof. Let λ 6= 0 be an eigenvalue of B and (v, u) ∈ RmL+l be an corre-
sponding eigenvector, where v ∈ RmL and u ∈ Rl. Using the structure
of B we get

Au = λv and ATv = λu.

For the vector (v, −u) we get

B(v, −u) = (−Au,ATv) = −λ(v, −u),

which shows that also −λ is an eigenvalue of B.

Now we can prove that B and B̂ are close.

Lemma 26.

‖B − B̂‖2 ≤ 4
√

mL + l < 5
√

mL

with probability at least 1 − e−cm for some c > 0.

Proof. We have for the variance of bij − b̂ij for any index pair ij:

var[bij − b̂ij] = E[(bij − b̂ij)
2] − E[bij − b̂ij]

2

= E[b2
ij] − E[b̂2

ij] − 0

= 1 − (2p − 1)2 = 4p − 4p2 ≤ 1.

Using Chernoff bounds we have mL = Θ(m) with probability 1−e−c ′m

for some c ′ > 0. Note that here we consider l and n as constant. Hence
by Corollary 2,

‖B − B̂‖2 ≤ 4
√

mL + l < 5
√

mL

with probability at least 1 − 2e−c ′′(mL+l) = 1 − e−cm for some c ′′, c >

0.

The eigenvalues of B̂ can be computed from their squared values, i.e.,
from the eigenvalues of B̂2. The matrix B̂2 has the form

B̂2 =

(
ÂÂT 0

0 ÂT Â

)
,
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Thus the eigenvalues of B̂2 can be computed as the eigenvalues of the
mL ×mL matrix ÂÂT and the l × l matrix ÂT Â, respectively. Further-
more, ÂÂT and ÂT Â have the same non-zero eigenvalues. The largest k

eigenvalues of ÂÂT are estimated in the following lemma. For the sake
of simplicity in this lemma and the corollary immediately afterwards we
assume that the l-tuple L is well-separating; only in Theorem 9 later the
probability of this event will be included.

Lemma 27. For i = 1, . . . , k it holds that

λi(ÂÂT )

((
n
2

)

l

)
≥ 9lm(2p − 1)2α/10,

with probability at least 1−e−cm for some c > 0, if ε ≤ (2p−1)2α3/90000.

Proof. We decompose the mL ×mL matrix ÂÂT as follows

ÂÂT = C + D + E,

which are defined as follows: crs = (ÂÂT )rs if respondents r and s

belong to the same consumer type and 0 otherwise, drs = (ÂÂT )rs if
r and s belong to different types and (ÂÂT )rs ≥ 0 and 0 otherwise,
and finally ers = (ÂÂT )rs if r and s belong to different consumer types
and (ÂÂT )rs < 0, and 0 otherwise. Now, C is a rank k matrix whose k

nonzero eigenvalues are l(2p − 1)2mi
L, i = 1, . . . , k. Thus by Lemma 25

and by the lower bound on the size of any consumer type these eigen-
values are with probability at least 1 − e−cm, for some c > 0, larger
than

l(2p − 1)2(1 − ξ)mi/

((
n
2

)

l

)
≥ l(2p − 1)2(1 − ξ)αm/

((
n
2

)

l

)
,

for some ξ > 0.

Since all entries in D and E have the same sign, their largest eigen-
value in absolute value is at most the maximum of row or column sums
of the absolute values of their entries. Since L is assumed to be well-
separating the absolute value of every entry in D and E, respectively,
is at most 3εl. Thus, the largest eigenvalue in absolute value of D

and E, respectively, is at most 3εlmL. We will use a weaker upper
bound of 4εlmL here, since the lemma is also applied in the analysis of
the phase Extending the partial rankings of our algorithm to an l-tuple
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which might be “almost” well-separating, but not quite. By applying
Theorem 2 twice we get for i = 1, . . . , k,

λi(ÂÂT ) ≥ λi(C) + λmL
(D) + λmL

(E)

≥ l(2p − 1)2(1 − ξ)αm/

((
n
2

)

l

)
− 8εlmL

with probability at least 1 − e−cm. Since by Chernoff bounds, with

probability at least 1 − e−c ′m, mL ≤ (1 + ξ)m/
((n

2)
l

)
, we have

λi(ÂÂT ) ≥ (
lm((2p − 1)2(1 − ξ)α − 8(1 + ξ)ε)

)
/

((
n
2

)

l

)

with probability at least 1 − e−cm for some c > 0. Plugging in our
assumption

ε ≤ (2p − 1)20.012α3/9 < 0.01(2p − 1)2α

we get for sufficiently small ξ that for i = 1, . . . , k,

λi(ÂÂT )

((
n
2

)

l

)
≥ lm(2p − 1)2α0.9,

with probability at least 1 − e−cm.

Corollary 5. The matrix B̂ has rank 2k with probability at least 1−e−cm.

Proof. Since ÂÂT and ÂT Â have the same non-zero eigenvalues we
already get with the probability that Lemma 27 holds that B̂2 has 2k

non-zero eigenvalues, i.e., rank at least 2k. Note that B̂ and B̂2 have
the same rank. Furthermore B̂ also has rank at most 2k since among
the rows of Â there are at most k different ones, i.e., the rank of Â and
the rank of ÂT are at most k which implies that B̂ has rank at most
2k. In combination we get that B̂ has rank 2k with probability at least
1 − e−cm.

Observe now that if λ or −λ is a non-zero eigenvalue of B̂, then λ2 is
an eigenvalue of B̂2. Hence the absolute value of any of the 2k non-zero

eigenvalues of B̂ is at least
√

lm(2p − 1)2α0.9/
((n

2)
l

)
with probability at

least 1 − e−cm. Now we can provide a good value for the threshold
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that we use in line 1 of the algorithm SEGMENTRESPONDENTS to esti-
mate the number of consumer types k (the constants of this theorem
are not needed elsewhere). This shows that with high probability we
can reconstruct the number of different consumer types correctly.

Theorem 9. Let L be a randomly chosen l-tuple for l = l(p, α, ε) suffi-
ciently large but independent of n. With probability at least 1− 2e−100, B

has exactly k positive eigenvalues and exactly k negative eigenvalues whose
absolute value is larger than

10

√
m/

((
n
2

)

l

)
.

Proof. First assume that L is well-separating. To estimate the eigenval-
ues of B, we apply Lemma 27 and Theorem 2 together with the previ-
ously established bounds on ‖B − B̂‖2. For i = 1, . . . , k we have

λi(B) ≥ λi(B̂) − λmL+l(B − B̂)

≥
√

lm(2p − 1)2α0.9/

((
n
2

)

l

)
− 5

√
mL

with probability at least 1 − e−cm for some c > 0. Applying Chernoff
bounds to obtain an upper bound on mL once again, we get that

λi(B) ≥
√

m
((n

2)
l

) (

√
l(2p − 1)2α0.9 − 5

√
1 + ξ)

for i = 1, . . . , k with probability at least 1 − e−cm. By the same argu-
ment, the absolute value of any of the k most negative eigenvalues of B

is with probability at least 1 − e−cm at least that value. All other eigen-
values λi(B), i = k + 1, . . . ,mL + l − k are 0 in B̂, and thus once again
by Theorem 2, we get

|λi(B)| ≤ 5
√

mL ≤ 5

√
(1 + ξ)m/

((
n
2

)

l

)

with probability at least 1− e−cm, i = k+ 1, . . . ,mL + l−k. Combining
everything, by choosing l = l(p, α, ε) sufficiently large and ξ sufficiently
small we get that with probability at least 1−e−cm that there are exactly
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k positive eigenvalues and k negative eigenvalues whose absolute value
is larger than

10

√
m/

((
n
2

)

l

)
.

Finally, the probability that the chosen l-tuple is not well-separating is
by Lemma 24 at most e−100. The statement of the corollary now follows
from a simple union bound, since 1 − 2e−100 < 1 − e−100 − e−cm for
c > 0 and m large enough.

In the following let k denote the number of eigenvalues of B which are

larger than 10

√
m/

((n
2)
l

)
. We will show next that we do not just know

bounds for the eigenvalues of B that hold with high probability, but we
can also say something about the structure of the projectors onto the
corresponding eigenspaces. Later we will use these projectors to cluster
the respondents. Denote in the following by P

(k)
A the projector onto

the space spanned by the eigenvectors corresponding to the k largest
eigenvalues of the symmetric matrix A.

Observation 3.

P
(k)

B̂
+

(
I − P

(mL+l−k)

B̂

)
= P

(2k)

B̂2
.

Proof. Choose k orthonormal eigenvectors of P
(k)

B̂
and k orthonormal

eigenvectors of
(
I − P

(mL+l−k)

B̂

)
. These vectors are also eigenvectors

of B̂2, corresponding to the 2k largest squared eigenvalues of B̂.

Lemma 28. Suppose that l = l(p, α, ε) is a sufficiently large constant

such that |λk(B̂)| ≥ (37000/α2)

√
m/

((n
2)
l

)
. Then we have with probability

at least 1 − 2e−100

∥∥∥P
(k)
B − P

(k)

B̂

∥∥∥
2

< α2/3000

and
∥∥∥P

(mL+l−k)
B − P

(mL+l−k)

B̂

∥∥∥
2

< α2/3000.
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Proof. We know from the proof of Theorem 9 and by Lemma 26, that
with probability at least 1 − 2e−100,

δk(B̂) =
∣∣λk(B̂)

∣∣ ≥
√

m/

((
n
2

)

l

)
(

√
l(2p − 1)2α0.9 − 5

√
1 + ξ)

and

‖B − B̂‖2 ≤ 5

√
(1 + ξ)m/

((
n
2

)

l

)
< 6

√
m/

((
n
2

)

l

)
.

By our assumption we have |λk(B̂)| ≥ (37000/α2)

√
m/

((n
2)
l

)
, and thus

by Theorem 3, with probability at least 1 − 2e−100,

∥∥∥P
(k)
B − P

(k)

B̂

∥∥∥
2

≤ 2‖B − B̂‖2

|λk(B̂)| − 2‖B − B̂‖2

≤ 12

37000/α2 − 12

< α2/3000.

For the space spanned by the k most negative eigenvalues we proceed
similarly to bound the norm of

(I − P
(mL+l−k)
B ) − (I − P

(mL+l−k)

B̂
) = P

(mL+l−k)

B̂
− P

(mL+l−k)
B .

Again by Theorem 9, with probability at least 1 − 2e−100, it holds
δmL+l−k(B̂) = |λmL+l−k+1(B̂)| = |λk(B̂)|. Using our assumption on l

(such that |λk(B̂)| ≥ (37000/α2)

√
m/

((n
2)
l

)
holds) we get

‖P(mL+l−k)

B̂
− P

(mL+l−k)
B ‖2 ≤ 2‖B − B̂‖2

|λk(B̂)| − 2‖B − B̂‖2

≤ 12

37000/α2 − 12

< α2/3000.

with probability at least 1 − 2e−100.
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In order to cluster the respondents we want to work with mL × mL

matrices and identify each column of such a matrix with a respondent.
We are especially interested in the mL×mL matrix ÂÂT and its decom-
position ÂÂT = C + D + E as it was used in the proof of Lemma 27.

Lemma 29. Suppose that ε ≤ (2p− 1)2α3/90000. Then with probability
at least 1 − 2e−100 it holds

∥∥∥P
(k)

ÂÂT
− P

(k)
C

∥∥∥
2

< 3α2/10000.

Proof. As in the proof of Lemma 27 (again using a slightly weaker up-
per bound for ‖D‖2 and ‖E‖2, since the lemma is needed in the phase
Extending the partial rankings of the algorithm again) we have

‖D + E‖2 ≤ ‖D‖2 + ‖E‖2

≤ 8εlmL

< 9εlm/

((
n
2

)

l

)

≤ (2p − 1)20.012α3lm/

((
n
2

)

l

)

with probability at least 1 − 2e−100 (combining here and in the next
sentence the probability that Lemma 27 holds as in Theorem 9 with the
probability that an l-tuple is well-separating). By the same lemma, with
probability at least 1 − 2e−100, the k non-zero eigenvalues of C are all
at least

0.9l(2p − 1)2α
m

((n
2)
l

) .

Thus, by Theorem 3, with probability at least 1 − 2e−100,

∥∥∥P
(k)

ÂÂT
− P

(k)
C

∥∥∥
2

≤ 2‖ÂÂT − C‖2

|λk(C)| − 2‖ÂÂT − C‖2

≤ 2α30.012

0.9α − 2α30.012

< 3α2/10000.
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Denote by P ′B the restriction of P
(k)
B +(I−P

(mL+l−k)
B ) onto its first mL

rows and first mL columns, i.e., P ′B is also an mL ×mL matrix.

Theorem 10. With probability at least 1 − 2e−100, we have

‖P ′B − P
(k)
C ‖2 < α2/1000.

Proof. To simplify the notation, let

PB̂ = P
(k)

B̂
+

(
I − P

(mL+l−k)

B̂

)
and PB = P

(k)
B +

(
I − P

(mL+l−k)
B

)
.

Note that by Observation 3 it holds that PB̂ = P
(2k)

B̂2
. Since by Corol-

lary 5 B̂2 has rank 2k with probability at least 1−e−cm the latter projec-
tor inherits the block structure from B̂2 with that probability. Consider
the left upper mL×mL block matrix in the projector of P

(2k)

B̂2
and denote

it by P ′
B̂

. By construction we have that P ′
B̂

= P
(k)

ÂÂT
. We now claim that

∥∥∥P ′B − P
(k)

ÂÂT

∥∥∥
2
≤ ‖PB − PB̂‖2 .

Suppose for contradiction that this claim is not true. Choose a unit vec-
tor v maximizing

∥∥∥P ′B − P
(k)

ÂÂT

∥∥∥
2

and fill it up with additional 0 entries

in the last l columns to make it an mL + l-dimensional vector. Now, the
first mL coordinates of (PB − PB̂)v are by construction equal to those of
(P ′B −P

(k)

ÂÂT
)v and the following l coordinates contribute a non-negative

value to the 2-norm of the resulting vector. Hence, ‖PB−PB̂‖2 is at least
as large as ‖P ′B − P

(k)

ÂÂT
‖2.

Putting everything together and using Lemmas 28 and 29, we get that
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with probability at least 1 − 2e−100,

∥∥∥P ′B − P
(k)
C

∥∥∥
2

=
∥∥∥P ′B − P

(k)

ÂÂT
+ P

(k)

ÂÂT
− P

(k)
C

∥∥∥
2

≤
∥∥∥P ′B − P

(k)

ÂÂT

∥∥∥
2

+
∥∥∥P

(k)

ÂÂT
− P

(k)
C

∥∥∥
2

≤ ‖PB − PB̂‖2 +
∥∥∥P

(k)

ÂÂT
− P

(k)
C

∥∥∥
2

=
∥∥∥P

(k)
B + (I − P

(mL+l−k)
B ) − P

(k)

B̂
− (I − P

(mL+l−k)

B̂
)
∥∥∥

2
+

∥∥∥P
(k)

ÂÂT
− P

(k)
C

∥∥∥
2

≤
∥∥∥P

(k)
B − P

(k)

B̂

∥∥∥
2

+
∥∥∥(I − P

(mL+l−k)
B ) − (I − P

(mL+l−k)

B̂
)
∥∥∥

2
+

∥∥∥P
(k)

ÂÂT − P
(k)
C

∥∥∥
2

< α2/3000 + α2/3000 + 3α2/10000

< α2/1000.

Later on it will be more convenient to work with the Frobenius norm
‖ · ‖F instead of the L2 matrix norm. We get the following for the Frobe-
nius norm.

Corollary 6. We have with probability at least 1 − 2e−100

∥∥∥P ′B − P
(k)
C

∥∥∥
2

F
< α2/210000.

Proof. Since the rank of P ′B + P
(k)
C is at most 3k and since k ≤ 1/α, we

have by Theorem 10 with probability at least 1 − 2e−100 that

∥∥∥P ′B − P
(k)
C

∥∥∥
2

F
≤ 3k

∥∥∥P ′B − P
(k)
C

∥∥∥
2

2
<

3α3

10002
< α2/210000.

Corollary 6 will be useful for the analysis of our algorithm, since we
can characterize P

(k)
C explicitly. By the block diagonal structure of the
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matrix C we have (PC)
(k)
rs = 1/mi

L, if both respondents r and s be-
long to type i (and compare all the product pairs in the l-tuple L), and
(PC)

(k)
rs = 0 otherwise.

Theorem 11. With probability at least 1 − 3e−100, for a randomly cho-
sen l-tuple L, for every consumer type i, the algorithm SEGMENTRESPON-
DENTS misclassifies at most 3% of the mi

L respondents.

Proof. We first assume that the event described in Corollary 6 holds and
we will consider the corresponding probability only at the end of each
the two cases of the proof. We want to use the bound in Corollary 6 on
the squared Frobenius norm to bound the number of entries in P ′B that
become large though the corresponding entry in P

(k)
C is zero. A column

in the projector P
(k)
C whose column index corresponds to a respondent

of type i has mL − mi
L zero entries and

mi
L ≥ (1 − ξ)αm/

((
n
2

)

l

)
> 0.99αm/

((
n
2

)

l

)

(with probability at least 1 − e−cm for some c > 0) entries of value
1/mi

L. Let xr be the number of entries in the r’th column of P ′B that are

either at least 0.49
((n

2)
l

)
/m although the corresponding entry in P

(k)
C

is zero or that are less than 0.49
((n

2)
l

)
/m although the corresponding

entry in P
(k)
C is 1/mi

L ≥ 0.99
((n

2)
l

)
/m. Let x =

∑mL

r=1 xr be the total
number of such entries. In any case, the contribution of an entry which
is counted in xr to the squared Frobenius norm of P ′B − P

(k)
C is at least(

0.49
((n

2)
l

)
/m

)2

. Using the bound ‖P ′B − P
(k)
C ‖2

F < α2/210000 from
Corollary 6, we can bound x from above as

x

(
0.49

((
n
2

)

l

)
/m

)2

< α2/210000

or equivalently

x <
m2α2

50421
((n

2)
l

)2
<

m2α2

50000
((n

2)
l

)2
.

That is, there are at most

α2m2

50000
((n

2)
l

)2



82 Chapter 4. Collaborative ranking

entries which are either zero in P
(k)
C and at least 0.49

m

((n
2)
l

)
in P ′B or at

least 0.99
m

((n
2)
l

)
in P

(k)
C and less than 0.49

m

((n
2)
l

)
in P ′B. Hence, in at most

0.01αm/
((n

2)
l

)
of the columns of P ′B at least one of the following events

can happen:

(1) 0.01αm/
((n

2)
l

)
entries being zero in P

(k)
C become at least 0.49

m

((n
2)
l

)
in P ′B.

(2) 0.01αm/
((n

2)
l

)
entries that are at least 0.99

m

((n
2)
l

)
in P

(k)
C become

less than 0.49
m

((n
2)
l

)
in P ′B.

Thus observe that only for these columns the condition

|cr|
2 ≥ 0.99αm/

((
n
2

)

l

)

in line 8 of the algorithm might not be satisfied – the constants 0.01 as
well as the constants in some of the inequalities above were chosen to
be not strict, so that we do not have to change the constants anymore

to account for the fact that mL might be smaller or larger than m/
((n

2)
l

)
and that the size of the smallest consumer type might be slightly smaller

than αm/
((n

2)
l

)
(we will only in the end include the probabilities of these

events). Call the elements i ∈ {1, . . . , mL} corresponding to the columns
where one of the two events mentioned above occurs to be bad. Note
that a bad element i might also satisfy the condition in line 8 of the al-
gorithm. To prove the correctness of the algorithm we now make a case
analysis depending on the fact whether the element i chosen in line 14
of the algorithm is bad or not.

Case that i is not bad: if i is not bad, then for all other elements j

corresponding to the same type r which are also not bad we have

〈ci, cj〉 ≥ (1 − 0.02)mr
L = 0.98mr

L.

Since both i and j are not bad, we have that both |ci| and |cj| are smaller
than

√
(1 + 0.01)mr

L. Hence,

〈ci, cj〉
|ci| |cj|

≥ 0.98

1.01
> 0.97.
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Thus all these elements are put together into C and also into C ′ in lines
15 and 16, respectively, of the algorithm. On the other hand, for all j of
a different type s which are not bad we have

〈ci, cj〉 ≤ 0.02αm/

((
n
2

)

l

)
.

Since both i and j are not bad, we have that

|ci| ≥
√

(1 − 0.01)mr
L and |cj| ≥

√
(1 − 0.01)ms

L.

Hence,

〈ci, cj〉
|ci| |cj|

≤ 0.02αm

0.99
√

mr
Lms

L

((n
2)
l

) ≤
0.02

0.99
< 0.03,

since mr
L,ms

L ≥ αm/
((n

2)
l

)
. Thus, an element corresponding to a differ-

ent type that is not bad is neither put into C nor C ′. Since there are at

most 0.01αm/
((n

2)
l

)
many bad elements which might be put into C ′ but

not into C we have

|C ′| ≤ |C| + 0.02αm/

((
n
2

)

l

)
.

The fact that there are only 0.01αm/
((n

2)
l

)
many bad elements also im-

plies that we have |C| ≥ 0.9αm/
((n

2)
l

)
. Since everything was conditioned

under the event that Corollary 6 holds and all Chernoff bounds in this
case hold with probability at least 1 − e−cm for some c > 0, by taking
a union bound, we have shown that in this case at least a 99%-fraction
of the respondents of type r is segmented correctly with probability at
least 1 − 2e−100 − e−cm > 1 − 3e−100.

Case that i is bad: if i is bad but still satisfies the condition in line 8 of
the algorithm, a new type is reconstructed in line 19 of the algorithm
only if

|C| ≥ 0.9αm/

((
n
2

)

l

)
and |C ′| ≤ |C| + 0.02αm/

((
n
2

)

l

)
.

We first show that among all elements, which are not bad, only those
that correspond to respondents of one type can be put into C. Let j be
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an element that is not bad, whose corresponding respondent is of type
r and that is put into C. Then we must have

〈ci, cj〉
|ci| |cj|

≥ 0.97.

Now, if k is an element that is not bad and whose corresponding respon-
dent is of type s with s 6= r, then we have by the same argument as in
the first case that

〈cj, ck〉
|cj| |ck|

≤ 0.03.

Hence we get for the angle ∠cicj between ci and cj that ∠cicj < π/10

and for the angle ∠cjck between cj and ck that ∠cjck > 9π/20. Note
that since all ci, ci ′ are vectors in {0, 1}mL , we have 0 ≤ 〈ci,ci ′ 〉

|ci| |ci ′ |
≤ 1 and

hence we only have to consider angles ∈ [0, π/2). Thus, by the triangle
inequality for angles,

∠cick ≥ ∠cjck − ∠cicj >
7π

20
>

π

3
,

and hence

cos (∠cick) =
〈ci, ck〉
|ci| |ck|

< 1/2.

Thus ck does not satisfy the condition in line 15 of the algorithm and
the element k will not be put into C.

Next we show that if some elements that all correspond to the same
type r and that are all not bad, are put into C then either a 97%-fraction
of all not bad elements corresponding to the respondents of type r is
put into C or none of them. To prove this, we make use of the set C ′.

If there was only the condition that |C| ≥ 0.9αm/
((n

2)
l

)
it could happen

that the respondents of type r would be split, because a large fraction
of the characteristic vectors cj corresponding to the respondents would
still satisfy the condition 〈ci,cj〉

|ci| |cj| ≥ 0.97 and the rest would not satisfy
it anymore. For example, this value could be just around this threshold
for all characteristic vectors corresponding to respondents of one type.
We now show that if we have a second threshold test 〈ci,cj〉

|ci| |cj| ≥ 0.8, and
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if we require

|C ′| ≤ |C| + 0.02αm/

((
n
2

)

l

)
and |C| ≥ 0.9αm/

((
n
2

)

l

)
,

then at least a 97%-fraction of the respondents of type r which is not
bad is segmented correctly. To see this, let j be an element that is not
bad which corresponds to a respondent of type r and is put into C and
let j ′ be another element corresponding to respondent of the same type
r, which is not bad either. Since j is put into C we must have

〈ci, cj〉
|ci| |cj|

> 0.97.

Also, as shown before,

〈cj, cj ′〉
|cj| |cj ′ |

> 0.97.

Thus, since ∠cicj < π/10 and ∠cjcj ′ < π/10, again by the triangle
inequality for angles, ∠cicj ′ < π/5 and hence

cos∠cicj ′ =
〈ci, cj ′〉
|ci| |cj ′ |

> 0.8.

Thus, if there exists some element j corresponding to a respondent of
type r, which is not bad and satisfies the condition 〈ci,cj〉

|ci| |cj| ≥ 0.97, then
all other elements j ′ that correspond to respondents of type r and are
not bad either satisfy at least the condition 〈ci,cj〉

|ci| |cj| ≥ 0.8. Now, if there

are more than 0.02αm/
((n

2)
l

)
many elements j ′, which satisfy only the

second condition, then |C ′| > |C| + 0.02αm/
((n

2)
l

)
and no type is recon-

structed in line 19 of the algorithm in this iteration of the while-loop.

Otherwise, all but at most 0.02αm/
((n

2)
l

)
elements which are not bad

satisfy both conditions, and since there are only 0.01αm/
((n

2)
l

)
many

bad elements corresponding to each type, at least a 0.97-fraction of the
respondents of any type is segmented correctly. Since there are in total

only 0.01αm/
((n

2)
l

)
many bad elements, in some iteration an element

which is not bad is chosen and a 97%-fraction of the respondents of any
type will be segmented correctly at some point. Since the probability
that Corollary 6 fails is at most 2e−100, and the probability that other
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undesired events happen throughout the proof is at most e−cm for some
c > 0, by a union bound, with probability at least

1 − 2e−100 − e−cm > 1 − 3e−100

the theorem holds.

The theorem tells us that with high probability for all consumer types
at most a 3%-fraction of the respondents gets misclassified. Conditioned
under this event, we can now easily, by majority vote, extract the rank-
ings of the k consumer types: for each reconstructed consumer type and
for each (ordered) product pair (x, y) ∈ L we say that the consumer type
prefers x over y if more than half of the respondents of this type have
stated that they prefer x over y, otherwise we say the consumer type
prefers y over x.

Lemma 30. With probability at least 1−4e−100, for every consumer type
i and its typical ranking ui, πL(ui) is reconstructed perfectly.

Proof. In the following we condition everything under the event that for
each consumer type at most 3% of its respondents get classified wrongly
by the algorithm SEGMENTRESPONDENTS, by Theorem 11 this happens
with probability at least 1 − 3e−100. For an arbitrary element j ∈ L and
an arbitrary consumer type i suppose without loss of generality that
consumer type i prefers in the product comparison j the first element
over the second with probability p > 1/2. Consider the (unique) recon-
structed type î with corresponding size mî

L whose elements belong to
at least 97% to type i. For each respondent v belonging to î, define the
indicator variable u

j
v to be 1 if v prefers in product comparison j the

first element over the second and 0 otherwise. Set uj :=
∑

v∈î u
j
v. Then

E[uj] ≥ 0.97pmî
L+0.03(1−p)mî

L = mî
L(0.94p+0.03) > mî

L(0.5+0.9γ),

where the last inequality follows since p > 1/2, and we can thus find an
arbitrarily small constant γ > 0 such that p = 1/2+γ. Since all respon-
dents answer their product comparisons independently, by Lemma 25
and once again by Chernoff bounds, for some small ξ = ξ(γ) > 0 such
that (1 − ξ)(0.5 + 0.9γ) > 1/2, we get

Pr
[
(1 − ξ)(0.5 + 0.9γ)mî

L ≤ uj

]
≥ Pr [(1 − ξ)E[uj] ≤ uj]

≥ 1 − e−ξ2E[uj]/4

≥ 1 − e−ξc ′m,
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for some c ′ = c ′(n, l, α, ε) > 0. This also implies that, with probability
at least 1 − e−ξc ′m, the number of respondents belonging to mî

L pre-
ferring in product comparison j the second element over the first is at
most

mî
L (1 − (1 − ξ)(0.5 + 0.9γ)) mî

L = (0.5 − γ ′) mî
L

for some constant γ ′ = γ ′(γ, ξ) > 0. Thus, with probability at least
1−e−ξc ′m, the number of respondents preferring the first element over
the second in product comparison j minus the number of respondents
preferring the second element over the first in this product comparison
is at least

mî
L ((1 − ξ)(0.5 + 0.9γ) − (0.5 − γ ′)) = γ0mî

L = γ0cm

for some γ0 = γ0(γ, ξ, γ ′) > 0 and some c > 0. Thus, γ0cm > 0 and
the majority vote will give the right ranking with probability at least
1 − e−ξc ′m. Analogous calculations give the same bounds if consumer
type i prefers in the product comparison j the second element over the
first with probability p. Taking a union bound over all l elements and
all k consumer types and taking into account the probability that Theo-
rem 11 holds, we get that with probability at least

1 − 3e−100 − lke−cm > 1 − 4e−100,

for any consumer type i with typical ranking ui, πL(ui) is reconstructed
perfectly.

Next we use that if L is well-separating and we exchange one pair in L

with a pair from X \
⋃

Y∈L Y to get an l-tuple L ′, then also L ′ is “almost”
well-separating and basically everything we proved for L remains valid
for L ′. That is, with high probability for both L and L ′, respectively,
exactly the same number k of typical consumer types will be computed
whose rankings all agree on all the l − 1 product comparisons in L∩ L ′.
Thus the segments computed for L and L ′ can be easily merged.

Theorem 12. Suppose that l = l(α, p, ε) is a sufficiently large constant
(but independent of n). Then, with probability at least 1 − 5e−100, all
consumer type rankings can be reconstructed perfectly.

Proof. By Theorem 11 and Lemma 30 we know that with probability
at least 1 − 4e−100 a randomly chosen l-tuple L is well-separating, at
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most a 3%-fraction of each consumer type answering exactly the l prod-
uct comparisons in L is misclassified and for any consumer type i with
corresponding consumer type ranking ui, πL(ui) is reconstructed per-
fectly. Observe that since the algorithm at any step replaces only one
element in L by another element to obtain L ′, L ′ will still be “almost”
well-separating. Indeed, if an l-tuple L is well-separating, then recall
from Lemma 27 (with the notation of D and E borrowed from there)
that for this l-tuple we get |Dij| ≤ 3εl for any two different consumer
types i and j (the same holds for E). Since L and L ′ differ in only one
element, for the same matrix D applied to L ′ we have |Dij| ≤ 3εl + 2

for any two different consumer types i and j, since the absolute value
can change by at most 2. A short glance at the proof of Lemma 27,
however, shows that in this proof we require only that |Dij| ≤ 4εl (and
also |Eij| ≤ 4εl), and by choosing l = l(α, p, ε) bigger than 2/ε, we
can guarantee that Lemma 27 also holds when applied with L ′. The
proofs of Lemma 29, Theorem 11 and Lemma 30 then also hold with
probability at least 1−e−cm for some c > 0 (conditioned under the fact
that L was well-separating). This implies that with probability at least
1 − e−cm for any L ′ such that |L ′ \ L| = |L \ L ′| = 1 and any consumer
type i with typical ranking ui, i = 1, . . . , k, the l − 1 common product
comparisons of πL(ui) and πL ′(ui) agree perfectly, and since they were
well-separated in L, they can easily be merged (in the obvious way).
Taking a union bound over all k consumer types and all at most

(
n
2

)

iterations of the algorithm, with probability 1 − k
(
n
2

)
e−cm = 1 − e−c ′m

for some c, c ′ > 0 all typical consumer type rankings get reconstructed
perfectly. Combining the probabilities, we see that with probability at
least

1 − 4e−100 − e−c ′m > 1 − 5e−100

all consumer type rankings get reconstructed perfectly.

Finally, we show that also most of the respondents get classified cor-
rectly.

Theorem 13. Suppose that l = l(p, α, ε) is a sufficiently large constant
(but independent of n). Then with probability at least 1−6e−100, for each
consumer type i, i = 1, . . . , k, at most a e−97-fraction of the respondents
of that type is misclassified.

Proof. We condition our analysis under the event that all consumer type
rankings are reconstructed perfectly, that is that Theorem 12 holds, and
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include the probability of this event only at the end. For each not
yet reconstructed respondent r of consumer type i answering a well-
separating l-tuple L of product comparisons, define δ(r, ui)L to be the
Hamming distance between the {±1}l vector of answers provided by r

and the projection of the typical ranking ui of consumer type i onto L,
i.e., the number of inverted pairs on L. We have

E[δ(r, ui)L] = (1 − p)l,

and since all l product comparisons are performed independently, by
Chernoff bounds, for ξ > 0, where ξ is chosen small enough such that
(1 + ξ)E[δ(r, ui)L] < (1 − ξ)

(
l−3εl

2 p + (1 − p) l+3εl
2

)
holds, we get

Pr
[
δ(r, ui)L ≥ (1 + ξ)E[δ(r, ui)L]

] ≤ e−ξ2(1−p)l/4.

For any other typical consumer type ranking uj, j 6= i, denote by δ(i, j)L

the Hamming distance between πL(ui) and πL(uj). Since L is well-
separating, δ(i, j)L ≥ l−3εl

2 , and since p > 1/2 we get

E[δ(r, uj)L] = pδ(i, j)L+(1−p)(l−δ(i, j)L) ≥ p
l − 3εl

2
+(1−p)

l + 3εl

2
.

Also, by Chernoff bounds, for this ξ > 0,

Pr

[
δ(r, uj)L ≤ (1 − ξ)

(
p

l − 3εl

2
+ (1 − p)

l + 3εl

2

)]

≤ Pr [δ(r, uj)L ≤ (1 − ξ)E[δ(r, uj)L]]

≤ e−ξ2E[δ(r,uj)L]/4

≤ e−ξ2( l−3εl
2 p+(1−p) l+3εl

2 )/4.

Thus, by taking a union bound over all consumer types j 6= i, by our
choice of ξ, for sufficiently large l, with probability at least

1 − e−ξ2(1−p)l/4 − (k − 1)e−ξ2( l−3εl
2 p+(1−p) l+3εl

2 )/4 > 1 − e−100

a randomly chosen respondent answering l product comparisons in L is
correctly classified. Thus, for each consumer type i, the expected num-
ber of correctly classified respondents who do the comparisons corre-
sponding to L is at least

(1 − e−100)|mi
L| ≥ (1 − e−100)(1 − ξ ′)mi/

((
n
2

)

l

)
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by Lemma 25 with probability at least 1 − e−cm. Since at least a
(1 − e−99)-fraction of l-tuples is well-separating and not yet used in
one of the at most

(
n
2

)
previous iterations of the algorithm SEGMENTRE-

SPONDENTS, the expected number of correctly classified respondents of
type i is at least

(1 − e−99)(1 − e−100)(1 − ξ ′)mi > (1 − e−98)mi

with probability at least 1 − e−cm (again by Lemma 25). Furthermore,
since for those respondents who were not used in the

(
n
2

)
previous runs

of the algorithm, the classification of each respondent is independent
from any other respondent, by another application of Chernoff bounds
together with a union bound over all Θ(m) respondents of each con-
sumer type and all k consumer types, with probability at least 1 − e−cm

for some c = c(ξ) > 0 at least

(1 − ξ ′′)(1 − e−98)mi > (1 − e−97)mi

respondents of each consumer type get correctly classified. Since ev-
erything was conditioned under the fact that the typical consumer type
rankings get reconstructed perfectly, by combining the probabilities, we
get that with probability at least

1 − 5e−100 − e−cm > 1 − 6e−100

at most a e−97-fraction of each consumer type gets misclassified.

4.5 Concluding remarks

We have studied the problem to elicit product preferences of a popula-
tion, where the preferences are represented as a ranking of the prod-
ucts. During elicitation we asked many respondents to perform a few
pairwise comparisons. We provided an algorithm to process the elicited
data and introduced models of population and respondents and ana-
lyzed our algorithm in their context. The following theorem summa-
rizes the analysis of our collaborative ranking algorithm.

Theorem 14. For any ξ > 0 and any γ > 0, we can choose l = l(p, α, ε)
to be a sufficiently large constant (but independent of n) such that for our
model of population and respondents and a sufficiently large number of
respondents we can with probability 1 − ξ correctly
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(1) infer the number k of different consumer types, and

(2) segment a (1 − γ)-fraction of the respondents into correct types, and

(3) reconstruct the k typical consumer rankings.

Note that in the actual proof, i.e., in the proofs of Theorems 9, 12
and 13, we chose the arbitrary values ξ = 1 − 6e−100 and γ = e−97

to make the notation of the statements not overly complicated. The
constants are arbitrary, but in our model with high probability there
will always be a small but constant fraction of respondents of each type
which gets misclassified, and hence we cannot get γ = o(1). However, it
seems possible, that with an additional amount of work the probability
1−ε could be replaced by something that holds with probability 1−o(1).

Eliciting typical rankings and segmenting a population by asking each
respondent only a few questions seems appealing for web based mar-
keting research though there remain many issues to deal with, e.g.,
spam in the form of malicious respondents or measuring more detailed
information on an interval scale.
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