
A PROBABILISTIC VERSION OF THE GAME OF ZOMBIES AND
SURVIVORS ON GRAPHS

ANTHONY BONATO, DIETER MITSCHE, XAVIER PÉREZ-GIMÉNEZ, AND PAWE L PRA LAT

Abstract. We consider a new probabilistic graph searching game played on graphs, in-
spired by the familiar game of Cops and Robbers. In Zombies and Survivors, a set of
zombies attempts to eat a lone survivor loose on a given graph. The zombies randomly
choose their initial location, and during the course of the game, move directly toward the
survivor. At each round, they move to the neighbouring vertex that minimizes the distance
to the survivor; if there is more than one such vertex, then they choose one uniformly at
random. The survivor attempts to escape from the zombies by moving to a neighbouring
vertex or staying on his current vertex. The zombies win if eventually one of them eats the
survivor by landing on their vertex; otherwise, the survivor wins. The zombie number of a
graph is the minimum number of zombies needed to play such that the probability that they
win is at least 1/2. We present asymptotic results for the zombie numbers of several graph
families, such as cycles, hypercubes, incidence graphs of projective planes, and Cartesian
and toroidal grids.

1. Introduction

A number of variants of the popular graph searching game Cops and Robbers have been
studied. For example, we may allow a cop to capture the robber from a distance k, where k
is a non-negative integer [9, 10], play on edges [15], allow the robber to capture the cops [11],
allow one or both players to move with different speeds [2, 13, 16, 17] or to teleport, have
the cops move one at a time [4, 5, 26], have the cops play on edges and the robber on
vertices [23, 28], or make the robber invisible or drunk [20, 22, 21]. For additional background
on Cops and Robbers and its variants, see the book [12] and the surveys [3, 6, 7].

For a given connected graph G and given k ∈ N, we consider the following probabilistic
variant of Cops and Robbers, which is played over a series of discrete time-steps. In the
game of Zombies and Survivors, suppose that k zombies (akin to the cops) start the game
on random vertices of G; each zombie, independently, selects a vertex uniformly at random
to start with. Then the survivor (akin to the robber) occupies some vertex of G. As zombies
have limited intelligence, in each round, a given zombie moves towards the survivor along
a shortest path connecting them. In particular, the zombie decreases the distance from its
vertex to the survivor’s. If there is more than one neighbour of a given zombie that is closer
to the survivor than the zombie is, then they move to one of these chosen uniformly at
random. Each zombie moves independently of all other zombies. As in Cops and Robbers,
the survivor may move to another neighbouring vertex, or pass and not move. The zombies
win if one or more of them eat the survivor; that is, land on the vertex which the survivor
currently occupies. The survivor, as survivors should do in the event of a zombie attack,
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attempts to survive by applying an optimal strategy; that is, a strategy that minimizes the
probability of being captured. Note that there is no strategy for the zombies; they merely
move on geodesics towards the survivor in each round. Note that since zombies always move
toward the survivor, he can pass at most D times, where D is a diameter of G, before being
eaten by some zombie. Note also that the game can be extended to the case of G being
disconnected, by having zombies that lie in connected components of G different from that
of the survivor simply follow a random walk. Nevertheless, in this paper we will only consider
connected graphs. We note also that our probabilistic version of Zombies and Survivors was
inspired by a deterministic version of this game (with similar rules, but the zombies may
choose their initial positions, and also choose which shortest path to the survivor they will
move on) first considered in [18].

Let sk(G) be the probability that the survivor wins the game, provided that he follows
the optimal strategy. Clearly, sk(G) = 1 for k < c(G), where c(G) is the cop number of
G. On the other hand, sk(G) < 1 provided that there is a strategy for k ≥ c(G) cops in
which the cops always try to get closer to the robber, since with positive probability the
zombies may follow such a strategy. Usually, sk(G) > 0 for any k ≥ c(G); however, there
are some examples of graphs for which sk(G) = 0 for every k ≥ c(G) (consider, for example,
trees). Further, note that sk(G) is a non-decreasing function of k (that is, for every k ≥ 1,
sk+1(G) ≤ sk(G)), and sk(G) → 0 as k → ∞. The latter limit follows since the probability
that each vertex is initially occupied by at least one zombie tends to 1 as k →∞.

Define the zombie number of a graph G by

z(G) = min{k ≥ c(G) : sk(G) ≤ 1/2}.
This parameter is well defined since limk→∞ sk(G) = 0. In other words, z(G) is the minimum
number of zombies such that the probability that they eat the survivor is at least 1/2. The
ratio Z(G) = z(G)/c(G) ≥ 1 is the cost of being undead. Note that there are examples of
families of graphs for which there is no cost of being undead; that is, Z(G) = 1 (as is the
case if G is a tree), and, as we show in the next section, there are examples of graphs with
Z(G) = Θ(n).

The paper is organized as follows. In Section 2, we give an example of a sequence of
graphs (Gn)n∈N having Z(Gn) = Θ(n). In Section 3, we discuss cycle graphs. Theorem 3.3
gives the asymptotic value of the zombie number of cycles. In Section 4, we consider the
zombie number of the incidence graphs of projective planes. By using double exposure and
coupon collector problems, we show in Theorem 4.1 that about two times more zombies are
needed to eat the survivor than cops. We consider hypercubes Qn in Section 5, and show in
Theorem 5.1 that z(Qn) ∼ 2

3
n, as n→∞. The final section considers both Cartesian grids

and grids formed by products of cycles (so called toroidal grids). In toroidal grids, we prove
in Theorem 6.2 a lower bound for the zombie number of

√
n/(ω log n), where ω = ω(n) is

going to infinity as n → ∞. The proof relies on the careful analysis of a strategy for the
survivor.

Throughout, we will use the following version of Chernoff’s bound. For more details,
see, for example, [19]. Suppose that X ∈ Bin(n, p) is a binomial random variable with
expectation µ = np. If 0 < δ < 1, then

P[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
,
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and if δ > 0,

P[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

The above bounds show that with high probability X cannot be too far away from its
expectation. However, it is also true that with high probability X cannot be too close to
E [X]. We will use this fact only for the p = 1/2 case. Let X ∈ Bin(n, 1/2). First, let us

use Stirling’s formula (k! ∼
√

2πk(k/e)k) and observe that for each t such that 0 ≤ t ≤ n we
have

P[X = t] ≤ P
[
X = bn/2c

]
=

(
n
bn/2c

)
2n

∼
√

2

πn
<

1√
n
.

Hence, for each ε > 0 there exists c = c(ε) > 0 (for example, let c = ε/3) such that

(1) P
[
|X − n/2| < c

√
n
]
< ε.

For a reference on graph theory the reader is directed to [29]. For graphs G and H, define
the Cartesian product of G and H, written G�H, to have vertices V (G)×V (H), and vertices
(a, b) and (c, d) are joined if a = c and bd ∈ E(H) or ac ∈ E(G) and b = d. Many results
in the paper are asymptotic in nature as n → ∞. We emphasize that the notations o(·)
and O(·) refer to functions of n, not necessarily positive, whose growth is bounded. We say
that an event in a probability space holds asymptotically almost surely (or a.a.s.) if the
probability that it holds tends to 1 as n goes to infinity. Finally, for simplicity we will write
f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞; that is, when f(n) = (1 + o(1))g(n).

2. The cost of being undead can be high

In this section we consider a family of graphs (Gn)n∈N for which Z(Gn) is of order as
large as the number of vertices. Let Gn = (Vn, En) be the graph consisting of a 5-cycle with
vertices vi, where 1 ≤ i ≤ 5, and n−5 leaves attached to v1, as shown in Figure 1. Although
two cops suffice to capture the robber in this graph, a linear number of zombies are needed to
eat the survivor (as always, with probability at least 1/2), as shown in the following result.
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Figure 1. The graph Gn with a large cost of being undead.
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Theorem 2.1. For Gn as defined above, we have

z(Gn) ∼ log(1/α)n ≈ 0.2180n,

where α is the only solution of α4(2− α) = 1/2 in (0, 1). In particular, Z(Gn) ∼ log(1/α)
2

n.

Proof. Elementary analysis shows that the function f(x) = x4(2 − x) − 1/2 is increasing
and has a unique root in the interval (0, 1), which we call α. Suppose that the game is
played against k ∼ log(1/α̂)n zombies, for some fixed α̂ ∈ (0, 1). Letting S = V (Gn) \
{v1, v2, v3, v4, v5}, the probability that either S∪{v2} or S∪{v5} contain the starting vertices
of all zombies is

2

(
1− 4

n

)k
−
(

1− 5

n

)k
=

(
1− 4

n

)k(
2−

(
1− 1

n− 4

)k)
∼ α̂4 (2− α̂) ,

which is strictly greater than 1/2 if α̂ > α. If this occurs, then we claim that the survivor
has a deterministic winning strategy. Indeed, he can start at vertex v2 (or v5, whichever is
initially free of zombies). Then all zombies immediately move to v1. The survivor continues
to walk around the cycle, and all zombies chase him without eating him forever. On the
other hand, the probability that the previous property fails (that is, neither S ∪ {v2} nor
S ∪ {v5} contain all zombies initially) and additionally at least one zombie starts in S is at
least (

1− 2

(
1− 4

n

)k
+

(
1− 5

n

)k)
−
(

5

n

)k
∼ 1− α̂4 (2− α̂) ,

which is strictly greater than 1/2 if α̂ < α. If this occurs, then there is at least one zombie
initially in S and either some zombie in {v1, v3, v4} or some in both v2 and v5. An easy case
analysis shows that from such an initial configuration, the zombies will capture the survivor
regardless of his strategy. Putting the two cases together and since α̂ can be arbitrarily close

to α, we obtain that z(Gn) ∼ log(1/α)n, and so Z(Gn) ∼ log(1/α)
2

n. �

3. Cycles

We analyze the case of cycles Cn of length n first, serving as a warm-up for more complex
graph classes studied later in the paper. Even for elementary graphs such as cycles, unusual
situations may arise which never occur in Cops and Robbers, as illustrated by the following
statement.

Lemma 3.1. The survivor wins on Cn against k ≥ 2 zombies if and only if all zombies are
initially located on an induced subpath containing at most dn/2e − 2 vertices.

Proof. First, suppose that all the zombies are initially located on an induced subpath con-
taining at most dn/2e − 2 vertices. Then the survivor can win by starting at a vertex at
distance 2 from the subpath, and move away from the zombies so that all zombies walk
towards the same direction. The large horde of zombies eternally lags behind the survivor
who remains safe indefinitely. Otherwise, if the zombies do not fit into any path of dn/2e−2
vertices (for n odd) or n/2− 1 vertices (for n even), the zombies win with probability 1.

The last which turns out to be the least obvious case to consider occurs when n is even
and all the zombies are initially located on an induced subpath containing n/2− 1 vertices,
with at least one zombie at each end of the path. The survivor should start at distance
2 from the subpath (otherwise, the two extreme zombies behave like traditional cops and
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move in opposite directions). With probability at most 1/2, zombies make a “bad move”;
that is, all zombies move in the same direction. Note that it is at most 1/2 but not exactly
1/2, as more than one zombie might occupy the two extreme vertices. But this situation
forces the survivor to make a move away from them. As a result, we arrive in an analogous
configuration of zombies, where the zombies make another bad move with probability at
most 1/2. With probability 1 in some future round, the extreme zombie will not make a bad
move and the survivor will eventually be eaten. �

In view of this, we have the following lemma which gives the probability that the survivor
wins against k ≥ 2 zombies. (For k = 1, trivially s1(C3) = 0, and s1(Cn) = 1 for n ≥ 4.)

Lemma 3.2. For any natural numbers k ≥ 2 and n ≥ 9, we have that

k

(
1

2
− 4

n

)k−1
≤ sk(Cn) < k

(
1

2

)k−1
.

In particular, sk(Cn) ∼ k(1/2)k−1, as n→∞.

Proof. By Lemma 3.1, the survivor has a strategy to live forever if and only if all zombies
initially lie in a subpath of r ≤ dn/2e − 2 vertices. In order to bound sk(Cn) from above,
we first overcount these configurations, by distinguishing two zombies one at each end of the
subpath. There are k(k− 1) ways to select the two distinguished zombies that are placed at
the ends of a subpath consisting of r ≤ dn/2e − 2 vertices, and n choices for the position of
the path. The two zombies start at the right place with probability (1/n)2, the remaining
ones must start on the subpath, which happens with probability (r/n)k−2. Since we are
overcounting configurations, it follows that

sk(Cn) ≤
dn/2e−2∑
r=1

k(k − 1)n(1/n)2(r/n)k−2

< k(k − 1)n1−k
∫ n/2

1

xk−2dx

< k

(
1

2

)k−1
.

On the other hand, in order to get a lower bound on sk(Cn), we consider only those config-
urations in which the two end-vertices of the subpath are occupied by exactly one zombie.
These configurations form a subset of all those configurations that allow the survivor to win,
but the advantage is that the corresponding probabilities can be computed exactly without
overcounting. Therefore, we have that

sk(Cn) ≥
dn/2e−2∑
r=3

k(k − 1)n(1/n)2((r − 2)/n)k−2

≥ k(k − 1)n1−k

(∫ n/2−4

0

xk−2dx

)

= k

(
1

2
− 4

n

)k−1
.
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The proof of the lemma follows. Moreover, note that, for k = 2 and k = 3, it is easy to find
the winning probability precisely:

s2(Cn) =

dn/2e−2∑
r=2

2 · n · 1

n2
+ n · 1

n2
, and

s3(Cn) =

dn/2e−2∑
r=3

3 · 2 · n · 1

n2
· r − 2

n
+ 2

dn/2e−2∑
r=2

3 · n · 1

n3
+ n · 1

n3
. �

As an immediate consequence of Lemma 3.2, we deduce that z(Cn) = 4 for all n ≥ 44.
Combining this with a direct examination of the smaller values of n, we derive the zombie
number and the cost of being undead for the cycle Cn of length n ≥ 3:

Theorem 3.3.

z(Cn) =


4 if n ≥ 27 or n = 23, 25,

3 if 11 ≤ n ≤ 22 or n = 9, 24, 26,

2 if 4 ≤ n ≤ 8 or n = 10,

1 if n = 3;

and therefore,

Z(Cn) =


2 if n ≥ 27 or n = 23, 25,

3/2 if 11 ≤ n ≤ 22 or n = 9, 24, 26,

1 if 3 ≤ n ≤ 8 or n = 10.

4. Projective Planes

Incidence graphs are useful in constructing graphs with large cop numbers; see [8, 27]. An
incidence structure consists of a set P of points, and a set L of lines along with an incidence
relation consisting of ordered pairs of points and lines. Given an incidence structure S, we
define its incidence graph G(S) to be the bipartite graph whose partite sets are the points
and lines, respectively, with a point joined to a line if the two are incident in S. Projective
planes are some of the most well-studied examples of incidence structures. A projective plane
consists of a set of points and lines satisfying the following axioms.

(1) There is exactly one line incident with every pair of distinct points.
(2) There is exactly one point incident with every pair of distinct lines.
(3) There are four points such that no line is incident with more than two of them.

Finite projective planes have q2 + q + 1 points and q2 + q + 1 lines, for some integer q > 0
(called the order of the plane). Note that each point is incident with q + 1 lines, and each
line is incident with q + 1 points. It is known that, for every q that is a prime power, a
projective plane Pq of order q exists. The existence of finite projective planes of other orders
is an open question. For more on projective planes, see for example [14].

The girth of a graph G is defined as the length of a shortest cycle. As proved in [1], if
the girth of G is at least 5, then c(G) ≥ δ(G), where δ(G) is the minimum degree of G. Let
Gq = G(Pq) be the incidence graph of a projective plane of order q. It immediately follows
from the above properties of Pq that Gq is connected, has girth 6, is (q+ 1)-regular, and has
2(q2 + q + 1) vertices. Hence, c(Gq) ≥ q + 1. In fact, c(Gq) = q + 1, as was shown in [27].
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We will now show that roughly two times more zombies are needed to eat the survivor
than cops capturing the robber.

Theorem 4.1. z(Gq) = 2q + Θ(
√
q), as q →∞. Hence, Z(Gq) ∼ 2, as q →∞.

We will first prove the weaker statement; namely:

2q − ω√q ≤ z(Gq) ≤ 2q + ω
√
q,

where ω = ω(q) is any function tending to infinity as q →∞, by considering the upper and
lower bounds separately. After those proofs, we will discuss how to improve the error terms
in the estimate of z(Gq). We prove the lower and upper bounds independently, proving the
upper bound first.

Lemma 4.2. Let k = 2q + ω
√
q, where ω = ω(q) is any function tending to infinity as

q →∞. Then sk(Gq)→ 0, as q →∞.

Proof. As usual, the initial position of the zombies affects the rest of the game. Suppose that
k` zombies start on lines and kp ones on points. First, let us show that if min{k`, kp} ≥ q,
then zombies win the game with probability 1. This claim holds for any q, not necessarily
large. Due to the symmetric role of lines and points, we may assume that the survivor
starts the game on the line v. We assume that the line v is free of zombies and is not
incident with any point containing a zombie, since otherwise the zombies trivially win (recall
that zombies move first). Zombies are partitioned into two groups, the first group contains
zombies initially occupying lines, the second group consists of zombies initially on points.

For each zombie from the first group, there exists a unique point that is incident with the
line v and with the line occupied by the zombie. Hence, zombies from the first group move
to the corresponding neighbour of v, forcing the survivor to move in the next round. If the
survivor survives the first round, all zombies from the first group meet at v and will keep
chasing the survivor, always moving to a vertex previously occupied by the survivor.

Let us now investigate the behaviour of the zombies from the second group. Consider any
given zombie of this group. For each point u that is a neighbour of the line v, there is a
unique line that contains both u and the point occupied by the zombie. This defines a path
of length 3 joining the positions of the survivor and the zombie via u. Since the girth of
Gq is 6, there are precisely q + 1 edge-disjoint such paths, one for each neighbour of v. The
zombie has to select to move along one of these paths uniformly at random and, by doing
so, blocks the neighbour u of v corresponding to the chosen path as a potential next move
for the survivor (that is, if the survivor moves to u, he will get eaten in the next round).
This situation will occur at each round until the survivor is eaten.

Recall the survivor has to keep “running forward”, since he always has zombies from the
first team right behind him. So in each round, the survivor has q neighbours to choose
from. But each time, regardless of the history of the process, with positive probability the
zombies from the second team block all of these neighbours. Hence, with probability 1 it
must happen that, sooner or later, all of them are blocked.

The rest of the proof is straightforward. Clearly, E [k`] = k/2 = q + ω
√
q/2. It follows

from Chernoff’s bound that a.a.s.

|k` − E [k`] | ≤
√
ωE [k`] ∼

√
ωq,

and so a.a.s. both k` and kp are at least q. �

We next turn to the lower bound of the zombie number of Gq.
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Lemma 4.3. Let k = 2q − ω
√
q, where ω = ω(q) is any function tending to infinity as

q →∞. Then sk(Gq)→ 1, as q →∞.

Proof. We keep the notation introduced in the previous lemma. We will use a well known
technique of double exposure. For each zombie, at this point we only decide whether the
zombie starts on some line or on some point, each of which happens with probability 1/2.
Arguing as before, we obtain that a.a.s. both k` and kp are at most q − 1, and condition on
that for the rest of the argument. (Let us note that we will only use the fact that k` is at
most q − 1; the argument is still valid for kp larger than q − 1 as long as it is (1 + o(1))q;
see the comments after the proof.) Now, we can expose the initial positions of the zombies
from the lines, the first group. Regardless where they start, there is at least one point that
does not belong to any line associated with zombies (since the number of points, q2 + q + 1,
is more than (q − 1)(q + 1), which is a trivial upper bound for the number of points that
belong to lines associated with zombies). The survivor starts on one of them, on the point
v (we will prove later that a.a.s. there is no zombie at v). Arguing as in the proof of the
previous lemma, during the first round, each zombie from the first team moves to a random
neighbour blocking precisely one neighbour of v (uniformly at random).

Let us then expose the initial positions of the zombies from the second team and investigate
their behaviour during the first round. Each point other than v has a unique common
neighbour with v. Hence, the set of points can be partitioned into v and q + 1 sets of size
q that correspond to q + 1 neighbours of v. With probability (1 − 1/(q2 + q + 1))q−1 ∼ 1
no zombie starts at v, and so we condition on this, pretending that each zombie starts on
a random point other than v, selected uniformly at random. If a zombie starts on a point
adjacent to a neighbour u of v, then this zombie moves to u during the first round, blocking
this neighbour as a potential move for the survivor. Hence, each zombie, independently,
regardless whether he starts on a line or on a point, blocks one neighbour of v uniformly at
random. Therefore, we obtain a classic coupon collector problem with q + 1 coupons and at
most 2(q−1) draws. It is straightforward to see that a.a.s. at least (1+o(1))e−2q neighbours
of v will not be blocked. Indeed, the probability that a given neighbour of v is not blocked
is at least (1 − 1/(q + 1))2(q−1) ∼ e−2. As a result, a.a.s. the survivor can survive the first
round.

The rest of the proof is obvious. All zombies from the second team group together and
chase the survivor forcing the survivor to “move forward” but no other neighbour of the
survivor is blocked. Since there are at most q − 1 neighbours blocked by the first team
(deterministically), the survivor keeps running forever, winning the game. �

The proof of Theorem 4.1 now follows from Lemmas 4.2 and 4.3. If k+ = k+(q) = 2q+C
√
q

for some large constant C, then it follows from Chernoff’s bound that with probability at
least, say, 2/3, both k` and kp are at least q. Hence, we derive that sk+(Gq) ≤ 1/3 as q →∞.
On the other hand, if k− = k−(q) = 2q+ c

√
q for some sufficiently small constant c, then (1)

implies that with probability at least, say, 2/3, one of k` and kp is at most q − 1 (and the
other one is (1 + o(1))q). This time we obtain that sk−(Gq) ≥ 2/3 + o(1) as q → ∞. Note
that this time we need to add the o(1) term which corresponds to the probability that the
survivor cannot survive the first phase of the game; that is, before all zombies from the
second team group together.
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5. Hypercubes

We now investigate the hypercube of dimension n, written Qn. Note that each vertex of
Qn can be identified with a binary n-dimensional vector (or bit string). It was established
in [24] that the cop number of the Cartesian product of n trees is dn+1

2
e; in particular,

c(Qn) = dn+1
2
e. We note that cop numbers of the Cartesian and other graph products were

investigated first in [25].
We will show that approximately 4/3 times more zombies are needed to eat the survivor.

Let us remark that some of the ideas in this section have a similar flavour to (but were
derived independently from) some observations by Offner and Ojakian [26], who recently
studied some variations of the cops and robber game on the hypercube and proved that the
cop number is d2n/3e.

Theorem 5.1. z(Qn) = 2n
3

+ Θ(
√
n), as n→∞. Hence, Z(Qn) ∼ 4

3
, as n→∞.

As we did for the incidence graphs of projective planes, we will first prove the following
weaker statement

2n

3
− ω
√
n ≤ z(Qn) ≤ 2n

3
+ ω
√
n,

where ω = ω(n) is any function tending to infinity as n → ∞. We will then discuss how
to improve the error term. We prove the lower and upper bounds independently, with the
lower bound addressed first.

Lemma 5.2. Let k = 2
3
n − ω

√
n, where ω = ω(n) is any function tending to infinity as

n→∞. Then sk(Qn)→ 1, as n→∞.

Proof. Our goal is to show that a.a.s. the survivor can avoid being captured when playing
against k zombies. First, observe that by Chernoff’s bound, a.a.s.

k/2 +O(
√
ωn) = n/3− (1 + o(1))ω

√
n/2 < n/3

zombies start on vertices having an even number of ones in their binary representations
(and, as a result, also less than n/3 zombies start with an odd number of ones). Since
all zombies continuously move, this property will hold throughout the game. Hence, the
survivor, independently of whether he moves or not, has always an even distance to less than
n/3 zombies, and also an odd distance to less than n/3 zombies.

The survivor’s strategy is the following: he picks as a starting vertex an arbitrary vertex
at distance at least 2 from all the zombies. (This can be easily done as there are, trivially,
at most k(n + 1) < 2n vertices at distance at most 1 from some zombie.) If, immediately
after the zombies’ move, no zombie is at distance 1, then the survivor stands still. On the
other hand, if the survivor has a zombie in their neighbourhood, then he wants to move to
a safe vertex that is not occupied nor adjacent to any zombie.

Note that there are less than n/3 zombies at distance 1 from the survivor and also less than
n/3 zombies at distance 2. Moreover, each zombie at distance 1 forbids one coordinate, and
each zombie at distance 2 forbids two coordinates, so less than n coordinates are forbidden
in total. Hence, the survivor has at least one coordinate to escape to, and survives for at
least one more round. The survivor continues applying the same strategy, and the proof is
finished. �

Next, we consider the upper bound.
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Lemma 5.3. Let k = 2
3
n + ω

√
n, where ω = ω(n) is any function tending to infinity as

n→∞. Then sk(Qn)→ 0, as n→∞.

Proof. This time, our goal is to show that a.a.s. k zombies can win. As before, it follows
from Chernoff’s bound that a.a.s. at least n/3 zombies start in both positions having an even
number of ones and an odd number of ones, and this property remains true throughout the
game. Denote by d(j, t) the graph distance between the jth zombie and the survivor after

the t-th round, and let ~d(t) be the corresponding k-dimensional vector of distances at time

t. Since ~d(t) is coordinate-wise non-increasing, it suffices to show that given any starting
position (for both the survivor and the zombies) there is a positive probability that after
a finite number of steps the distance vector decreases in at least one coordinate. Indeed,
suppose that, independently of the starting position, with probability δ > 0 (observe that δ
might be a function of n that tends to zero as n→∞) after T (n) steps the distance vector
decreases, where T (n) is some function of n. By concatenating disjoint intervals of length
T (n), the probability of having a strictly decreasing distance vector can be boosted as high
as desired.

To show this, observe the following: if immediately after the zombies’ move there is no
coordinate in which all zombies have the same binary value as the survivor, then, regardless
of what the survivor does in the next round, at least one zombie will become closer to the
survivor “for free” (that is, there exists 1 ≤ j ≤ k such that after the t-th round we have
d(j, t) < d(j, t − 1)). Otherwise, suppose that there exist 1 ≤ C ≤ n − 1 coordinates such
that all zombies have the same binary value in this coordinate as the survivor, and the latter
one can maintain the distances to all zombies by flipping the bit corresponding to any such
coordinate. In the next round, consider the following strategy: all but one zombie flip the
bit recently flipped by the survivor, and the remaining zombie flips a coordinate in which
he is not the only zombie differing from the survivor in that bit. Note that this is indeed
possible, since by our assumption, after the survivor’s move, at least n/3 zombies differ in
least one bit (other than the last one flipped by the survivor), and at least n/3 zombies differ
in least two bits (again, other than the last one flipped by the survivor).

Therefore, the total number of bits in which zombies differ is at least n, and so, by the
pigeonhole principle, there exists a bit (one more time, other than the last one flipped by
the survivor) in which at least two zombies differ. With probability at least (1/n)k > 0 the
zombies choose this strategy, and if they do so, in the next round there are less coordinates in
which all zombies have the same binary value as the survivor. It follows that with probability
at least (1/n)kC ≥ (1/n)k(n−1) > 0, the zombies follow this sequence of strategies, and then
the survivor is forced to choose a coordinate in which the distance to at least one zombie
decreases. Since this holds independently of the distance vector, the distances eventually
decrease, and the survivor is eaten with probability 1. The proof is finished. �

The proof of Theorem 5.1 now follows by Lemmas 5.2 and 5.3. With more effort, we can
obtain the order of the error term. Suppose that the survivor plays against k zombies. As
mentioned in the proofs of Lemmas 5.2 and 5.3, X ∈ Bin(k, 1/2) zombies start on vertices
having an even number of ones in their binary representations; and k −X zombies start on
vertices with an odd number of ones. The random variable X determines the faith of the
survivor. Since zombies at even distance to the survivor (right before they move) have more
power, the survivor should choose the starting point accordingly. If X > k/2, then he should
choose a vertex with an even number of ones to start with; if X < k/2, then a vertex with
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an odd number of ones should be picked instead. It follows that the survivor wins if

n > 2 min{X, k −X}+ max{X, k −X} = 2

(
k

2
−
∣∣∣∣X − k

2

∣∣∣∣)+

(
k

2
+

∣∣∣∣X − k

2

∣∣∣∣)(2)

=
3k

2
−
∣∣∣∣X − k

2

∣∣∣∣ ;
and otherwise, he loses with probability 1.

Suppose that the survivor plays against k = 2
3
n+ b

√
n zombies, where b > 0 is a constant

that will be determined soon. It follows from (1) that with probability, say, at least 0.9,
|X − k/2| ≥ c

√
n for some small, universal, constant c > 0. Hence, with probability at least

0.9, the condition (2) holds, provided that, say, b < c/2. On the other hand, it follows from
Chernoff’s bound that with probability at least 0.9, |X − k/2| ≤ b

√
n, provided that b is a

large enough constant, and then the condition (2) fails.

Condition (2) can be also used to investigate the value of z(Qn) for small values of n. In
particular, we find that for n = 3 we have z(Q3) = 2 (in fact, s2(Q3) = 1/2), and for n = 4,
we have z(Q4) = 3 (in fact, s3(Q4) = 1/4).

6. Grids

In this final section, we consider the zombie number of various grids formed by Cartesian
products of graphs. We denote throughout by Gn the n× n square grid, which is the graph
isomorphic to Pn�Pn, where Pn is the path with n vertices. Our first result of the section
focusses on these Cartesian grids.

Theorem 6.1. For n ≥ 2, we have that z(Gn) = 2. Hence, Z(Gn) = 1.

Proof. Since c(Gn) = 2, it suffices to show that two zombies win the game with probability
1. As in the proof for hypercubes, our goal is to show that, starting from any distance vector
and independently from the configuration of zombies and survivor, with probability δ(n) > 0
the distance vector strictly decreases after some number of steps (which is a function of n).

Consider the following strategy for a zombie, assuming that before the survivor’s last move
that zombie and the survivor were at distance greater than 1. If the zombie is not forced
to move in one direction as he shares one coordinate with the survivor (this can happen
deterministically during at most n consecutive steps), then he does the following: if before
the survivor’s last move the zombie and the survivor shared, say, the y-coordinate (that is,
they were horizontally aligned) and the survivor moved vertically, then the zombie moves
horizontally (the symmetric case works analogously). If before the survivor’s last move he
did not share neither x nor y-coordinates, and the survivor moved horizontally (vertically,
respectively), then the zombie moves also horizontally (vertically, respectively). Note that if
a zombie follows this strategy during 2n consecutive rounds, then the distance between that
zombie and the survivor must decrease. This is due to the fact that, in order to preserve the
distance, the survivor can only move away from the zombie in each coordinate. Hence, the
survivor eventually becomes trapped in a corner and has to move towards the zombies, thus,
decreasing distances. We emphasize that if the survivor is, say, to the right of the zombie and
both share the same y-coordinate, then the survivor can move to the right, up or down and
preserve his distance to that zombie. However, if he ever chooses to move up (down), then
he cannot move down (up) after that without decreasing the distance. (This case makes use
of the fact that the survivor and the zombie were at distance greater than 1, since otherwise
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the survivor could move along a cycle of length 4 and survive forever.) With probability at
least (1/2)4n > 0 both zombies follow this strategy during 2n consecutive rounds, and thus
their distance to the survivor strictly decreases.

Iterating the same argument, we conclude that, after (2n)2 rounds both zombies are within
distance 1 of the survivor (before the survivor’s move with positive probability. At that
point, one of the zombies modifies his strategy. His new strategy is as before except for the
following: if the zombie and the survivor are horizontally aligned and the survivor moves
vertically, then the zombie moves vertically (and the symmetric case is treated analogously).
The second zombie keeps his original strategy. It is straightforward to see that, if the zombies
follow these two strategies simultaneously, the survivor can never visit the same vertex twice.
Therefore, with positive probability, the zombies eat the survivor within the next n2 rounds.
As in the section devoted to hypercubes, this probability can be boosted as high as desired.
Hence we conclude that the survivor is captured by the zombies with probability 1. �

An analogous strategy for two zombies can be adapted to win on a Cartesian product of
two trees, giving again the cost of being undead equal to 1. Indeed, since each factor of
the product is a tree, there is for each coordinate exactly one shortest path between any
two vertices, and as there is no diagonal shortcut possible. Indeed, if the vertices (ai, bj)
and (ak, b`) are adjacent, then either the edge aiak must be present in G or the edge bjb`
must be present in H. Hence, when the zombies apply the strategy of the previous proof,
the survivor either gets caught in a corner or moves towards the zombies. After n steps the
distance vector decreases, as before, the survivor cannot forever maintain distances in both
coordinates. Note that the above discussion concerns the Cartesian product of two trees
only, and in particular it does not apply to the hypercube Qn analyzed in Section 5.

We next consider grids formed by products of cycles. Let Tn be the toroidal grid n × n,
which is isomorphic to Cn�Cn. For simplicity, we take the vertex set of Tn to consist of
Zn × Zn, where Zn denotes the ring of integers modulo n. The analysis of toroidal grids is
more delicate than in the Cartesian case, and we present here a lower bound for the zombie
number of Tn.

Theorem 6.2. Let ω = ω(n) be a function tending to infinity as n → ∞. Then a.a.s.
z(Tn) ≥

√
n/(ω log n).

In order to prove this lower bound on z(Tn), we assume henceforth that there are k =
b
√
n/(ω log n)c zombies, for any given ω = ω(n) that tends to infinity as n → ∞. We will

find a strategy for the survivor that allows the survivor to avoid being eaten forever a.a.s.
We introduce some formalism that will be convenient for our descriptions. It is convenient

for the analysis to assume that the game runs forever, even if some zombie catches the
survivor (in which case they will remain together forever). A trajectory is a sequence u =
(ut)t∈I of vertices of Tn, where I is an interval (finite or infinite) of non-negative integers
corresponding to time-steps. We say that the survivor (or one zombie) follows a trajectory
u = (ut)t∈I if, for each t ∈ I, ut denotes the position of that survivor or zombie at time-
step t. Recall that zombies move first, so a zombie with zombie trajectory v catches the
survivor with trajectory u at time-step t if vt = ut−1. (If vt = ut because the survivor
moves to the zombie’s location, then vt+1 = ut, so we may interpret this as if the zombie
catches the survivor at time-step t+ 1.) Sometimes it is useful to imagine that the survivor
and the zombies move simultaneously, but the zombies observe the position of the survivor
at time t to decide their new position at time t + 1, whereas the survivor looks at the
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positions of the zombies at time t + 1 do decide their new position at time t + 1. Since the
zombies’ trajectories may depend on the survivor’s trajectory and viceversa, it is convenient
to formulate the strategy of each individual (zombie or survivor) a priori in a way that does
not depend on the other player’s choices.

A zombie strategy is given by (v0,σ), where v0 ∈ Zn × Zn, σ = (σt)t∈N and each σt is
a permutation of the symbols U, D, L, R (up, down, left, right). Each zombie will choose a
zombie strategy (v0,σ) uniformly at random and independently from everything else, and
this will determine the zombie’s decisions throughout the process in the following manner.
Initially, the zombie starts at position v0. At each step t ∈ N, the zombie moves from
vt−1 to vt (before the survivor moves). To do so, the zombie picks the first direction in the
permutation σt that decreases its distance to the survivor, and takes a step in that direction.
This determines the new position vt. Sometimes we will use modular notation to describe
these steps. For instance, if the t-th step is taken to the right (that is, in the direction R),
we may write vt = vt−1 + (1, 0), where the sum is to be interpreted coordinatewise modulo
n.

A survivor strategy is given by (u0,m), where u0 : (Zn×Zn)k → Zn×Zn, m = (mt)t∈N and
mt : (Zn × Zn)k+1 → {U, D, L, R}. This strategy is chosen deterministically by the survivor
before the zombie strategies have been exposed, and will determine the decisions of the
survivor during the game as follows. Initially, the survivor starts at vertex u0, which is a
function of the zombies’ initial configuration. At each time-step t ∈ N, after the zombies
move, the survivor moves from ut−1 to ut. The direction of this move is determined by mt,
which is a function of the positions of the zombies and the survivor right before their move.
Note that the strategy of the survivor depends not only on the positions of all players at a
given time-step t, but also on t. Possibly, the dependency on t does not provide an essential
advantage for the survivor, but makes the description of the argument easier.

The formulation above is useful, since it allows us to decouple all decisions by the survivor
and the zombies prior to the start of the game. Note that the final trajectory of each
individual (survivor or zombie) will depend not only on their own strategy, but will be a
deterministic function of all strategies together.

Throughout the section, let B be a fixed bK log nc×bK log nc box contained in the toroidal
grid, where K = 5 · 104.

Definition 6.3. A survivor strategy is B-boxed during the time period [0, 4n] if the following
hold: the initial position u0 belongs to the box B and is chosen independently of the positions
of the zombies; the sequence of moves m = (mt)t∈[1,4n] is such that the survivor always
stays inside of B, regardless of the positions of the zombies in that period; each move mt

(t ∈ [1, 4n]) does not depend on the positions of the zombies that lie outside of B at that
given step t (that is, any two configurations of the zombies at time t that only differ in the
positions of some zombies not in B must yield the same value of mt).

Later in this section, we will specify a particular B-boxed strategy for the survivor that
will allow him to survive forever a.a.s. The next two lemmas describe the typical behaviour
of the zombies before they reach the box B, by only assuming that the survivor’s strategy
is B-boxed during the time period [0, 4n].

Lemma 6.4. Assume that the survivor’s strategy is B-boxed during the time period [0, 4n],
and pick any zombie strategy for all but one distinguished zombie. For any t ∈ [1, 4n], the
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probability that this zombie is initially outside of the box B and arrives at B at the t-th step
of the game is at most 20Kt log n/n2.

Proof. Fix any B-boxed strategy for the survivor and the zombie strategies for the remaining
zombies. Expose the sequence σ of move priorities of our distinguished zombie, but not his
initial position v0. Our goal is to show that there is a set of vertices V0 of order |V0| ≤
20Kn log n such that the event that the zombie arrives at B at step t (and not before)
implies that v0 ∈ V0. Note that, by the definition of a B-boxed strategy, in the event that
our zombie reaches B at step t for the first time, then the trajectory u = (ut)t∈[0,t−1] of the
survivor during the time period before step t does not depend on the behaviour of that one
zombie, and we can regard u as a fixed sequence.

Given any vertex v ∈ (Zn × Zn) \ B and i ∈ {1, 2, . . . , t}, define νi(v) to be the new
position of the zombie at step i assuming it was on vertex v at the end of step i− 1 and that
the survivor was at ui−1. Note that νi is well defined on (Zn × Zn) \ B, given our choice of
u and σ. Let w be any fixed vertex in the inner boundary of B (that is, w ∈ B and w is
adjacent to some vertices not in B). Suppose that the zombie arrives at vertex w at step t
and is outside of B before that. For i ∈ {0, 1, . . . , t − 1}, let Vi(w) be the set of vertices in
(Zn×Zn)\B to which the zombie may move at step i. Also, Vt(w) = {w} by our assumption,
and νi

−1(Vi(w)) = Vi−1(w) for all 1 ≤ i ≤ t. We will show that |V0(w)| ≤ 4t+ 1.
We say that two vertices are horizontally (or vertically) aligned if they share the same hor-

izontal (vertical) coordinate. Moreover, we say they are aligned if they are either horizontally
or vertically aligned. For 1 ≤ i ≤ t, if v and ui−1 are not aligned, then |νi−1(v)| ≤ 1. This is
true because the zombie strategy is predetermined, and thus, the direction he will follow is
fixed when v and ui−1 are not aligned. Observe that νi

−1(v) could be empty if, for instance,
the horizontal distance between v and ui−1 is bn/2c and σi = (L, R, U, D). Otherwise, if v and
ui−1 are aligned, then |νi−1(v)| ≤ 3 (for instance, if v is horizontally aligned with ui−1 and to
the left of B, then νi

−1(v) must be either one step above, below or to the left of v). We will
prove that for each 1 ≤ i ≤ t, Vi(w) contains at most one vertex that is horizontally aligned
with ui−1 and, similarly, at most one vertex that is vertically aligned with ui−1. This claim
is obvious for i = t, since |Vt(w)| = 1.

For 1 ≤ i ≤ t − 1, suppose that there are two vertices v, v′ ∈ Vi(w) that are horizontally
aligned with ui−1. Then they both must be on the same side (left or right) of B, depending
on the position of w. This follows since a zombie cannot escape from the horizontal strip of
dimensions bK log nc × b(n− bK log nc)/2c to the left of B and the same for the symmetric
strip to the right ofB; that is, νi maps these strips into themselves. Without loss of generality,
we may assume that both v and v′ are to the left of B. Also, v and v′ must belong to the
horizontal strip S of the same height of B containing B. Suppose that v and v′ are at distance
d from each other. Then (using again the fact that the zombie strategy is predetermined)
νi+1(v) and νi+1(v

′) must be horizontally aligned, contained in S, to the left of B (or at w)
and at the same distance d from each other. Inductively, νt ◦ · · · ◦ νi+2 ◦ νi+1(v) = w and
νt ◦ · · · ◦ νi+2 ◦ νi+1(v

′) = w must also be at distance d from each other, so d = 0 and v = v′,
as desired. An analogous argument shows that Vi(w) contains at most one vertex vertically
aligned with ui−1. Therefore, for every 1 ≤ i ≤ t,

|Vi−1(w)| = |νi−1(Vi(w))| ≤ |Vi(w)|+ 4,

since every element in Vi(w) has at most one preimage except for possibly two elements that
have at most three. Hence, |Vi(w)| ≤ 4(t− i) + 1, and so |V0(w)| ≤ 4t+ 1.
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Let V0 =
⋃
w∈I V0(w), where the union is taken over the set I of vertices of the inner

boundary of B. Since there are at most 4K log n choices for w at the inner boundary of B,
we have that |V0| ≤ (4t + 1)4K log n ≤ 20Kt log n. By construction, if the zombie reaches
the box B at step t for the first time, then his initial position v0 must belong to V0. This
event happens with probability |V0|/n2 ≤ 20Kt log n/n2. �

Lemma 6.5. Consider k = b
√
n/(ω log n)c zombies on Tn, for any given ω = ω(n) that

tends to infinity as n→∞. Assume that the survivor follows a B-boxed strategy during the
time period [0, 4n]. Then a.a.s. the following hold:

(i) there is no zombie in B initially;
(ii) all zombies arrive to B within the first 3n steps; and

(iii) no two zombies arrive at B less than M log n steps apart, where M = 12K.

Proof. The expected number of zombies in B at the initial step is

k|B|/n2 ≤ K2
√
n log2 n

ωn2 log n
= o(1),

so by Markov’s inequality, part (i) holds.

Given a zombie with (random) zombie strategy (v0,σ), let XL be the number of steps
i ∈ [1, 3n] such that σi has L as the first symbol in the permutation. Define XR, XU, XD

analogously. Observe that if XL, XR, XU, XD > n/2, then the zombie must reach B within
the first 3n steps, deterministically and regardless of his initial position on Tn. Each of
the random variables Xα (α ∈ {L, R, U, D}) is distributed as Bin(3n, 1/4). Therefore, by
Chernoff’s bound,

P(Xα ≤ n/2) ≤ e−n/24.

By taking a union bound over all zombies and α ∈ {L, R, U, D}, we conclude that a.a.s. for
every zombie XL, XR, XU, XD > n/2. Consequently, a.a.s. all zombies must reach B within
the first 3n steps, and the proof of part (ii) is finished.

In order to prove part (iii), we consider two zombies. Suppose that the first zombie is
initially not in B and reaches B at step t ∈ [1, 3n]. By Lemma 6.4, the probability that the
second zombie arrives at B at step t′ ∈ [t−M log n, t+M log n] is O(log2 n/n). Therefore,
the probability that a pair of zombies arrive at B within the first 3n steps and less than
M log n steps apart is O(log2 n/n). Taking a union bound over the number

(
k
2

)
= o(n/ log2 n)

of pairs of zombies and in view of part (ii), we conclude the proof of part (iii). �

Definition 6.6. A zombie strategy (v0,σ) is called regular if, for any direction α ∈ {L, R, U, D}
and any interval of consecutive steps I ⊆ [1, 4n] of length b20 log nc, there is a subset of steps
J ⊆ I (not necessarily consecutive) with |J | = dlog ne such that, for every i ∈ J , σi has α
as the first symbol in the permutation. Informally, for every b20 log nc consecutive steps in
[1, 4n], there are at least log n steps in which the zombie “tries” to move in the direction of
α if that decreases the distance to the survivor.

Lemma 6.7. Consider k =
√
n/(ω log n) zombies on Tn, for any given ω = ω(n) that tends

to infinity as n→∞. Then a.a.s. every zombie has a regular zombie strategy.
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Proof. Given a zombie, a symbol α ∈ {L, R, U, D} and an interval of steps I of length b20 log nc,
the number of steps i in I such that σi (i ∈ I) has α as its first symbol is distributed as
Bin(b20 log nc, 1/4). Hence, by Chernoff’s bound, the probability of having less than log n
of such steps is at most

e−((1+o(1))/2)(4/5)
25 logn = n−8/5+o(1) = o(n−3/2).

The proof of the lemma follows by taking a union bound over all k = o(n1/2) zombies, all
O(n) choices of I and all α ∈ {L, R, U, D}. �

Given a trajectory u = (ut)t∈[a,b], any integer a < j < b such that uj − uj−1 6= uj+1 − uj
is called a turning point (that is, the direction of the trajectory changes at time-step j + 1).
A turning point j is proper if additionally uj − uj−1 6= −(uj+1 − uj) (that is, the trajectory
does not turn 180◦). For convenience, we also consider the first and last indices a and b of
the trajectory to be proper turning points.

Definition 6.8. We call a trajectory to be stable if all its turning points are proper and, for
any two different turning points j and j′, we have j − j′ ≥ b20 log nc.

Lemma 6.9. Suppose that a zombie has a fixed regular zombie strategy (v0,σ) and that the
survivor follows a stable trajectory u during the time interval [a, b]. Let v be the trajectory
of the zombie (determined by its strategy and the survivor’s trajectory). Suppose moreover
that va and ua are at distance d ∈ {2, 3} and that va+1 and ua+1 are also at distance d (that
is, the first move of the survivor is not towards the zombie). Then deterministically, vt and
ut are at distance d for all t ∈ [a, b].

Proof. Let a′ > a be the first turning point in [a, b] after a. It is clear that, since the survivor
is not changing direction between ua and ua′ and he is not going towards the zombie, the
distance between ut and vt stays constant for all t ∈ [a, a′]. If a′ = b, then we are done.
Otherwise, if a′ < b, then we need to guarantee that the survivor does not move towards the
zombie at time-step a′ + 1.

By symmetry, we may assume that ua = (0, 0) and ua+1 = (1, 0) (that is, the survivor
moves to the right between time-steps a + 1 and a′). If the zombie is initially horizontally
aligned with the survivor (that is, v0 = (−2, 0) or v0 = (−3, 0)), then it must stay so
between time-steps a + 1 and a′. Then the survivor will move away from the zombie at
time-step a′+1 as well, regardless of the survivor’s choice of new direction, since the turning
point a′ is proper. Otherwise, if the zombie is above the survivor at time-step a (that is,
v0 ∈ {(−2, 1), (−1, 2), (0, 3), (−1, 1), (0, 2)}), then it must become horizontally aligned with
them before they reach ua′ since, by stability of the survivor’s strategy, a′ − a ≥ b20 log nc,
and also due to the regularity of the zombie strategy, the zombie will have D as a priority
direction move for at least log n > 3 ≥ d time-steps in that time period. The case in which
the zombie is initially below the survivor is treated analogously.

Summarizing the arguments, in either case the zombie is horizontally aligned with the
survivor before time-step a′, and thus, the survivor can safely change direction at time-step
a′ + 1 without moving towards the zombie. Finally, we can inductively repeat the argument
and prove the statement for the whole time period [a, b]. �

Proof of Theorem 6.2. We will describe a B-boxed strategy for the survivor during the time
period [0, 4n] that a.a.s. succeeds at attracting all the zombies to two vertices at distances
2 and 3 from the survivor’s position and on the same side of that position. Once that is
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Figure 2. If at some point the survivor is on the white vertex and all the
zombies are at distance 2 or 3 on the grey vertices, and the survivor is moving
away from the zombies, then he can keep the same direction forever on Tn and
survive.

achieved, the survivor can simply keep moving in a straight line around the toroidal grid,
staying away from all the zombies forever; see Figure 2.

All geometric notions in the argument that may be ambiguous in the torus (for example,
top, bottom, left, right, above, below, and so on) should be interpreted with respect to the
box B where the survivor plays his strategy. Let C be a smaller b20 log nc × b20 log nc box
centered at the center of box B. The survivor starts at the top left corner u0 of C, and will
always follow a stable trajectory u during the time period [0, 4n] inside B. The survivor’s
decisions regarding what trajectory to follow, will depend on the positions of the zombies
inside B, but not on those outside of B. Therefore, the survivor strategy is B-boxed during
the time period [0, 4n].

In our description of the survivor’s strategy, we will only consider situations that are
achievable assuming that the conclusions of Lemmas 6.5 and 6.7 hold. That is, we assume
that initially there is no zombie in B; they all arrive at B within the first 3n steps; no two
zombies arrive at B less than M log n steps apart; and all zombies have regular strategies.
One key consequence of this is that the survivor will be able to handle one zombie at a
time. If at some step the survivor has to face a situation not covered by our description
(because, for instance, two zombies arrived at B at the same time), then he gives up and
simply defaults to any arbitrary fixed B-boxed strategy, ignoring the zombies’ behaviour
from then on. As a result the survivor will probably be eaten but, fortunately, this situation
does not happen a.a.s.

The survivor starts at the top left corner u0 and starts going in circles clockwise around
C until the time a first zombie arrives at B. Let a be the time this situation occurs. The
survivor keeps going in circles around C until the zombie is at distance less or equal to
542 log n. From our assumption on the regularity of zombies’ strategies, this takes at most
(K/2)b20 log nc ≤ 10K log n steps from time a (since there will be at least (K/2) log n steps
among those in which the zombie tries to move in the direction of α, for each α ∈ {L, R, U, D}).
Then the survivor keeps going until the next corner u of C. At that point the zombie is at
distance between 500 log n and 542 log n from him. The survivor makes that corner u his
next proper turning point in his trajectory, and changes the direction in a way that he is not
moving towards the zombie. The survivor can always do so by choosing between a 90◦ or a
−90◦ turn. (Notice that he might leave C at u.)
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C

Figure 3. Approximate depiction of the survivor’s strategy when a new zom-
bie approaches. The black arrows describe the trajectory of the survivor and
the dotted lines the trajectory of the zombie.

Without loss of generality, we may suppose that this direction is to the right (the descrip-
tion of his strategy in any other case is analogous). The survivor keeps moving right for
1000b20 log nc ≤ 2 · 104 log n time-steps. During those steps, the zombie gets horizontally
aligned with the survivor (and it is still at the same distance), since its zombie strategy is
regular and at least 1000 log n of those steps decrease the vertical distance between the two
individuals. Then the survivor goes down for b20 log nc steps, left for b20 log nc steps and up
again for b20 log nc steps. The zombie is still to the left of the survivor (at horizontal distance
of between 440 log n and 542 log n) and either horizontally aligned or below (at vertical dis-
tance between 0 and b20 log nc). Next, the survivor moves to the left 20b20 log nc ≤ 400 log n
steps. Both individuals must now be horizontally aligned and at distance between 40 log n
and 143 log n. The survivor keeps on moving left until he is at distance 2 or 3 from the
zombie. Let b be the time-step when this happens. Finally, the survivor moves down for
b20 log nc steps, and then moves back to the top left corner u0 of C using a stable trajectory.
He chooses the shortest stable trajectory that allows the survivor to reach u0 by a step up.
Let c be the time he gets back at u0. Then he resumes the strategy of going around C
clockwise until the next zombie arrives to B. See Figure 3 for a visual representation of the
above description.

Note that the survivor’s trajectory described so far is stable, since all the turning points
are proper and are at least b20 log nc steps apart. Further, the survivor move down at step
b+1 is not towards the zombie (which is at time b horizontally aligned with the survivor and
to his left). Therefore, by Lemma 6.9, as long as the survivor maintains a stable trajectory
over the whole time period [0, 4n], then the trajectory of this zombie will keep a constant
distance (either 2 or 3) to the survivor’s trajectory during all steps in [b, 4n]. Also, observe
that the whole process between time a and time c takes at most 11K log n < M log n steps, so
by assumption there was no other zombie in B during that period. Moreover, the survivor’s
strategy does not depend on zombies outside of B and, in spite of his long excursion of
around 2 · 104 log n steps to the right from one corner of C, the survivor never abandons the
box B, as required by the definition of B-boxed strategy.

The survivor can proceed analogously each time a new zombie arrives to B, ignoring all
zombies that are already at distance 2 or 3 from them. By construction, this defines a B-
boxed strategy during the time period [0, 4n] (recall that for any configuration not covered
by our previous description, the survivor just adopts any default B-strategy). Moreover,
if all our assumptions on the zombies hold (which occurs a.a.s. by Lemmas 6.5 and 6.7),
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the survivor will follow a stable trajectory during the time period [0, 4n] with the following
properties: at step 4n all zombies are at distance 2 or 3 from the survivor, and the survivor
is moving away from all of them. Then from that moment on, the survivor can keep going
in the same direction and survive forever (deterministically). The proof of the theorem is
finished. �

A sub-quadratic upper bound for the zombie number of toroidal grids remains open. We
plan to consider this problem, and the zombie number of other grid graphs, in future work.
We also plan on studying the ratio between the deterministic and probabilistic Zombie and
Survivors games on grids and other graphs. It would also be interesting to see whether the
additional power of allowing zombies to pause for a move gives a different cost of being
undead in certain families of graphs.
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