
1. Basics

1.1. Discrete Probability Preliminaries. A finite probability space (P,Ω) con-

sists of a finite ground set Ω and a probability measure P on Ω. I.e. ∀x ∈ Ω, P (x)

is nonnegative and Σx∈ΩP (x) = 1.

The uniform distribution over Ω satisfies ∀x ∈ Ω, P (x) = 1
|Ω| .

An event E is a subset of Ω. Its probability,P (E), is Σx∈EP (x).

Subadditivity of Probabilities P (X1 ∪X2) 6 P (X1) + P (X2).

Two events A and B are independent if P (A ∩B) = P (A)P (B).

If P (B) > 0 then the conditional probability of A given B, P (A|B) = P (A∩B)
P (B)

.

If A and B are independent and P (B) > 0 then P (A|B) = P (A).

A Random real-valued variable X is a function X : Ω− > R. Its expected value,

E(X) is Σy∈ΩX(y)P (y).

Linearity of Expectation(LoE): E(X1 +X2) = E(X1) + E(X2).

The product of probability spaces (P1,Ω1) and (P2,Ω2) has ground set {(x, y)|x ∈
Ω1, y ∈ Ω2} and probability distribution P where P ((x, y)) = P1(x)P2(y).

For such a product space, the product E1xE2 of events E1 ⊆ Ω1 and E2 ⊂ Ω2 is

{(x, y)|x ∈ E1, y ∈ E2)}. Clearly P (E1xE2) = P1(E1)P2(E2).

A Bernoulli Trial is a probability space whose ground set consists of two elements:

success or failure. Bin(n, p) is the random variable which counts the number of

succeses in the probability space which is the product of n Bernoulli trials in each

of which the probability of success is p. By LoE, E(Bin(n, p)) = pn. This is often

expressed as the number of successes in a sequence of n independent trials. This

sequence is simply a choice of an order in which to expose the outcome in a product

space. We will often refer to such sequences.

P (Bin(n, p) = k) =
(
n
k

)
pk(1 − p)n−k. Using Sterling’s formula we see that this is

θ(
√

1
n
) for p a constant and k ∈ {bpnc, dpne}.

Also:

P (Bin(n, p) = k)

P (Bin(n, p) = k + 1)
=

(
n
k

)
pk(1− p)n−k(

n
k+1

)
pk+1(1− p)n−k−1

=
(k + 1)(1− p)
p(n− k)

.

This is greater than 1 if k > pn and less than 1 if k + 1 < pn. it follows that

Prob(Bin(n, p) = k) is maximized either at k = dpne or k = bpnc.
Exercise 1: Show that for any fixed p, C > 0, sufficiently large n, and k =

dn
2

+ C
√
n log ne we have:

Prob(Bin(n, p) = k) = θ(

√
lognProb(Bin(n, P ) > k)√

n
).
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Exercise 2: Show that for any fixed p, for any n we can choose k with k =
n
2

+ θ(
√
n log n) such that:

Prob(Bin(n, p) > k) = (1 + o(1))n
−3
4 .

1.2. Graph Theory Preliminaries. A graph G = (V,E) consists of a set V =

V (G) of vertices and a set E = E(G) of edges each of which is an unordered pair

of distinct vertices, its endpoints. A multigraph G = (V,E) consists of a set V of

vertices and a multiset E of edges each of which is an unordered pair of vertices.

A digraph D = (V,A) consists of a set V of vertices and a set A of arcs each of

which is an ordered pair of distinct vertices. The arc goes from its tail to its head.

A multidigraph D = (V,A) consists of a set V of vertices and a multiset A of arcs

each of which is an ordered pair of vertices.

Two vertices are adjacent if they are joined by an edge. An edge e and a vertex v

are incident if v is an endpoint of G. The neighbourhood of v, N(v) is the set of

vertices adjacent to v. The degree of v is the number of edges it is incident to.

The complement of a graph G, denoted G, has vertex set V (G) and its edge set

conists of those pairs of distinct vertices of G which do not form edges in G.

In a digraph, the outneighbourhood of v, denoted N+(v) is the set of vertices which

are heads of arcs of which v is a tail. The outdegree of G, denoted d+(v) is the number

of arcs of which v is a tail. Inneighbourhood and indegree are defined symmetrically.

A subgraph H of G is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G). It is induced

if E(H) = {(x, y)|(x, y) ∈ E(G)s.t.x, y ∈ V (H)}. We have similar definitions for

subgraphs and induced subgraphs of multigraphs, digraphs and, multidigraphs.

The union of two graphs G and H has vertex set V (H)∪V (G) and edge set E(H)∪
E(G). For any set X of vertices of a graph G, G−X is the subgraph of G induced

by V −X.

A path of length k − 1, or Pk, is a graph with k − 1 edges and k distinct vertices

which can be enumerated so each edge joins vertices which are consecutive in the

order. Its endpoints are the first and last vertex in this order, i.e. the vertices which

have degree 1 in the path. For k > 2, a cycle of length k, or Ck, is obtained from a

Pk by adding an edge between the first and last vertex.

A walk of length k from x to y is a multigraph with k edges for which we can

enumerate the multiset of endpoints of these edges as x = x1, x2, ..., y = xk+1 so

that the edges of the walk are {(xi, xi+1)|1 6 i 6 k}. A closed walk of length k is a

walk of length k from x to x for some vertex x.

A graph is connected if for every pair of vertices (x, y) it contains a path with

endpoints x and y as a subgraph.
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Observation: A path is a walk. If a graph contains a walk from x to y, it contains

a path with endpoints x and y.

Corollary: A graph is connected precisely if for every pair (x, y) of its vertices,

there is a walk from x to y.

Corollary: The union of two connected graphs G and H which intersect is con-

nected.

Proof. For any vertex z in V (H)∩V (G) and pair of vertices (x, y) of V (G)∪V (H).

Both x and z lie in one of the connected subgraphs H or G of H ∪G. Hence there

is a path from x to z in H ∪G. Symmetrically there is a path from z to y in H ∪G.

Concatenating these two walks yields a walk from x to y in H ∪G. �

The components of a graph are its maximal connected subgraphs.

Corollary: The components of a graph are disjoint.

A digraph is strongly connected if for every two vertices x and y there is a path from

x to y. The strong components of a digraph are its maximal strongly connected

subgraphs. Again these are disjoint.

A clique of size l or Kl is a graph with k vertices, every two of which are joined by

an edge.

A stable set of size l or Sl in a graph G is a set of k vertices no two of which are

joined by an edge.

A matching of G is a set of disjoint edges.

A k-colouring of G is a function f mapping V to {1, ..., k} such that no two adjacent

vertices are incident,

A tree is a connected graph with |V | − 1 edges, or equivalently a connected graph

with no cycles. Every tree contains a leaf, that is a vertex of degree one. Deleting

a leaf yields a new tree.

Exercise 3: Show that a tree with at most one vertex of degree 2 has at least |V (T )|
2

leaves.

Exercise 4 Show that for every edge e of a tree T − e is disconnected.

A spanning tree for a graph G is a subgraph which is a tree and has vertex set V (G).

We root a tree to obtain a rooted tree by choosing a root r, and constructing a digraph

by orienting each edge e of T towards the component of T −e not containing r. The

parent p(v) of a non-root node v in the tree, is the unique node u such that uv is

an edge of this digraph. We say w is a child of v if p(w) = v.
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2. Further Fundamental Background

2.1. A First Random Model. Gn,p is a random graph with vertex set Vn =

{1, ..., n} where for each graph H on Vn, Prob(Gn,p = H) = p|E(H)|(1− p)(
n
2)−|E(H)|.

Equivalently Gn,p is a product space which is the product of (Pi,j,Ωi,j) for 1 6 i <

j 6 n where Ωi,j = {ij is an edge, ij is not an edge} and Pi,j(ij is an edge) = p.

Note that Gn,1/2 is a uniformily chosen graph from amongst the 2(n
2) graphs on Vn.

|E(Gn,p)| is Bin(
(
n
2

)
, p) and for every vertex v of Gn,p, d(v) is Bin(n− 1, p).

2.2. A Second Random Model (The Configuration Model). Given an enu-

meration of the vertices of a (multi)graph G as {v1, ..., vn}, the degree sequence of

G is {d1, ..., dn} where di is the degree of vi.

For a sequence D = {d1, ..., dn} of nonnegative integers whose sum D is even, we

construct a random multigraph GD with degree sequence D as follows. We generate

di copies of each vertex vi and consider a uniformly random matching MD on the

resultant set of D vertices. We then merge the copies of each vi into one vertex to

get GD. Thus, for i 6= j, the number of edges between vi and vj in GD is the number

of edges of MD joining copies of vi to copies of vj and the number of loops at vi is

the number of edges of MD joining two copies of vi.

As a simple example consider D = {2, 2, 2}. Then there are 15 matchings between

the six vertex copies. Exactly one matching yields the multigraph with three loops,

so the probability that GD is this graph is 1
15

. For each of the three multigraphs

consisting of a loop at one vertex and two parallel edges between the other two

vertices, there are two matching which yield the multigraph, so the probability

that GD is a specific such multigraph is 2
15

. Finally, there are eight matchings

corresponding to the triangle on these three vertices, so the probability that GD is

a triangle is 8
15

.

Given a list of the edges of a multigraph G with degree sequence D, we can specify

all of the matchings which correspond to G by specifying a bijection between the

copies of vi and its appearances on the edge list. If G is simple all of these matchings

are distinct, so the number of such matchings is Πn
i−1di!. If G has loops or multiple

edges, the matchings created will not be distinct. We see that all simple graphs with

degree sequence D are equally likely to be GD.

MD can be generated by choosing a random permutation of the vertex copies as

s1, .., sD and then using the edges s2i−1s2i for i ∈ {1, ..., D
2
}. We note that every

matching corresponds to 2
D
2
D
2

! permutations, as we can list the edges in any order,

and put either vertex of each edge first. We can also generate the matching, one

edge at a time, as having exposed s one of its edges, for any unmatched vertex copy,

the vertex copy it is matched to is equally likely to be any other vertex copy (verify

this if you like).
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Exercise 5: Show that the expected number of loops in GD is θ(
Σn

i=1di(di−1)

2(D−1)
) and

the expected number of pairs of nonloop edges of GD with the same endpoints is

θ(
Σn

i=1Σj 6=idi(di−1)dj(dj−1)

4(D−1)(D−3)
).

2.3. Concentration Inequalities. Linearity of Expectation often allows us to

compute easily the expected value of a random variable. If we can show that it

is concentrated around its expected value, i.e the probability it is far from its ex-

pected value is small, then we have valuable information about its distribution.

We begin with a one-sided inequality:

Markov’s Inequality: If X is a nonnegative variable and a is a nonnegative real

then P (X > aE(X)) 6 1
a
.

Proof.

E(X) = Σy∈ΩX(y)P (y) > Σy∈Ω,X(y)>aE(X)X(y)P (y)

> Σy∈Ω,X(y)>aE(X)aE(X)P (y) = aE(X)P (X > aE(X)).

�

Corollary: If X is a nonnegative integer random variable then Prob(X > 0) =

Prob(X > 1) 6 E(X).

Exercise 6: Show that for sn = d2log ne, the probablity that Gn,1/2 contains a

stable set of size sn goes to zero as n goes to infinity.

Exercise 7: Show that if every element of D is 4 then the probability GD is con-

nected is 1− o(1).

Applying Markov’s inequality to (X − E(X))2 we obtain:

Chebyshev’s Inequality: P (|X − E(X)| > k) 6 (E(X2)−E(X)2)
k2 .

Proof. Letting Y = (X −E(X))2, we have |X −E(X)| > k precisely if Y > k2, and

E(Y ) = E(X2 − 2E(X)X + E(X)2) = E(X2)− E(X)2. �

We often apply this to X = ΣN
i=1Xi where Xi is a 0-1 variable.

In this case E(X2) = Σi,jP (Xi = 1 AND Xj = 1).

Exercise 8: Show that for any p, n and the k guaranteed to exist by Exercise 2,

we have (i) with probability 1− o(1), G(n, p) has at least n1/4

2
vertices of degree at

least k, and (ii) The expected number of vertices of Gn,p of degree at least k wich

have the same degree as another vertex is o(n1/4). Deduce that with probability

1− o(1), the set of vertivecs {v| 6 ∃u 6= v s.t d(u) = d(v)} of Gn,p contains more than
n1/4

3
vertices.

We can obtain much better bounds for sums of independent variables.We begin with

the case of Bin(n, p).
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Chernoff Bound: P (|Bin(n, p)− E(Bin(n, p)| > t) 6 2e
−2t2

3pn .

We can obtain a similar bound for sums of independent variable which lie between

0 and 1, which are ot identically dstributed.

Hoeffding’s Inequality Suppose X is the sum of n independent variables each

lying between 0 and 1, then P (|X − E(X)|) > t) 6 2e
−2t2

n .

We can also obtain bounds for random variables define by a sequence of independent

variables which are not just sums, provided each choice in the sequence can only

affect the random variable by a limited amount. To take a concrete example suppose

we generate a sequence of n independent random variables T1, .., Tn and let X be

the longest monotone subsequence. Then, changing Ti can affect X by at most one,

since X is at most one more than the length of the longest monotone subsequence

in T1, .., Ti−1, Ti+1, ..., Tn.

McDiarmid’s Inequality Suppose X is a random variable determined by a se-

quence of n independent variables T1, ..., Tn such that changing the outcome of Ti

can change the value of X by at most ci. Then P (|X − E(X)|) > t) 6 2e
−2t2

Σn
i=1

c2
i .

We remark that we obtain Hoeffding’s inequality as a corollary by setting each

ci = 1.

We can actually strengthen this result by weakening the condition and only insisting

that each outcome in the sequence changes the conditional expected value of X by

a bounded amount. To give a concrete example let T2, ..., Tn be uniformly chosen

elements of {1, 2.3}, let Z1 be a uniformly chosen element of {H,T}, and then for

i = 2, ..., n we choose Zi in {H,T} so that Zi = Zi−1 precisely if Ti ∈ {1, 2}. I.e. we

perform a sequence of random coin flips, where in the first step we flip a fair coin,

and in the remaining steps we flip a biased coin, which yields the previous result

with probability 2
3
. We let X be the number of heads obtained. Symmetry tells us

that E(X) = n
2
. We cannot use McDiarmid’s Inequality to show X is concentrated,

because changing the value of Ti can change the value of X by n − i (if every Tj
with j > i is 1). However:

Exercise 9: For any choice , t2, ..ti−1 each in {H,T}, we have |E(X|T1 = t1, .., Ti−1 =

ti−1, Ti = H)− E(X|T1 = t1, .., Ti−1 = ti−1, Ti = T )| 6 2.

Which allows us to apply the

Simplified Azuma’s Inequality; Suppose X is a random variable determined by

a sequence of n independent trials such that for any sequenced of possible outcomes

for the first i− 1 trials t1, ..., ti−1 and two possible outcomes ti and t′i for Ti we have:

|E(X|T1 = t1, .., Ti−1 = ti−1, Ti = ti)− E(X|T1 = t1, .., Ti−1 = ti−1, Ti = t′i)| 6 ci.

Then: P (|X − E(X)|) > t) 6 2
−2t2

Σn
i=1

c2
i .
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3. Further Background

3.1. Counting. We can specify a tree on a set S of n (labelled) vertices by specifying

a leaf l, its neighbour, and the tree formed by S − v. It follows, by induction, that

there are at fewer than n2n trees on S. Now, there are n!
2

distinct paths on S, each

one corresponding to a permutation on S and its reverse. Hence there are at least

this many trees. In fact, an elegant argument using Pruefer Sequences yields:

There are nn−2 trees on a set of n labelled vertices

The Bell number Bn is the number of (unlabelled) partitions of 1, ..., n. We can

specify an ordered partition into k parts by specifying the index of the element

containing each i, which yields at most kn choices. Of course this is a gross overcount,

If there are k elements in an unordered partition of {1, .., n} then there are k! ordered

partitions corresponding to it. So, an upper bound on Bn is Σn
k=1

kn

k!
. This is an upper

bound since we only want to count the fraction of the kn assignments where each of

the elements is non-empty. It is easy to see that the k giving the maximum term in

this sum satisfies k = (1 + o(1)) n
ln n

. This shows that Bn = O(n( (1+o(1))n
ln n

)n). The

following exercvise shows that this is not too far from the truth.

Exercise 10: Show that for any ε > 0 and k < (1− ε) n
log n

, there are (1 + o(1))k
n

k!

partitions of {1, .., n} into k non-empty parts.

There are tighter estimates of Bn, which we shall use. We also need:

Exercise 11: Show that there are postive c1 and c2 such that for sufficiently large

n, c1n
logn
6 Bn
Bn−1

6 c2n
logn

.

3.2. Ramsey. Exercise 12: Show that every graph G contains a stable set S and

a clique C such that |S|+ |C| > log |V (G)|.

3.3. Regular Pairs. Our discussion of the structure of a random graph without

H as an induced subgraph will require the use of Szemeredi’s celebrated Regularity

Lemma. We present some relevant definitions.

For two disjoint subsets X and Y of V (G), E(X, Y ) is the set of edges between A

and B, and the density between A and B denoted d(A,B), is |E(A,B)|
|A||B| .

For ε > 0. We say a pair of disjoint subsets A and B of the vertex set of a graph G

are ε-regular if for every A′ ⊆ A and B′ ⊆ B with |A′| > |A| and |B′| > |B| we have

|d(A′, B′)− d(A,B)| 6 ε.

Exercise 13 Show that for ε < 1/2 if A and B are ε2 regular and C ⊆ A, D ⊆ B

with |C| > ε|A| and |D| > ε|B| then (C,D) is ε-regular.

Exercise 14: Show that if A and B are ε-regular then:

|{x ∈ A s.t.(d(A,B)− ε)|B| 6 (N(X) ∩B) 6 (d(A,B) + ε)|B|}| > (1− 2ε)|A|.
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Exercise 15: Show that if (A,B), (A,C), and (B,C) are ε-regular and d(A,B), d(B,C), d(A,C) >

3ε then G contains moe than (1−2ε)(d(A,B)−ε)(d(B,C)−ε)(d(A,C)−ε)|A||B||C|
triangles.

3.4. Graph Minors. We contract an edge xy in a graph G by deleting x and y and

adding a new vertex z adjacent to N(X) ∪ N(y) − x − y. We say H is a minor of

G, and write H <M G if we can obtain H from G by a sequence of edge deletions,

vertex deletions, and edge contractions. A minor of G is proper if it is not G itself.

Obviously every subgraph of G is a minor of G. Furthermore <M is clearly transitive.

In particular if H 6<M G then K|V (H)| 6<M G.

The average degree of G is 2|E(G)|
|V (G)| .

Exercise 16: Show that if for some integer a G has average degree at least a but

no proper minor does then for every edge xy of G, |N(x) ∩N(y)| > a−2
2

.

Exercise 17: Deduce that if G has average degree at least 2l−1 then it contains Kl

as a minor.

3.5. H-free Graphs. A graph is H-free if it contains no induced subgraph isomor-

phic to H.

Exercise 18 : Show that every component of a P3-free graph is a clique. Deduce

that there are Bn P3-free graphs on n vertices.

Exercise 19: Show that for every P4-free graph either G or G is disconnected.

PExercise 20: Deduce that the number of connected P4 free graphs on n > 1

vertices is the same of the number of rooted trees in which every non-leaf has two

children, there are n leaves, and the root is not a leaf. Deduce that the number of

P4-free graphs on n vertices is at most (2n)2n.
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