
NOTES FOR THE SUMMER SCHOOL

LOUIGI ADDARIO-BERRY, ANNA BEN HAMOU, AND PERLA SOUSI

Abstract. Sections 1 and 2 consist of background material for the course on ran-
dom walks and Markov chains. Participants should be comfortable with this
material, including the exercises (perhaps with the exception of those marked
“harder”) at the start of the course.

1. Definitions, hitting times, total variation distance, reversibility.

The first chapter of these notes should be familiar to anyone who has taken a
first course on Markov chains. We will briefly run through some of the basic def-
initions and results that we will need later on. For simplicity of notation we take
N = {0, 1, 2, . . .}.

1.1. Stochastic processes,Markovprocesses,Markov chains: definitions.
Given ameasurable space (Y,G) aY -valued random variable is a (F/G)-measurable
function X : Ω → Y from some probability space (Ω,F ,P) to Y .

For example: a standard Gaussian is anR-valued random variable; ifU1, . . . , Un

areR-valued random variables defined on a common probability space then (U1, . . . , Un)
is anRn-valued random variable; the random graphGn,p is a random variable tak-
ing values in the set of graphs with vertex set labeled by [n] := {1, . . . , n} (in the
set of graphs “on [n]” for short).

A Y -valued stochastic process is a collection of Y -valued random variables (Xi, i ∈
I)with I some index set defined on a common probability space (Ω,F ,P). In other
words, for each i ∈ I , Xi : Ω → Y is a (F/G)-measurable map.

Example 1. Here are some basic examples of stochastic processes.
• A sequence of independent real random variables (Xn, n ≥ 0) is an R-valued stochastic

process indexed by N := {0, 1, 2, . . .}.
• A simple random walk (Sn, n ≥ 0) is an Z-valued stochastic process indexed by N.
• The random graphGn,p may be viewed a single random object. It may also be identified

with a {0, 1}-valued stochastic process (1n,p(e), e ∈ E(Kn)) indexed by the edges
of the complete graph Kn; here 1n,p(e) = 1 if e is an edge of Gn,p and 1n,p(e) = 0
otherwise.

• It is common to couple the random graphs Gn,p as follows. Let (Ue, e ∈ E(Kn))
be independent Uniform[0, 1] random variables. Then, for p ∈ [0, 1], let Gn,p be the
graph on [n] with edge set {e ∈ E(Kn) : Ue ≤ p}. Then (Gn,p, p ∈ [0, 1]) is a
stochastic process indexed by [0, 1] and taking values in the set of graphs on [n].
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If I is a discrete set then we say the process is a discrete-time process. We call I
the domain of definition of the process, and call (Y,G) its state space; we will sometimes
abuse notation and refer to Y as the state space.

In these notes, we will usually have I = N, I = Z, or else I ⊂ R some finite or
infinite interval. In these cases, the filtration generated byX is the increasing sequence
of σ-algebras (Fi, i ∈ I), where Fi = σ(Xj , j ∈ I, j ≤ i). Informally, Fi contains
“all information about the process up to time i. For i ∈ I we also let F≥i =
σ(Xj , j ∈ I, j ≥ i).

A discrete time stochastic process X with state space (Y,G) is a Markov process if
for all i, j ∈ I with j < i, and all B ∈ G,

P {Xi ∈ B|Fj}
a.s.
= P {Xi ∈ B|Xj} ,

and this property is called theMarkov property. Informally, theMarkov property states
that conditional on Xj , the future (relative to time j) is independent of the past.

We say a Markov process (Xi, i ∈ I) with state space (Y,G) is time-homogeneous if
for all B ∈ G and i, j ∈ I ,

P {Xi ∈ B|Xj}
a.s.
= P {Xi+t ∈ B|Xj+t} ,

for all t for which i + t ∈ I and j + t ∈ I . In these notes, Markov processes are time-
homogeneous by default.

AMarkov chain is a (time-homogeneous) Markov process (Xi, i ∈ N)with finite or
countable state space. These notes are almost exclusively concerned with Markov
chains; in this case the Markov property simplifies to the statement that for any
i ≥ 0 and any sequence v0, . . . , vi+1 of elements of V ,

P {Xi+1 = vi+1|X0 = v0, . . . , Xi = vi} = P {X1 = vi+1|X0 = vi}

whenever both conditionings are non-degenerate.
Let X = (Xi, i ∈ N) be a Markov chain with state space V . We can see from

above that the distribution ofX is completely specified by two pieces of information:
the distribution ofX0, whichwe call the initial distribution ofX ; and the transition matrix

P = P (X) = (pu,v)u,v∈V ,

where pu,v = P {X1 = v|X0 = u}. If a Markov chain has transition matrix P
and initial distribution λ, then we say that it is Markov(λ, P ). We sometimes write
Pλ,P (·) for the probability measure associated to a chain with initial distribution λ
and transition matrix P ; we will also write Pλ(·) or P(·) when the transition matrix
P and/or initial distribution can be gleaned from context or do not need to be
explicitly described. Also, if the initial distribution is a Dirac measure δv at v, we
abuse notation and write Pv(·) instead of Pδv(·).

1.2. Stopping times, the strong Markov property. Let X = (Xi, i ∈ I)
be a Markov process, with associated filtration (Fi, i ∈ I). A random variable T
taking values in I is called a stopping time for X if for all i ∈ I , the event that T ≤ i
is measurable with respect to Fi. The idea is that if we are told to stop when T
occurs then by watching the Markov chain evolve we will know when to stop. For
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example, the first day in June that it rains is a “real-world example” of a stopping
time, whereas the last day in June that it rains is not.

We write FT for the stopped σ-algebra, defined as

FT = {E ∈ F : ∀ i ∈ I, E ∩ {T ≤ i} ∈ Fi}.

Exercise 1.1 (Strong Markov property). Let X = (Xi, i ∈ N) be a Markov chain
with state-space (Y,G). Fix a stopping time T for X with T < ∞ almost surely. Then for
all i ∈ N and all B ∈ G,

P {XT+i ∈ B | FT } = PXT
{Xi ∈ B} .

One of the most basic and important special classes of of stopping times are hitting
times. For a discrete chain X = (Xi, i ∈ N) with state space V , and A ⊂ V , we
write

HA = inf{i ∈ N : Xi ∈ A}, HA
>0 = inf{i > 0 : Xi ∈ A} . (1)

with HA = ∞ if the chain never visits A. (You should perhaps verify that HA is a
stopping time.) IfA consists of a single state,A = {a}, we often abuse notation and
write Ha in place of H{a}.

Exercises. In the below exercises, X = (Xn, n ∈ N) is a Markov chain with state
space V and transition matrix P . Given a vector λ = (λ(v) : v ∈ V ) we write
∥λ∥1 =

∑
v∈V λ(v). We say that λ is invariant for P if λP = λ.

Exercise 1.2. We say that a transition matrix P is irreducible if for all u, v ∈ V there
is n ∈ N such that the u, v entry of Pn is non-zero. In this exercise assume P is irreducible.
For x, y ∈ V write νx(y) = Ex

{
#{i < Hx

>0 : Xi = y}
}
.

(i) Show that ∥νx∥1 = Ex

{
Hx

>0

}
.

(ii) Show that the vector νx = (νx(v) : v ∈ V ) is invariant for P and that νx(x) =
1.

(iii) Show that if λ = (λ(y) : y ∈ V ) is any invariant vector with λ(x) = 1 then
λ ≥ νx.

(iv) Show that if there exists π invariant forP with ∥π∥1 < ∞ thenEx

{
Hx

>0

}
< ∞

for all x, and so Px {Hy < ∞} = 1 for all x, y.

Exercise 1.3. For v ∈ V write Nv = #{i ∈ N : Xi = v} and hvv = Pv(H
v
>0 <

∞). Then for all k ≥ 0, Pv(Nv > k) = (hvv)
k, and so

Ev(Nv) =
1

1− hvv
.

1.3. Total variation distance and coupling random variables. Given that
X and Y are two random elements of some (countable) set V , we define the total
variation distance between X and Y to be

dTV(X,Y ) := sup
A⊂V

|P(X ∈ A)−P(Y ∈ A)|.
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By considering the set B = {v ∈ V : P(X = v) ≥ P(Y = v)}, one can obtain
the following equivalent formulation.

Proposition 2.

dTV(X,Y ) =
1

2

∑
v∈V

|P(X = v)−P(Y = v)| =
∑
v∈B

(P(X = v)−P(Y = v)).

Proof. Let B be the subset of all v ∈ V for which P(X = v) ≥ P(Y = v). Then
for any set C ⊂ B, P(X ∈ C)−P(Y ∈ C) ≥ 0, and this inequality is reversed if
C ⊂ Bc. Thus, for any A ⊂ V ,
P(X ∈ A)−P(Y ∈ A) ≤ P(X ∈ A∩B)−P(Y ∈ A∩B) ≤ P(X ∈ B)−P(Y ∈ B),

and likewise
P(Y ∈ A)−P(X ∈ A) ≤ P(Y ∈ A∩Bc)−P(X ∈ A∩Bc) ≤ P(Y ∈ Bc)−P(X ∈ Bc).

But 0 ≤ P(X ∈ B)−P(Y ∈ B) = P(Y ∈ Bc)−P(X ∈ Bc) so
|P(X ∈ A)−P(Y ∈ A)| ≤ P(X ∈ B)−P(Y ∈ B)

=
1

2
(P(X ∈ B)−P(Y ∈ B)) +

1

2
(P(Y ∈ Bc)−P(X ∈ Bc))

=
1

2

∑
v∈V

|P(X = v)−P(Y = v)|.

Since A was arbitrary it follows that

dTV(X,Y ) ≤ 1

2

∑
v∈V

|P(X = v)−P(Y = v)|.

But we can achieve this bound by simply taking A = B, and so we in fact have
equality. □

If µ is the distribution of X and ν is the distribution of Y , then we may equiva-
lently write

dTV(X,Y ) =
1

2

∑
v∈V

|µ(v)− ν(v)| = sup
A⊂V

|µ(A)− ν(A)| =: ∥µ− ν∥TV,

so dTV(X,Y ) and ∥µ − ν∥TV are two pieces of notation for essentially the same
thing. We will also call this quantity the total variation distance between µ and
ν, and, in general, will view the total variation distance as relating to either the
variables X,Y or to their distributions, whichever happens to be more convenient
in context.

Exercise 1.4. Prove that ∥ · − · ∥TV is a metric on the set of all measures µ on V with
µ(V ) < ∞.

We have seen two different formulas for ∥µ− ν∥TV. We now introduce a third,
and to do so we must introduce the (fundamental) notion of a coupling between two
random variables. Consider distributions µ : V → R and ν : V → R. A coupling
of µ and ν is a random variable (X,Y ) taking values in V × V , such that X has
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distribution µ and Y has distribution ν. In other words, any way of defining X and Y
on a common probability space yields a coupling between µ and ν. We will also refer to
the distribution q : V × V → R of the pair (X,Y ) as the coupling (again, choosing
whether to speak of (X,Y ) or of its distribution depending on context).

For example, suppose µ is the distribution of of a Bernoulli(p) random variable,
so µ(1) = p and µ(0) = 1 − p, and suppose ν is also this distribution. Here are
two valid couplings of µ and ν. First, we could take q(1, 1) = p, q(0, 0) = 1 − p
and q(1, 0) = q(0, 1) = 0. This corresponds to letting X be Bernoulli(p) and
letting Y = X . Second, we could take q(1, 1) = p2, q(0, 0) = (1 − p)2, and
q(1, 0) = q(0, 1) = p(1 − p). This corresponds to letting X and Y be independent
with distributions Bernoulli(p). The first of these couplings captures the fact that
X and Y have the same distribution by making them always identical. This hints
at a relation between total variation distance and couplings, a relation that is made
explicit by the following proposition.

Proposition 3. If µ : V → R and ν : V → R are two distributions then

∥µ− ν∥TV = inf{P(X ̸= Y ) : (X,Y ) a coupling between µ and ν}.

Exercise 1.5. Let X be Bernoulli(p) and Y be Bernoulli(p′). Find dTV(X,Y ) and
construct a coupling such that dTV(X,Y ) = P(X ̸= Y ).

Exercise 1.6. Prove Proposition 3.

1.4. Invariant distributions, time reversal. In this section we suppose that P
is an irreducible transition matrix. Recall from above that a measure λ is invariant
for P if λP = λ. Using ideas similar to those developed in Exercise 1.2, it is not
too difficult to show that if λ and µ are two invariant measures for P then λ = cµ
for some c ≥ 0. If ∥λ∥1 < ∞, it then follows that there is an unique vector π with
πP = π and ∥π∥1 = 1; π is called the invariant or stationary distribution of the chain.

A Markov chain with stationary distribution π and transition matrix P is called
reversible if for all u, v ∈ V we have π(u)pu,v = π(v)pv,u. This is called reversibility
because it is equivalent to saying that for all u, v ∈ V ,

Pπ {X0 = u,X1 = v} = Pπ {X1 = u,X0 = v} ,

or, more informally, that when the chain is in stationarity we cannot tell whether it is
running forwards or backwards. One important special class of reversible Markov
chains is simple random walk on a graph, defined as follows. Given a graphG = (V,E),
for v ∈ V write deg(v) = #{w ∈ V : vw ∈ E}. Then the transition matrix P of
the simple random walk on G has entries given by

pvw =

{
1

deg(v) if vw ∈ E

0 otherwise.
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Exercise 1.7. (i) Given a chain with transition matrix P , show that if π is a distri-
bution such that π(v)pvw = π(w)pwv for all v, w, then the chain is reversible and
π is the stationary distribution.

(ii) Show that the stationary distribution for simple random walk on a finite connected
graph G = (V,E) is given by π(v) = deg(v)/2|E| for all v ∈ V .

(iii) Suppose that we are given a finite set V and edge weights c = {c{v,w} : v, w ∈ V }
such that c{v,w} ≥ 0 for all v, w ∈ V and

∑
x∈V c{v,x} > 0 for all v ∈ V .

Then the weighted simple random walk with weights c has a transition matrix with
entries given by pv,w = c{v,w}/

∑
x∈V c{v,x}. Show that any finite reversible

chain can be represented as a weighted simple random walk. (Note: since {v, w} is
a set we have c{v,w} = c{w,v}.)

Exercise 1.8. Fix a reversible Markov chain (Xn, n ≥ 0) and v, w in the state space of
the chain. Then for any path Q = (v0, v1, . . . , vk) with v0 = v, vk = w, we have

Pv {(Xn, 0 ≤ n ≤ Hw) = Q | Hw < Hv
>0}

= Pw {(Xn, 0 ≤ n ≤ Hw) = Qr | Hv < Hw
>0} ,

where Qr = (vk, . . . , v0) is the reversal of Q.

2. Convergence to equilibrium and the mixing time

2.1. Coupling Markov chains. In this section we recall the concept of coupling
two Markov chains, and use it to prove that many chains converge to their equilib-
rium distribution.

If (Xn)n≥0 is Markov(λ, P ) with state space V , and (Yn)n≥0 is Markov(λ′, P ′)
with state space V ′, then a coupling of the two chains is simply a random sequence
(Un,Wn)n≥0 of elements of V ×V ′ such that if we only look at the first coordinate
(Un)n≥0, we see a chain which is Markov(λ, P ), and if we only look at the second
coordinate (Wn)n≥0 then we see a chain which is Markov(λ′, P ′). For example, we
can always simply take (Xn)n≥0 to be Markov(λ, P ), independently take (Yn)n≥0

to be Markov(λ′, P ′), and consider the sequence (Xn, Yn)n≥0.
Rather than letting the two chains be completely independent, we can instead

have one chain follow the other. In other words, let (Xn)n≥0 and (Yn)n≥0 be inde-
pendent as before. Then let T = inf{n ≥ 0 : Xn = Yn = v} be the first time that
Xn and Yn are both at v, and let Un = Xn for n < T and Un = Yn for n ≥ T .
Finally, letWn = Yn for all n. In other words, the two chains behave independently
until the first time they meet at v, at which point theX-chain sticks to the Y -chain
and follows it.

Exercise 2.1. (Un,Wn)n≥0 is a coupling of the X-chain and the Y -chain.

This last coupling actually gives us a way to control the total variation distance
between Xn and Yn, since once the two chains meet at v they stick together. If we
write λ(n) = λPn for the distribution ofXn, and likewise write γ(n) = γPn for the
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distribution of Yn, then by Proposition 3,

∥λ(n) − γ(n)∥TV ≤ P(Un ̸= Wn) = P(n < T ).

In particular, we have the following corollary.

Corollary 4. If (Xn)n≥0 is Markov(λ, P ), (Yn)n≥0 is Markov(γ, P ), both with state
space V , and there is v ∈ V such that the stopping time T = inf{n ≥ 0 : Xn = Yn = v}
satisfies P(T < ∞) = 1, then dTV(Xn, Yn) → 0 as n → ∞.

This follows immediately from the bound just before the corollary, since ifP(T <
∞) = 1 then P(T > n) → 0 as n → ∞.

The next theorem is the first, fundamental result of the theory of Markov chains.
In the proof we will use the following basic fact, stated as an exercise. A transition
matrix P is aperiodic if for all v we have gcd{n ≥ 1 : p

(n)
vv > 0} = 1.

Exercise 2.2. If P is an aperiodic irreducible transition matrix then there exists n ≥ 0

such that for all u and v, and all m ≥ n, we have p(m)
uv > 0.

Theorem 5 (Fundamental theorem ofMarkov chains). If (Xn)n≥0 is Markov(λ, P )
with state space V and P is irreducible and aperiodic, and has invariant distribution π, then
∥λ(n) − π∥TV → 0 as n → ∞.

Proof. Let (Yn)n≥0 be Markov(π, P ), and independent of (Xn)n≥0. Since π is the
invariant distribution, π(n) = πPn = π. Thus, in view of the above corollary, it
suffices to show that there is v ∈ V such that P(T < ∞) = 1.

For this we use the first, “independent” coupling. Recall that (Xn, Yn)n≥0 is
Markov(λ̂, P̂ ), with initial distribution λ̂u,v = λuπ(v) and transition probabilities
p̂(u,v),(x,y) = puxpvy. Fix any two pairs (u, v), (x, y) ∈ V×V . SinceP is aperiodic,
for all sufficiently large n, both p

(n)
ux and p

(n)
vy are positive, and so

p̂
(n)
(u,v),(x,y) = p(n)ux p

(n)
vy > 0.

In other words, in the paired chain, it is possible to get from anywhere in V × V
to anywhere else, so the chain is irreducible. Next, let π̂ be defined by π̂(u,v) =
π(u)π(v). Then∑

(u,v)∈V×V

π̂(u,v) =
∑
u∈V

π(u)
∑
v∈V

π(v) =
∑
u∈V

π(u) · 1 = 1,

so we have defined a distribution. And, for all (u, v) ∈ V × V ,∑
(x,y)∈V×V

π̂(x,y)p̂(x,y),(u,v) =
∑
x∈V

∑
y∈V

π(x)π(y)pxupyv

= (
∑
x∈V

π(x)pxu) · (
∑
y∈V

π(y)pyv)

= π(u)π(v)

= π̂(u,v),
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so π̂ is invariant for P̂ . Since P̂ is also irreducible, it follows by Exercise 1.2 that
(Xn, Yn)n≥0 is recurrent, so with probability one, any given state of V ×V is even-
tually visited. In particular, for any v ∈ V , P(T < ∞) = 1, which is what we
needed to prove. □

The study of Markov chain mixing times considers the rate of convergence in the
above theorem. A major aim of these notes is to discuss a technique for studying
mixing times that is now well-known to experts but has not yet become fully acces-
sible to non-specialists. We will need to develop some more refined tools in order
to present these methods, but we first give some simple bounds that can be proved
more easily.

Exercise 2.3. Prove the following, quantitative version of Theorem 5. Under the conditions
of Theorem 5, if the state space is finite then there exist constants α ∈ (0, 1) and C > 0
such that for all n and λ,

∥λ(n) − π∥TV ≤ Cαn .

2.2. Mixing times: bounding the speed of convergence. Next, fix an irre-
ducible Markov chain X = (Xn, n ≥ 0) with state space V and stationary distri-
bution π, and for n ≥ 0 write

d(n) = max
v∈V

∥Pv {Xn ∈ ·} − π∥TV;

in words, d(n) is the worst case total variation distance from stationarity at time n. For ϵ > 0
we define

tMIX(ϵ) = min{n ≥ 0 : d(n) ≤ ϵ} .
And call tMIX(ϵ) the ϵ-mixing time of the chain. Exercise 2.3 implies that the pre-
cise choice of ϵ is relatively unimportant; it is relatively standard to write tMIX =
tMIX(1/4) and call tMIX “the” (total variation) mixing time of the chain.

Exercise 2.4. Show that for all n, and any probability distribution λ on V ,
∥Pλ {Xn ∈ ·} − π∥TV ≤ d(n)

By Exercise 2.3, if X has finite state space and is irreducible and aperiodic then
d(n) → 0 exponentially quickly as n → ∞. The subject of mixing times is in large
part concerned with proving more precise bounds on the manner in which d(n)
tends to zero. When bounding d(n), it is often useful to consider the following,
related quantity: let

d(n) = max
u,v∈V

∥Pv {Xn ∈ ·} −Pu {Xn ∈ ·} ∥TV .

It is immediate by the triangle inequality for the total variation distance that d(n) ≤
2d(n).

Exercise 2.5. (i) Show that

∥Pv {Xn ∈ ·} − π∥TV = max
A⊂V

∣∣∣∣∣∑
w∈V

π(w) (Pv {Xn ∈ A} −Pw {Xn ∈ A})

∣∣∣∣∣
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(ii) Use (i), the triangle inequality and convexity to establish that for alln, d(n) ≤ d(n).

Exercise 2.6. (i) (Levin-Peres-Wilmer, Exercise 4.3) Show that for any two distri-
butions µ, ν on V , we have ∥µP − νP∥TV ≤ ∥µ− ν∥TV.

(ii) Show that both d(·) and d(·) are non-increasing.
(iii) (Harder.) Show that for all n,m ∈ N, d(m + n) ≤ d(m)d(n), but that this

property need not hold for d(·).

Exercise 2.7 (Strong stationary times, harder.).
A stopping time τ is called a strong stationary time if for all v, w ∈ V , and n ≥ 0,

Pv {τ = n,Xτ = w} = Pv {τ = n} · π(w) .
or in other words if Xτ has distribution π and is independent of τ .
(i) Fix v ∈ V . Show that if τ is a strong stationary time then for all n ≥ 0,

d(n) ≤ max
v∈V

Pv {τ > n} ,

and so tMIX(1/4) ≤ 4maxv∈V Ev {τ}.
(ii) Show that strong stationary times always exist for aperiodic irreducible finite chains. Show
that strong stationary times also exist without the aperiodicity assumption if we are allowed
additional randomness in our decision of when to stop.


