
Modularity Modularity: properties Swap
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Modularity and communities

Modularity was introduced by Newman and Girvan in 2004 to give
a measure of how well a graph can be divided into communities.

It now forms the backbone of the most popular algorithms used to
cluster real data, with many applications, from protein discovery to
identifying connections between websites.

See for example surveys by Fortunato (2010), and Porter Onnela
and Mucha (2009), on the use of modularity for community
detection in networks.
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Partitioning Networks:

Network:

trade volume between countries

Garcia-Pérez 2016

USA, Canada, Bahamas, Haiti, Do-
minican Republic, Jamaica, Grenada,
Mexico, Honduras, Venezuela, Peru

China, North Korea, Gambia, Sierra
Leone, Togo, South Sudan

Japan, South Korea, Taiwan, Sin-
gapore, Sri Lanka, Philippines, New
Zealand, Fiji, Papua New Guinea
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Definition of modularity

Let G = (V ,E ) be a graph with m ≥ 1 edges. For a set A of
vertices, let e(A) be the number of edges within A, and let vol(A)
be the sum over the vertices v ∈ A of the degree dv .

Given a partition A of V , the modularity of A on G is

qA(G ) =
1

2m

∑

A∈A

∑

u,v∈A

(
1uv∈E −

dudv
2m

)

=
1

m

∑

A∈A
e(A)− 1

4m2

∑

A∈A
vol(A)2;

and the modularity of G is q∗(G ) = maxA(G ).

Isolated vertices are irrelevant; and we shall not consider empty
graphs (that is, with no edges).
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modularity: understanding the definition

qA(G ) =
1

2m

∑

A∈A

∑

u,v∈A

(
1uv∈E −

dudv
2m

)
.

If we pick uniformly at random a multigraph with the same degrees
as G , then the expected number of edges between vertices u and v
is essentially

dudv
2m

.

This is the rationale for the definition: whilst rewarding the
partition for capturing edges within the parts, we should penalise
by the expected number of edges.
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edge-contribution and degree tax

The second equation

qA(G ) =
1

m

∑

A∈A
e(A)− 1

4m2

∑

A∈A
vol(A)2

expresses qA(G ) as the difference of two terms:

the edge contribution qEA(G ) = 1
m

∑
A e(A),

and the degree tax qDA(G ) = 1
4m2

∑
A vol(A)2.

Since qEA(G ) ≤ 1 and qDA(G ) > 0, we have qA(G ) < 1. Also, the
trivial partition A0 with one part has qEA0

(G ) = qDA0
(G ) = 1, so

qA0(G ) = 0. Thus
0 ≤ q∗(G ) < 1.
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An example

Introduction Edge Expansion & Random Cubic Lattices Open Questions

Edge contribution Degree tax

qE
A(G ) :=

�

A�A

|E (C )|
m

qD
A(G ) :=

�

A�A

��
v�C deg(v)

2m

�2

Example Graph

1
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3 possible partitions

Introduction Edge Expansion & Random Cubic Lattices Open Questions

Edge contribution Degree tax

qE
A(G ) :=

X

A2A

|E (C )|
m

qD
A(G ) :=

X

A2A

✓�
v2C deg(v)

2m

◆2

3 Possible Partitions

2 4 3

qE
A1

= 0.96, qD
A1

= 0.56 qE
A2

= 0.94, qD
A2

= 0.50 qE
A3

= 0.59, qD
A3

= 0.29

qA1
= 0.40 qA2

= 0.44 qA3
= 0.30
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Modularity: some examples

(a) Let G be a tree with m edges and max degree ∆ = o(m).
Then q∗(G ) = 1− o(1). (True also if treewidth ·∆ = o(m).)

(b) Let G be an m-edge subgraph of the square lattice. Then
q∗(G ) = 1− o(1).

(c) q∗(Kn) = 0 (and indeed q∗(G ) = 0 if G is Kn less at most n/2
edges).
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Some properties of optimal partitions

Let G have no isolated vertices, and let A be an optimal partition
i.e. qA(G ) = q∗(G ). Then each part A in A induces a connected
subgraph of G , with at least two vertices.
For example, if G consists of m disjoint edges, then the unique
optimal partition has m parts of size 2, and q∗(G ) = 1− 1/m.

More generally, if G consists of k ≥ 1 cliques all of the same size,
then

q∗(G ) = 1− 1/k .
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Resolution limit

Resolution limit (Fortunato and Barthélemy 2007).
Suppose that G has m edges and has a component H with <

√
2m

edges. Then V (H) is a part in each optimal partition for G .
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Resolution Limit in pictures

Graph G , m edges

G

H

H =

If h <
√

2m, e.g. m = 1625.

If h >
√

2m, e.g. m = 1624.

Component H
h edges



Modularity Modularity: properties Swap

Robustness

Optimal partition structure is sensitive to noise in edges.

The modularity value is robust:

if G = (V ,E ) and G ′ = (V ,E ′) are graphs with |E | ≥ |E ′|, then

|q∗(G )− q∗(G ′)| ≤ 2|E\E ′|
|E | .
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group splitting is included also.
The split into two groups appears to correspond to a

known division of the dolphin community !39". Lusseau re-
ports that for a period of about two years during observation
of the dolphins they separated into two groups along the
lines found by our analysis, apparently because of the disap-
pearance of individuals on the boundary between the groups.
When some of these individuals later reappeared, the two
halves of the network joined together once more. As Lusseau
points out, developments of this kind illustrate that the dol-
phin network is not merely a scientific curiosity but, like
human social networks, is closely tied to the evolution of the
community. The subgroupings within the larger half of the
network also seem to correspond to real divisions among the
animals: the largest subgroup consists almost of entirely of
females and the others almost entirely of males, and it is
conjectured that the split between the male groups is gov-
erned by matrilineage !D. Lusseau #personal communica-
tion$".
Figure 12 shows the community structure of the network

of interactions between major characters in Victor Hugo’s
sprawling novel of crime and redemption in post-restoration

FIG. 11. Community structure in the bottlenose dolphins of
Doubtful Sound !38,39", extracted using the shortest-path version of
our algorithm. The squares and circles denote the primary split of
the network into two groups, and the circles are subdivided further
into four smaller groups as shown. The modularity for the split is
Q!0.52. The network has been drawn with longer edges between
vertices in different communities than between those in the same
community, to make the community groupings clearer. The same is
also true of Figs. 12 and 13.

FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity
achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12

Lusseau PhD Thesis

# dolphins =62
# edges =159

q∗ = 0.52
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FIG. 12. The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest modularity
achieved in the shortest-path version of our algorithm is Q!0.54 and corresponds to the 11 communities shown.

M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12

Lusseau PhD Thesis

# dolphins =62
# edges =159

q∗ = 0.52

8.4% of possible edges

Random data

# dolphins =62

say each pair interacts
with probability 0.084

q∗(dolphins) > q∗(random network)??q∗(dolphins) > q∗(random network)??
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M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 #2004$

026113-12

Lusseau PhD Thesis

# dolphins =62
# edges =159

q∗ = 0.52

8.4% of possible edges

Random data

Simulate 62 vertices, with edge prob p.

q̃∗

p
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8.4% of possible edges
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q̃∗

p



Modularity Modularity: properties Swap

Two theorems on q∗(G (n, p)

Here are two theorems of McD + Skerman on the modularity of
random graphs G (n, p). First, the overview.

Theorem (3 phases theorem)

(a) If n2p →∞ and np ≤ 1 + o(1) then q∗(G (n, p))
p→ 1.

(b) Given 1 < c0 ≤ c1, there exists δ > 0 such that, if
c0 ≤ np ≤ c1, then whp δ < q∗(G (n, p)) < 1− δ.

(c) If np →∞ then q∗(G (n, p))
p→ 0.

To prove part (a) it suffices to consider the partition into
components. Part (c) and much of part (b) follow from the next
theorem.
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Two theorems on q∗(G (n, p)

Theorem (the (np)−1/2 theorem)

There exist 0 < a < b such that, if np ≥ 1 and p ≤ 0.99, then

a√
np

< q∗(G (n, p)) <
b√
np

whp.

This confirms a conjecture in 2006 by Reichardt and Bornholdt
(and refutes another conjecture from the physics literature).

The upper bound may be proved using the expander mixing lemma
(not here?).

The lower bound follows by considering a simple algorithm Swap
(or, for a more limited range of p, from recent work on stochastic
block models.)
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Two theorems on q∗(G (n, p)

As we noted, much of the np > 1 part of the 3 phases theorem
follows from the (np)−1/2 theorem.

To complete the proof for np > 1, we need to show that
q∗(G (n, p)) < 1− δ whp when np is just above 1.

To do this, we may use the result that whp, splitting the giant
component roughly into halves must break Ω(n) edges (Luczak
and McD 2001).
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Swap gives the (np)−1/2 lower bound

Given a graph G , the algorithm Swap runs in linear time and yields
a balanced bipartition A of the vertices.

Theorem

There are constants c0 and a > 0 such that if p = p(n) satisfies
1 ≤ np ≤ n − c0, then whp

qA(Gn,p) ≥ a

(
1−p
np

)1/2

;

and if also np ≥ c0 we may take a = 1
5 .
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Idea of Swap

The algorithm Swap starts with a balanced bipartition of the
vertex set into A ∪ B, which has modularity very near 0 whp.

By swapping some pairs between A and B, whp we can increase
the edge contribution significantly, without changing the
distribution of the degree tax (and without introducing
dependencies which would be hard to analyse).
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The algorithm Swap

Assume for simplicity that 6|n and write n = 6k . Start with the
bipartition A of V = [n] into A = {j ∈ V : j is odd} and
B = {j ∈ V : j is even}. Whp qA(Gn,p) is very close to 0.

Let V0 = [4k], let V1 = {4k + 1, . . . , 6k}. Let A0 = A ∩ V0,
A1 = A ∩ V1 and B0 = B ∩ V0, B1 = B ∩ V1. The four sets Ai ,Bi

are pairwise disjoint with union V .

Initially V0 is partitioned into A0 ∪ B0: the algorithm Swap
‘improves’ this partition, keeping A1, B1 fixed. For i = 1, . . . , 2k
let ai = 2i − 1 and bi = 2i , so A0 = {a1, . . . , a2k} and
B0 = {b1, . . . , b2k}. We improve the partition V0 = A0 ∪ B0 is by
independently swapping ai and bi for certain values i .
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B = {j ∈ V : j is even}. Whp qA(Gn,p) is very close to 0.

Let V0 = [4k], let V1 = {4k + 1, . . . , 6k}. Let A0 = A ∩ V0,
A1 = A ∩ V1 and B0 = B ∩ V0, B1 = B ∩ V1. The four sets Ai ,Bi

are pairwise disjoint with union V .

Initially V0 is partitioned into A0 ∪ B0: the algorithm Swap
‘improves’ this partition, keeping A1, B1 fixed. For i = 1, . . . , 2k
let ai = 2i − 1 and bi = 2i , so A0 = {a1, . . . , a2k} and
B0 = {b1, . . . , b2k}. We improve the partition V0 = A0 ∪ B0 is by
independently swapping ai and bi for certain values i .
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Ti and swapping ai , bi

For each i ∈ [2k] let

Ti = e(ai ,B1)− e(ai ,A1) + e(bi ,A1)− e(bi ,B1).

The random variables T1, . . . ,T2k are iid.

Also E[Ti ] = 0, var(Ti) = 4kp(1− p); and
E[|Ti |] = Θ((np(1−p))1/2).

If Ti > 0 and we swap ai and bi between A0 and B0 (that is,
replace A0 by (A0 \ {ai}) ∪ {bi} and similarly for B0) then e(A,B)
decreases by Ti , so the edge contribution of the partition increases.
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Illustration of swapping

A1 B1

ai biA0 B0 swap if Ti > 0

A1 B1

bi aiA′0 B ′0
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T ∗ and swaps

Swap makes all such swaps (looking only at possible edges between
V0 and V1), yielding the balanced bipartition A′ = (A′,B ′), where
A′ = A′0 ∪ A1 and B ′ = B ′0 ∪ B1.

Let T ∗ =
∑

i∈[2k] |Ti |. Then

e(A′0,A1) + e(B ′0,B1)− (e(A′0,B1) + e(A1,B
′
0)) = T ∗.

But e(A′0,A1) + e(B ′0,B1) + (e(A′0,B1) + e(A1,B
′
0)) = e(V0,V1),

so
e(A′0,A1) + e(B ′0,B1) = 1

2e(V0,V1) + 1
2T
∗.
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T ∗ and edge contribution

T ∗ is the sum of the 2k ≈ n/3 iid random variables |Ti |, so whp

T ∗ ≈ 2k E[|T1|] = Θ(n3/2(p(1−p))1/2).

Thus whp the edge contribution for A′ beats that for the initial
bipartition A by

Θ

(
n3/2(p(1−p))1/2

n2p

)
= Θ

((1−p
np

)1/2
)
.

In other words

qEA′(Gn,p)− qEA(Gn,p) = Θ

((1−p
np

)1/2
)

whp.
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What about degree tax?

Our decisions about when to swap are symmetric. In the two cases

e(ai ,B1) = w , e(ai ,A1) = x and e(bi ,A1) = y , e(bi ,B1) = z

e(ai ,B1) = y , e(ai ,A1) = z and e(bi ,A1) = w , e(bi ,B1) = x .

we make the same decision (swap iff w−x + y−z > 0). It follows
that the degree tax for A′ has exactly the same distribution as for
A. We find

qDA′(Gn,p)− qDA(Gn,p) = o

((1−p
np

)1/2
)

whp.
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completing the Swap story

Putting together the results on edge contribution and on degree
tax we find

qA′(Gn,p)− qA(Gn,p) = Θ

((1−p
np

)1/2
)

whp.

But whp qA(Gn,p) is very near 0, and so

qA′(Gn,p) = Θ

((1−p
np

)1/2
)

whp

as required.
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