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Modularity

Modularity and communities

Modularity was introduced by Newman and Girvan in 2004 to give
a measure of how well a graph can be divided into communities.

It now forms the backbone of the most popular algorithms used to
cluster real data, with many applications, from protein discovery to
identifying connections between websites.

See for example surveys by Fortunato (2010), and Porter Onnela
and Mucha (2009), on the use of modularity for community
detection in networks.
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PARTITIONING NETWORKS:

Network:

trade volume between countries
GARCIA-PEREZ 2016
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Zealand, Fiji, Papua New Guinea




Modularity

Definition of modularity

Let G = (V, E) be a graph with m > 1 edges. For a set A of
vertices, let ¢(A) be the number of edges within A, and let vol(A)
be the sum over the vertices v € A of the degree d, .
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Definition of modularity

Let G = (V, E) be a graph with m > 1 edges. For a set A of
vertices, let ¢(A) be the number of edges within A, and let vol(A)
be the sum over the vertices v € A of the degree d, .

Given a partition A of V/, the modularity of A on G is

qa(G) = 72 Z<uv€E d;)

AcA u,veA
1 1 )
= = > e(A) - ype > vol(A)
AcA AcA

and the modularity of G is g*(G) = max4(G).

Isolated vertices are irrelevant; and we shall not consider empty
graphs (that is, with no edges).
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modularity: understanding the definition
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If we pick uniformly at random a multigraph with the same degrees
as G, then the expected number of edges between vertices v and v
is essentially

dyd,

2m

This is the rationale for the definition: whilst rewarding the
partition for capturing edges within the parts, we should penalise
by the expected number of edges.
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edge-contribution and degree tax

The second equation

1 2
qa(G) == e(A) - el > vol(A)
AcA AcA
expresses g4(G) as the difference of two terms:
the edge contribution ¢5(G) = 13", ¢(A),

and the degree tax qfl(G) = ﬁ > 4 vol(A)2.



Modularity

edge-contribution and degree tax

The second equation

qa(G) = — Z e(A) — ﬁ Z vol(A)?

AcA AcA

expresses g4(G) as the difference of two terms:

the edge contribution g§(G) = 1 3~ , e(A),

and the degree tax qfl(G) = ﬁ > 4 vol(A)2.
Since ¢5(G) < 1 and gB(G) > 0, we have q4(G) < 1. Also, the
trivial partition .4y with one part has qﬁO(G) = qﬁO(G) =1, so
g.4,(G) =0. Thus
0<q*(G) < 1.
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An example

Bs
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3 possible partitions

2N XX\ P ’g {
NN

2N

E D E D E D
q%a, =096, 3 =056 g, =0.94, g2, =050 g, = 0.59, g, =0.29

qa, =0.40 .4, = 0.44 g4, =0.30
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Modularity: some examples

(a) Let G be a tree with m edges and max degree A = o(m).
Then ¢*(G) =1 — o(1). (True also if treewidth- A = o(m).)
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Some properties of optimal partitions

Let G have no isolated vertices, and let A be an optimal partition
i.e. g4(G) = g*(G). Then each part A in A induces a connected
subgraph of G, with at least two vertices.

For example, if G consists of m disjoint edges, then the unique
optimal partition has m parts of size 2, and ¢*(G) =1—1/m.
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Some properties of optimal partitions

Let G have no isolated vertices, and let A be an optimal partition
i.e. g4(G) = g*(G). Then each part A in A induces a connected
subgraph of G, with at least two vertices.

For example, if G consists of m disjoint edges, then the unique
optimal partition has m parts of size 2, and ¢*(G) =1—1/m.

More generally, if G consists of k > 1 cliques all of the same size,

then
g (G)=1-1/k.
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Resolution limit

Resolution limit (Fortunato and Barthélemy 2007).
Suppose that G has m edges and has a component H with < v/2m
edges. Then V(H) is a part in each optimal partition for G.
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Resolution Limit in pictures

Component H H=
h edges

If h<+v2m, e.,g. m=1625.

Graph G, m edges
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Robustness

Optimal partition structure is sensitive to noise in edges.

The modularity value is robust:
if G=(V,E)and G' = (V, E’) are graphs with |E| > |E’|, then

* % / 2’E\El|
1g°(G) — q"(G')| < E]
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Lusseau PHD THESIS

o4l
# dolphins =62
# edges =159

g* =0.52
8.4% of possible edges

RANDOM DATA

# dolphins =62

say each pair interacts
with probability 0.084

g*(dolphins) > g*(random network)??
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Lusseau PHD THESIS RANDOM DATA
g*(dolphins) > g*(random network)??

Modularity of Random Network on 62 vertices

: d
# dolphins :62 0.34
# edges =159

g* =0.52
8.4% of possible edges




Modularity: properties

Lusseau PHD THESIS RANDOM DATA

Simulate 62 vertices, with edge prob p.

0.8 1 ’
a*

0.6 1

0.4 1

0.2 1

' d S ‘\A‘ ------ )

# dolphins =62 00 T
# edges =159 o0 0 0 o o o
g* =0.52 p

8.4% of possible edges
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Lusseau PHD THESIS RANDOM DATA

Simulate 1000 vertices, with edge prob p.

1.0

~k 0.84°

0.6 4

0.4 1

0.2 1

' 0] 4 ‘\A‘ el . .
# dolphins =62 T e
# edges :159 0‘%,00 0.62 0.2)4 0.66 0.68 0.10

g* =0.52 p
8.4% of possible edges
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Two theorems on g*(G(n, p)

Here are two theorems of McD + Skerman on the modularity of
random graphs G(n, p). First, the overview.

Theorem (3 phases theorem)

(a) If n?p — oo and np < 1+ o(1) then q*(G(n, p)) 51
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Two theorems on g*(G(n, p)

Here are two theorems of McD + Skerman on the modularity of
random graphs G(n, p). First, the overview.

Theorem (3 phases theorem)

(a) If n?p — o0 and np < 1+ o(1) then q*(G(n,p)) 5 1.
(b) Given1 < ¢y < c1, there exists 6 > 0 such that, if
co < np < ci, then whp § < g*(G(n,p)) <1—0.

(c) If np — oo then q*(G(n,p)) > 0.

To prove part (a) it suffices to consider the partition into
components. Part (c) and much of part (b) follow from the next
theorem.
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Two theorems on g*(G(n, p)

Theorem (the (np)~1/? theorem)
There exist 0 < a < b such that, if np > 1 and p < 0.99, then

2 g b,
ﬁ<q(G(n,p))<ﬁ hp.

This confirms a conjecture in 2006 by Reichardt and Bornholdt
(and refutes another conjecture from the physics literature).
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Two theorems on g*(G(n, p)

Theorem (the (np)~1/? theorem)
There exist 0 < a < b such that, if np > 1 and p < 0.99, then

2 g b,
ﬁ<q(G(n,p))<ﬁ hp.

This confirms a conjecture in 2006 by Reichardt and Bornholdt
(and refutes another conjecture from the physics literature).

The upper bound may be proved using the expander mixing lemma
(not here?).

The lower bound follows by considering a simple algorithm Swap
(or, for a more limited range of p, from recent work on stochastic
block models.)
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Two theorems on g*(G(n, p)

As we noted, much of the np > 1 part of the 3 phases theorem
follows from the (np)~1/2 theorem.

To complete the proof for np > 1, we need to show that
q*(G(n,p)) < 1— 0 whp when np is just above 1.

To do this, we may use the result that whp, splitting the giant
component roughly into halves must break Q(n) edges (Luczak
and McD 2001).



Swap gives the (np)~'/2 lower bound

Given a graph G, the algorithm Swap runs in linear time and yields
a balanced bipartition A of the vertices.

Theorem

There are constants ¢y and a > 0 such that if p = p(n) satisfies
1 < np < n-— ¢y, then whp

1-p\ /2
q.A(Gn,p) > a ( np > ;

and if also np > ¢y we may take a = %




|dea of Swap

The algorithm Swap starts with a balanced bipartition of the
vertex set into AU B, which has modularity very near 0 whp.

By swapping some pairs between A and B, whp we can increase
the edge contribution significantly, without changing the
distribution of the degree tax (and without introducing
dependencies which would be hard to analyse).



The algorithm Swap

Assume for simplicity that 6|n and write n = 6k. Start with the
bipartition A of V = [n] into A= {j € V :j is odd} and
B={jeV:jiseven}. Whp qa(Gp,p) is very close to 0.
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Assume for simplicity that 6|n and write n = 6k. Start with the
bipartition A of V = [n] into A= {j € V :j is odd} and
B={jeV:jiseven}. Whp qa(Gp,p) is very close to 0.

Let Vo = [4k], let Vi = {4k +1,...,6k}. Let Ao = ANV,

A1 =ANV;and By = BN Vy, By = BN Vi. The four sets A;, B;
are pairwise disjoint with union V.

Initially Vj is partitioned into Ag U By: the algorithm Swap
‘improves’ this partition, keeping A;, By fixed. Fori=1,...,2k
let a; =2/ — 1 and b; = 2/, so Ag = {a1,...,ax} and

By = {b1,...,bok}. We improve the partition Vo = Ag U By is by
independently swapping a; and b; for certain values i.



T; and swapping a;, b;

For each i € [2k] let
T,' = e(a,-, Bl) — e(a,-, Al) + e(b,-, Al) — e(b,-, Bl).

The random variables Ty, ..., Ty are iid.
Also E[T;] = 0, var(T;) = 4kp(1 — p); and
E[|Til] = ©((np(1—p))*/?).



T; and swapping a;, b;

For each i € [2k] let
T,' = e(a,-, Bl) — e(a,-, Al) + e(b,-, Al) — e(b,-, Bl).

The random variables Ty, ..., Ty are iid.

Also E[T;] = 0, var(T;) = 4kp(1 — p); and

E[| Ti[] = ©((np(1—p))*/?).

If T; > 0 and we swap a; and b; between Ag and By (that is,
replace Ag by (Ao \ {ai}) U {bi} and similarly for By) then e(A, B)
decreases by T;, so the edge contribution of the partition increases.



lllustration of swapping

® 3 ® b; ® b; ® 3

swap if T; >0 :
—_—

Ny



T* and swaps

Swap makes all such swaps (looking only at possible edges between
Vo and V4), yielding the balanced bipartition A’ = (A", B), where
A= AjUA; and B' = B{ U B;.

e(Ay, A1) + e(Bo, Br) — (e(Ag, Br) + e(A1, By)) = T



T* and swaps

Swap makes all such swaps (looking only at possible edges between
Vo and V4), yielding the balanced bipartition A’ = (A", B), where
A= AjUA; and B' = B{ U B;.

e(Ay, A1) + e(Bo, Br) — (e(Ag, Br) + e(A1, By)) = T

But e(Ap, A1) + e(Bp, Br) + (e(Ap, Bu) + e(A1, By)) = e(Vo, V1),
SO
e(Ap, A1) + e(Bg, B1) = 2e(Vo, Vi) + 3 T*.



T* and edge contribution

T* is the sum of the 2k ~ n/3 iid random variables | T;|, so whp

T* ~ 2kE[| T1]] = ©(n*?(p(1-p))"/?).



T* and edge contribution

T* is the sum of the 2k ~ n/3 iid random variables | T;|, so whp

T* ~ 2kE[| T1]] = ©(n*?(p(1-p))"/?).

Thus whp the edge contribution for A’ beats that for the initial
bipartition A by

n2(p(L-p)?\ _ o ((1-P\1/2
e( n2p >_@<(np) >

In other words

1-p.1/2
qﬁ’(G’LP) - qf\(Gn,p) =0 ((np) / ) Whp.




What about degree tax?

Our decisions about when to swap are symmetric. In the two cases
e(aj, B1) = w,e(aj, A1) = x and e(b;, A1) = y,e(b;j,B1) =z

e(a;, B1) = y,e(aj, A1) = z and e(bj, A1) = w, e(bj, B1) = x.

we make the same decision (swap iff w—x + y—z > 0). It follows
that the degree tax for A’ has exactly the same distribution as for
A. We find

1-p 1,2
qEV(Gn,p) - q_?\(Gn,p) =0 ((np) / > Whp.



completing the Swap story

Putting together the results on edge contribution and on degree
tax we find

1—
qA’(GILP) - qA(Gn,p) =0 ((npp)l/2> whp.

But whp q4(Gp,p) is very near 0, and so

Gu(Grp) = © <(1‘p)1/2) whp

np

as required.
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