
NICE SUMMER SCHOOL ON RANDOM WALKS AND COMPLEX
NETWORKS: PART 1 OF THE COURSE ON RANDOM WALKS AND

MARKOV CHAINS

LOUIGI ADDARIO-BERRY, ANNA BEN HAMOU, AND PERLA SOUSI

Abstract. Sections 1 and 2 consist of background material for the course on ran-
dom walks and Markov chains. Participants should be comfortable with this
material, including the exercises (perhaps with the exception of those marked
“harder”) at the start of the course. Section 3 contains the material covered in
lectures 1-5 of the course.

1. Definitions, hitting times, total variation distance,
reversibility.

The first chapter of these notes should be familiar to anyone who has taken a
first course on Markov chains. We will briefly run through some of the basic def-
initions and results that we will need later on. For simplicity of notation we take
N = {0, 1, 2, . . .}.

1.1. Stochastic processes,Markovprocesses,Markov chains: definitions.
Given ameasurable space (Y,G) aY -valued random variable is a (F/G)-measurable
function X : Ω → Y from some probability space (Ω,F ,P) to Y .

For example: a standard Gaussian is anR-valued random variable; ifU1, . . . , Un

areR-valued random variables defined on a common probability space then (U1, . . . , Un)
is anRn-valued random variable; the random graphGn,p is a random variable tak-
ing values in the set of graphs with vertex set labeled by [n] := {1, . . . , n} (in the
set of graphs “on [n]” for short).

A Y -valued stochastic process is a collection of Y -valued random variables (Xi, i ∈
I)with I some index set defined on a common probability space (Ω,F ,P). In other
words, for each i ∈ I , Xi : Ω → Y is a (F/G)-measurable map.

Example 1. Here are some basic examples of stochastic processes.
• A sequence of independent real random variables (Xn, n ≥ 0) is an R-valued stochastic
process indexed by N := {0, 1, 2, . . .}.

• A simple random walk (Sn, n ≥ 0) is an Z-valued stochastic process indexed by N.
• The random graphGn,p may be viewed a single random object. It may also be identified
with a {0, 1}-valued stochastic process (1n,p(e), e ∈ E(Kn)) indexed by the edges
of the complete graphKn; here 1n,p(e) = 1 if e is an edge of Gn,p and 1n,p(e) = 0
otherwise.
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• It is common to couple the random graphs Gn,p as follows. Let (Ue, e ∈ E(Kn))
be independent Uniform[0, 1] random variables. Then, for p ∈ [0, 1], let Gn,p be the
graph on [n] with edge set {e ∈ E(Kn) : Ue ≤ p}. Then (Gn,p, p ∈ [0, 1]) is a
stochastic process indexed by [0, 1] and taking values in the set of graphs on [n].

If I is a discrete set then we say the process is a discrete-time process. We call I
the domain of definition of the process, and call (Y,G) its state space; we will sometimes
abuse notation and refer to Y as the state space.

In these notes, we will usually have I = N, I = Z, or else I ⊂ R some finite or
infinite interval. In these cases, the filtration generated byX is the increasing sequence
of σ-algebras (Fi, i ∈ I), where Fi = σ(Xj , j ∈ I, j ≤ i). Informally, Fi contains
“all information about the process up to time i. For i ∈ I we also let F≥i =
σ(Xj , j ∈ I, j ≥ i).

A discrete time stochastic process X with state space (Y,G) is a Markov process if
for all i, j ∈ I with j < i, and all B ∈ G,

P {Xi ∈ B|Fj}
a.s.
= P {Xi ∈ B|Xj} ,

and this property is called theMarkov property. Informally, theMarkov property states
that conditional on Xj , the future (relative to time j) is independent of the past.

We say a Markov process (Xi, i ∈ I) with state space (Y,G) is time-homogeneous if
for all B ∈ G and i, j ∈ I ,

P {Xi ∈ B|Xj}
a.s.
= P {Xi+t ∈ B|Xj+t} ,

for all t for which i + t ∈ I and j + t ∈ I . In these notes, Markov processes are time-
homogeneous by default.

AMarkov chain is a (time-homogeneous) Markov process (Xi, i ∈ N)with finite or
countable state space. These notes are almost exclusively concerned with Markov
chains; in this case the Markov property simplifies to the statement that for any
i ≥ 0 and any sequence v0, . . . , vi+1 of elements of V ,

P {Xi+1 = vi+1|X0 = v0, . . . , Xi = vi} = P {X1 = vi+1|X0 = vi}

whenever both conditionings are non-degenerate.
Let X = (Xi, i ∈ N) be a Markov chain with state space V . We can see from

above that the distribution ofX is completely specified by two pieces of information:
the distribution ofX0, whichwe call the initial distribution ofX ; and the transition matrix

P = P (X) = (pu,v)u,v∈V ,

where pu,v = P {X1 = v|X0 = u}. If a Markov chain has transition matrix P
and initial distribution λ, then we say that it is Markov(λ, P ). We sometimes write
Pλ,P (·) for the probability measure associated to a chain with initial distribution λ
and transition matrix P ; we will also write Pλ(·) or P(·) when the transition matrix
P and/or initial distribution can be gleaned from context or do not need to be
explicitly described. Also, if the initial distribution is a Dirac measure δv at v, we
abuse notation and write Pv(·) instead of Pδv(·).
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1.2. Stopping times, the strong Markov property. Let X = (Xi, i ∈ I)
be a Markov process, with associated filtration (Fi, i ∈ I). A random variable T
taking values in I is called a stopping time for X if for all i ∈ I , the event that T ≤ i
is measurable with respect to Fi. The idea is that if we are told to stop when T
occurs then by watching the Markov chain evolve we will know when to stop. For
example, the first day in June that it rains is a “real-world example” of a stopping
time, whereas the last day in June that it rains is not.

We write FT for the stopped σ-algebra, defined as

FT = {E ∈ F : ∀ i ∈ I, E ∩ {T ≤ i} ∈ Fi}.

Exercise 1.1 (Strong Markov property). Let X = (Xi, i ∈ N) be a Markov chain
with state-space (Y,G). Fix a stopping time T forX with T < ∞ almost surely. Then for
all i ∈ N and all B ∈ G,

P {XT+i ∈ B | FT } = PXT {Xi ∈ B} .

One of the most basic and important special classes of of stopping times are hitting
times. For a discrete chain X = (Xi, i ∈ N) with state space V , and A ⊂ V , we
write

HA = inf{i ∈ N : Xi ∈ A}, HA
>0 = inf{i > 0 : Xi ∈ A} . (1)

with HA = ∞ if the chain never visits A. (You should perhaps verify that HA is a
stopping time.) IfA consists of a single state,A = {a}, we often abuse notation and
write Ha in place of H{a}.

Exercises. In the below exercises, X = (Xn, n ∈ N) is a Markov chain with state
space V and transition matrix P . Given a vector λ = (λ(v) : v ∈ V ) we write
∥λ∥1 =

∑
v∈V λ(v). We say that λ is invariant for P if λP = λ.

Exercise 1.2. We say that a transition matrix P is irreducible if for all u, v ∈ V there
is n ∈ N such that the u, v entry of Pn is non-zero. In this exercise assume P is irreducible.
For x, y ∈ V write νx(y) = Ex

{
#{i < Hx

>0 : Xi = y}
}
.

(i) Show that ∥νx∥1 = Ex
{
Hx

>0

}
.

(ii) Show that the vector νx = (νx(v) : v ∈ V ) is invariant for P and that νx(x) =
1.

(iii) Show that if λ = (λ(y) : y ∈ V ) is any invariant vector with λ(x) = 1 then
λ ≥ νx.

(iv) Show that if there exists π invariant forP with ∥π∥1 < ∞ thenEx
{
Hx

>0

}
< ∞

for all x, and so Px {Hy < ∞} = 1 for all x, y.

Exercise 1.3. For v ∈ V write Nv = #{i ∈ N : Xi = v} and hvv = Pv(Hv
>0 <

∞). Then for all k ≥ 0, Pv(Nv > k) = (hvv)
k, and so

Ev(Nv) =
1

1− hvv
.
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1.3. Total variation distance and coupling random variables. Given that
X and Y are two random elements of some (countable) set V , we define the total
variation distance betweenX and Y to be

dTV(X,Y ) := sup
A⊂V

|P(X ∈ A)−P(Y ∈ A)|.

By considering the set B = {v ∈ V : P(X = v) ≥ P(Y = v)}, one can obtain
the following equivalent formulation.

Proposition 2.

dTV(X,Y ) =
1

2

∑

v∈V
|P(X = v)−P(Y = v)| =

∑

v∈B
(P(X = v)−P(Y = v)).

Proof. Let B be the subset of all v ∈ V for which P(X = v) ≥ P(Y = v). Then
for any set C ⊂ B, P(X ∈ C)−P(Y ∈ C) ≥ 0, and this inequality is reversed if
C ⊂ Bc. Thus, for any A ⊂ V ,

P(X ∈ A)−P(Y ∈ A) ≤ P(X ∈ A∩B)−P(Y ∈ A∩B) ≤ P(X ∈ B)−P(Y ∈ B),

and likewise

P(Y ∈ A)−P(X ∈ A) ≤ P(Y ∈ A∩Bc)−P(X ∈ A∩Bc) ≤ P(Y ∈ Bc)−P(X ∈ Bc).

But 0 ≤ P(X ∈ B)−P(Y ∈ B) = P(Y ∈ Bc)−P(X ∈ Bc) so

|P(X ∈ A)−P(Y ∈ A)| ≤ P(X ∈ B)−P(Y ∈ B)

=
1

2
(P(X ∈ B)−P(Y ∈ B)) +

1

2
(P(Y ∈ Bc)−P(X ∈ Bc))

=
1

2

∑

v∈V
|P(X = v)−P(Y = v)|.

Since A was arbitrary it follows that

dTV(X,Y ) ≤ 1

2

∑

v∈V
|P(X = v)−P(Y = v)|.

But we can achieve this bound by simply taking A = B, and so we in fact have
equality. !

If µ is the distribution of X and ν is the distribution of Y , then we may equiva-
lently write

dTV(X,Y ) =
1

2

∑

v∈V
|µ(v)− ν(v)| = sup

A⊂V
|µ(A)− ν(A)| =: ∥µ− ν∥TV,

so dTV(X,Y ) and ∥µ − ν∥TV are two pieces of notation for essentially the same
thing. We will also call this quantity the total variation distance between µ and
ν, and, in general, will view the total variation distance as relating to either the
variables X,Y or to their distributions, whichever happens to be more convenient
in context.
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Exercise 1.4. Prove that ∥ · − · ∥TV is a metric on the set of all measures µ on V with
µ(V ) < ∞.

We have seen two different formulas for ∥µ− ν∥TV. We now introduce a third,
and to do so we must introduce the (fundamental) notion of a coupling between two
random variables. Consider distributions µ : V → R and ν : V → R. A coupling
of µ and ν is a random variable (X,Y ) taking values in V × V , such that X has
distribution µ and Y has distribution ν. In other words, any way of defining X and Y
on a common probability space yields a coupling between µ and ν. We will also refer to
the distribution q : V × V → R of the pair (X,Y ) as the coupling (again, choosing
whether to speak of (X,Y ) or of its distribution depending on context).

For example, suppose µ is the distribution of of a Bernoulli(p) random variable,
so µ(1) = p and µ(0) = 1 − p, and suppose ν is also this distribution. Here are
two valid couplings of µ and ν. First, we could take q(1, 1) = p, q(0, 0) = 1 − p
and q(1, 0) = q(0, 1) = 0. This corresponds to letting X be Bernoulli(p) and
letting Y = X . Second, we could take q(1, 1) = p2, q(0, 0) = (1 − p)2, and
q(1, 0) = q(0, 1) = p(1 − p). This corresponds to letting X and Y be independent
with distributions Bernoulli(p). The first of these couplings captures the fact that
X and Y have the same distribution by making them always identical. This hints
at a relation between total variation distance and couplings, a relation that is made
explicit by the following proposition.

Proposition 3. If µ : V → R and ν : V → R are two distributions then
∥µ− ν∥TV = inf{P(X ̸= Y ) : (X,Y ) a coupling between µ and ν}.

Exercise 1.5. Let X be Bernoulli(p) and Y be Bernoulli(p′). Find dTV(X,Y ) and
construct a coupling such that dTV(X,Y ) = P(X ̸= Y ).

Exercise 1.6. Prove Proposition 3.

1.4. Invariant distributions, time reversal. In this section we suppose that P
is an irreducible transition matrix. Recall from above that a measure λ is invariant
for P if λP = λ. Using ideas similar to those developed in Exercise 1.2, it is not
too difficult to show that if λ and µ are two invariant measures for P then λ = cµ
for some c ≥ 0. If ∥λ∥1 < ∞, it then follows that there is an unique vector π with
πP = π and ∥π∥1 = 1; π is called the invariant or stationary distribution of the chain.

A Markov chain with stationary distribution π and transition matrix P is called
reversible if for all u, v ∈ V we have π(u)pu,v = π(v)pv,u. This is called reversibility
because it is equivalent to saying that for all u, v ∈ V ,

Pπ {X0 = u,X1 = v} = Pπ {X1 = u,X0 = v} ,

or, more informally, that when the chain is in stationarity we cannot tell whether it is
running forwards or backwards. One important special class of reversible Markov
chains is simple random walk on a graph, defined as follows. Given a graphG = (V,E),
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for v ∈ V write deg(v) = #{w ∈ V : vw ∈ E}. Then the transition matrix P of
the simple random walk on G has entries given by

pvw =

{
1

deg(v) if vw ∈ E

0 otherwise.

Exercise 1.7. (i) Given a chain with transition matrix P , show that if π is a distri-
bution such that π(v)pvw = π(w)pwv for all v, w, then the chain is reversible and
π is the stationary distribution.

(ii) Show that the stationary distribution for simple random walk on a finite connected
graph G = (V,E) is given by π(v) = deg(v)/2|E| for all v ∈ V .

(iii) Suppose that we are given a finite set V and edge weights c = {c{v,w} : v, w ∈ V }
such that c{v,w} ≥ 0 for all v, w ∈ V and

∑
x∈V c{v,x} > 0 for all v ∈ V .

Then the weighted simple random walk with weights c has a transition matrix with
entries given by pv,w = c{v,w}/

∑
x∈V c{v,x}. Show that any finite reversible

chain can be represented as a weighted simple random walk. (Note: since {v, w} is
a set we have c{v,w} = c{w,v}.)

Exercise 1.8. Fix a reversible Markov chain (Xn, n ≥ 0) and v, w in the state space of
the chain. Then for any path Q = (v0, v1, . . . , vk) with v0 = v, vk = w, we have

Pv {(Xn, 0 ≤ n ≤ Hw) = Q | Hw < Hv
>0}

= Pw {(Xn, 0 ≤ n ≤ Hw) = Qr | Hv < Hw
>0} ,

where Qr = (vk, . . . , v0) is the reversal of Q.

2. Convergence to equilibrium and the mixing time
2.1. Coupling Markov chains. In this section we recall the concept of coupling
two Markov chains, and use it to prove that many chains converge to their equilib-
rium distribution.

If (Xn)n≥0 is Markov(λ, P ) with state space V , and (Yn)n≥0 is Markov(λ′, P ′)
with state space V ′, then a coupling of the two chains is simply a random sequence
(Un,Wn)n≥0 of elements of V ×V ′ such that if we only look at the first coordinate
(Un)n≥0, we see a chain which is Markov(λ, P ), and if we only look at the second
coordinate (Wn)n≥0 then we see a chain which is Markov(λ′, P ′). For example, we
can always simply take (Xn)n≥0 to be Markov(λ, P ), independently take (Yn)n≥0

to be Markov(λ′, P ′), and consider the sequence (Xn, Yn)n≥0.
Rather than letting the two chains be completely independent, we can instead

have one chain follow the other. In other words, let (Xn)n≥0 and (Yn)n≥0 be inde-
pendent as before. Then let T = inf{n ≥ 0 : Xn = Yn = v} be the first time that
Xn and Yn are both at v, and let Un = Xn for n < T and Un = Yn for n ≥ T .
Finally, letWn = Yn for all n. In other words, the two chains behave independently
until the first time they meet at v, at which point theX-chain sticks to the Y -chain
and follows it.
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Exercise 2.1. (Un,Wn)n≥0 is a coupling of the X-chain and the Y -chain.

This last coupling actually gives us a way to control the total variation distance
between Xn and Yn, since once the two chains meet at v they stick together. If we
write λ(n) = λPn for the distribution ofXn, and likewise write γ(n) = γPn for the
distribution of Yn, then by Proposition 3,

∥λ(n) − γ(n)∥TV ≤ P(Un ̸= Wn) = P(n < T ).

In particular, we have the following corollary.

Corollary 4. If (Xn)n≥0 is Markov(λ, P ), (Yn)n≥0 is Markov(γ, P ), both with state
space V , and there is v ∈ V such that the stopping time T = inf{n ≥ 0 : Xn = Yn = v}
satisfies P(T < ∞) = 1, then dTV(Xn, Yn) → 0 as n → ∞.

This follows immediately from the bound just before the corollary, since ifP(T <
∞) = 1 then P(T > n) → 0 as n → ∞.

The next theorem is the first, fundamental result of the theory of Markov chains.
In the proof we will use the following basic fact, stated as an exercise. A transition
matrix P is aperiodic if for all v we have gcd{n ≥ 1 : p(n)vv > 0} = 1.

Exercise 2.2. If P is an aperiodic irreducible transition matrix then there exists n ≥ 0

such that for all u and v, and all m ≥ n, we have p(m)
uv > 0.

Theorem 5 (Fundamental theorem ofMarkov chains). If (Xn)n≥0 is Markov(λ, P )
with state space V and P is irreducible and aperiodic, and has invariant distribution π, then
∥λ(n) − π∥TV → 0 as n → ∞.

Proof. Let (Yn)n≥0 be Markov(π, P ), and independent of (Xn)n≥0. Since π is the
invariant distribution, π(n) = πPn = π. Thus, in view of the above corollary, it
suffices to show that there is v ∈ V such that P(T < ∞) = 1.

For this we use the first, “independent” coupling. Recall that (Xn, Yn)n≥0 is
Markov(λ̂, P̂ ), with initial distribution λ̂u,v = λuπ(v) and transition probabilities
p̂(u,v),(x,y) = puxpvy. Fix any two pairs (u, v), (x, y) ∈ V×V . SinceP is aperiodic,
for all sufficiently large n, both p(n)ux and p(n)vy are positive, and so

p̂(n)(u,v),(x,y) = p(n)ux p
(n)
vy > 0.

In other words, in the paired chain, it is possible to get from anywhere in V × V
to anywhere else, so the chain is irreducible. Next, let π̂ be defined by π̂(u,v) =
π(u)π(v). Then

∑

(u,v)∈V×V

π̂(u,v) =
∑

u∈V
π(u)

∑

v∈V
π(v) =

∑

u∈V
π(u) · 1 = 1,
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so we have defined a distribution. And, for all (u, v) ∈ V × V ,
∑

(x,y)∈V×V

π̂(x,y)p̂(x,y),(u,v) =
∑

x∈V

∑

y∈V
π(x)π(y)pxupyv

= (
∑

x∈V
π(x)pxu) · (

∑

y∈V
π(y)pyv)

= π(u)π(v)

= π̂(u,v),

so π̂ is invariant for P̂ . Since P̂ is also irreducible, it follows by Exercise 1.2 that
(Xn, Yn)n≥0 is recurrent, so with probability one, any given state of V ×V is even-
tually visited. In particular, for any v ∈ V , P(T < ∞) = 1, which is what we
needed to prove. !

The study of Markov chain mixing times considers the rate of convergence in the
above theorem. A major aim of these notes is to discuss a technique for studying
mixing times that is now well-known to experts but has not yet become fully acces-
sible to non-specialists. We will need to develop some more refined tools in order
to present these methods, but we first give some simple bounds that can be proved
more easily.

Exercise 2.3. Prove the following, quantitative version of Theorem 5. Under the conditions
of Theorem 5, if the state space is finite then there exist constants α ∈ (0, 1) and C > 0
such that for all n and λ,

∥λ(n) − π∥TV ≤ Cαn .

2.2. Mixing times: bounding the speed of convergence. Next, fix an irre-
ducible Markov chain X = (Xn, n ≥ 0) with state space V and stationary distri-
bution π, and for n ≥ 0 write

d(n) = max
v∈V

∥Pv {Xn ∈ ·}− π∥TV;

in words, d(n) is the worst case total variation distance from stationarity at time n. For ϵ > 0
we define

tMIX(ϵ) = min{n ≥ 0 : d(n) ≤ ϵ} .
And call tMIX(ϵ) the ϵ-mixing time of the chain. Exercise 2.3 implies that the pre-
cise choice of ϵ is relatively unimportant; it is relatively standard to write tMIX =
tMIX(1/4) and call tMIX “the” (total variation) mixing time of the chain.

Exercise 2.4. Show that for all n, and any probability distribution λ on V ,
∥Pλ {Xn ∈ ·}− π∥TV ≤ d(n)

By Exercise 2.3, if X has finite state space and is irreducible and aperiodic then
d(n) → 0 exponentially quickly as n → ∞. The subject of mixing times is in large
part concerned with proving more precise bounds on the manner in which d(n)
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tends to zero. When bounding d(n), it is often useful to consider the following,
related quantity: let

d(n) = max
u,v∈V

∥Pv {Xn ∈ ·}−Pu {Xn ∈ ·} ∥TV . (2)

It is immediate by the triangle inequality for the total variation distance that d(n) ≤
2d(n).

Exercise 2.5. (i) Show that

∥Pv {Xn ∈ ·}− π∥TV = max
A⊂V

∣∣∣∣∣
∑

w∈V
π(w) (Pv {Xn ∈ A}−Pw {Xn ∈ A})

∣∣∣∣∣

(ii) Use (i), the triangle inequality and convexity to establish that for alln, d(n) ≤ d(n).

Exercise 2.6. (i) (Levin-Peres-Wilmer, Exercise 4.3) Show that for any two distri-
butions µ, ν on V , we have ∥µP − νP∥TV ≤ ∥µ− ν∥TV.

(ii) Show that both d(·) and d(·) are non-increasing.
(iii) (Harder.) Show that for all n,m ∈ N, d(m + n) ≤ d(m)d(n), but that this

property need not hold for d(·).

Exercise 2.7 (Strong stationary times, harder.).
A stopping time τ is called a strong stationary time if for all v, w ∈ V , and n ≥ 0,

Pv {τ = n,Xτ = w} = Pv {τ = n} · π(w) .
or in other words ifXτ has distribution π and is independent of τ .
(i) Fix v ∈ V . Show that if τ is a strong stationary time then for all n ≥ 0,

d(n) ≤ max
v∈V

Pv {τ > n} ,

and so tMIX(1/4) ≤ 4maxv∈V Ev {τ}.
(ii) Show that strong stationary times always exist for aperiodic irreducible finite chains.

3. Lectures 1-5 (in 4 parts)
3.1. Various notions of mixing, stationary and strong stationary
times, the Green’s function identity. A) Basics.
Our Markov chains usually will be denoted X = (Xt, t ≥ 0); in my part of the
course the Markov chains are all discrete, so t ∈ N = {0, 1, 2, . . .}. In later parts of
the course continuous time Markov chains will also be considered but not for now.
The state space is always assumed finite.
The transitionmatrix isP , soP t describes time-t transition probabilities; P t(x, y) =
P {Xt = y | X0 = x}.
The Markov chain is irreducible if for all u, v there exists t such that P t(u, v) > 0,
and is aperiodic if for all v we have gcd{t ∈ N : P t(v, v) > 0} = 1.
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The ergodic theorem, or fundamental theorem of Markov chains, says that if X (or P ) is irre-
ducible and aperiodic then there exists a unique probability distribution π such that
πP = π (a stationary distribution) and, moreover, for any states u and v,

P t(u, v) → π(v)

as t → ∞. The theory of mixing times itself is about quantifying the ergodic theorem;
understanding the rate at which convergence occurs, under various definitions of
“rate”.
B) Mixing and sampling.
One of the initial motivations for studying mixing times comes from theoretical CS.
Let A = (aij)ni,j=1 be a {0, 1} matrix.

• Determinant of A:
∑

σ permutation
sign(σ)

n∏

i=1

aiσ(i);

computable in polynomial time.
• Permanent of A:

∑

σ permutation

n∏

i=1

aiσ(i);

#P -complete (as hard as counting any NP structures).
Jerrum and Sinclair (1989): If A is dense has at least n/2 ones in any row
then the permanent of A can be approximated to within a multiplicative
1 + o(1) factor in polynomial time.
Technique: reduce to approximately sampling from the stationary distri-
bution in an appropriately defined Markov chain.

• Spanning trees. Suppose A is the adjacency matrix of graph G, aij = 1ij∈E .
If A is dense then the number of spanning trees is super-exponentially large
in n. The natural Markov chain on G, namely a random walk, gives a way
to do without exhaustively generating all trees.

• The web graph. Basically the only way to investigate its properties is through
following links and seeing where they take us. (You may not do this yourself
but this is how Google decides what to show you.)

C) Various definitions of mixing. We said mixing time was about quantifying
the convergence to stationarity in the ergodic theorem; the question is how to mea-
sure distance to stationarity. Given the way that we stated the ergodic theorem, a
natural distance would seem to be

d̂ist∞(P t(u, ·),π(·)) := sup
v

|P t(u, v)− π(v)|.

This is not the best definition. To see why, think chain with n states (where n is
large) where the stationary distribution is uniform, π(v) = 1/n for all v. then for
dist(0) to be small it suffices that Pn(u, v) is small for all u and v - but this doesn’t
mean that the distribution of Xn is close to π. The next exercise is one of many
possible exercises which exhibits the fact that this is not the best definition.
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Exercise 3.1. There exists C > 0 such that for all n ≥ 1 the following holds. Let P be
lazy simple random walk on a cycle of length n, so P (i, i+ 1) = P (i, i− 1) = 1/4 and
P (i, i) = 1/2 for 1 ≤ i ≤ n; here i+1 and i−1 should be understood mod n. Then

(a) dist1(P ⌊n/4⌋,π) ≤ C/n1/2.
(b) For all 1 ≤ i ≤ n there is a set S ⊂ {1, . . . , n} with |S| ≥ n/2 such that

P ⌊n/4⌋(i, S) = 0.

So how should we measure the distance to stationarity? Here are some options.

• Using the ℓp(π)-norms

∥µ∥p :=
(
∑

x∈Ω
|µ(x)|pπ(x)

)1/p

= (EX∼π(µ(x)
p))1/p .

It’s natural to use the stationary measure π as the reference measure since
that’s what we’re measuring distance to. The corresponding distance to
stationarity is

d̂istp(µ, ν) =

(
∑

v∈V
π(v)|µ(v)− ν(v)|p

)1/p

.

The next exercise makes the link with the above notation d̂ist∞.

Exercise 3.2. For any probability measures µ, ν on V ,

lim
p→∞

d̂istp(µ, ν) = sup
v∈V

|µ(v)− ν(v)|

• The above distances still have the problem that d̂istp(µ, ν) is small as soon
as supv max(µ(v), ν(v)) is small. To deal with this it is reasonably natural
to normalize by π, defining

distp(µ, ν) =

(
∑

v∈V
π(v)

(
|µ(v)− ν(v)|

π(v)

)p
)1/p

.

When p = 1, this gives the total variation distance

distTV(µ,π) :=
1

2
dist1(µ,π) =

1

2

∑

v∈V
π(v)

(
|µ(v)− π(v)|

π(v)

).

Total variation distance is very commonly used for measuring distance to
stationarity, due in large part to the link with couplings given in Proposi-
tion 3. Recall that the ϵ-total variation mixing time is defined as

tmix(ϵ) = min{t ≥ 0 : d(t) ≤ ϵ},
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where

d(t) = max
u

distTV(P
t(u, ·),π(·))

= max
u

1

2

∑

v

|Pu {Xt = v}− π(v)|

= max
u

∑

{v:Pu{Xt=v}>π(v)}

(Pu {Xt = v}− π(v)).

• Youmay have seen an ergodic theorem summarized as “time averages equal
space averages”, which says that the long-run proportion of time spent at
state v is given by π(v) for all v. A corresponding notion of convergence is
given by defining

νtu(v) =
1

t

t−1∑

s=0

P s(u, v) =
1

t
Eu#{0 ≤ s < t : Xs = v}.

The Cesaro mixing time is
tCes(ϵ) = min(t : dCes(t) ≤ ϵ) ,

where dCes(t) = maxu distTV(νtu(·),π(·)). The next exercise relates Ce-
saro mixing to total variation mixing. The following exercise provides an-
other link between time averages and space averages.

Exercise 3.3. Show that tCes(1/4) ≤ 6tmix(1/8) and that tCes(1/2k) ≤
ktCes(1/4) for all k ≥ 1.

The second assertion of the exercise is false. To see this, fix ϵ ∈
(0, 1/2] and M ≥ 2 and consider a two-state chain with states u, v and
transition probabilities given by P (u, u) = ϵ = 1−P (u, v) and P (v, v) =
ϵ/M = 1 − P (v, u). This chain has stationary distribution π given by
π(u) = 1/(M + 1), π(v) = M/(M + 1). Also, it is lazy so P t(u, u) is
non-increasing and P t(v, v) is non-increasing.

It can be verified that

P t(u, v) =
M

M + 1

(
1−

(
1− ϵ

(M + 1

M

))t
)

and (necessarily)

P t(u, u) =
1

M + 1

(
1 +M

(
1− ϵ

(M + 1

M

))t
)

For any t we have
(
1− ϵ

(M + 1

M

))t

≤ exp

(
−ϵt
(M + 1

M

))
< e−ϵt

so if t ≥ 2.1/ϵ then

P t(u, u)− π(u) ≤ e−2.1 < 1/8.
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It is similarly straightforward to see that P t(v, v) − π(v) < 1/8. It follows
that tmix(1/8) ≤ ⌈2.1/ϵ⌉ < 3/ϵ, so by Exercise 3.3, tCes(1/4) < 24/ϵ.

On the other hand,
(
1− ϵ

(M + 1

M

))t

≥ 1− tϵ
M + 1

M

so

P t(u, u)− π(u) = P t(u, u)− 1

M + 1
≥ M

M + 1
− tϵ ≥ 2

3
− tϵ.

In particular, if t ≤ 1/(3ϵ) then P t(u, u) − π(u) ≥ 1
3 . We’ll assume for

simplicity that 1/(3ϵ) is an integer.
If t = mtCes(1/4) ≤ m · 24/ϵ then

tνtu(u) =
t∑

s=0

P s(u, u)

≥
1/(3ϵ)∑

s=0

P s(u, u) +
t∑

s=1/(3ϵ)

P s(u, u)

≥
1/(3ϵ)∑

s=0

(P s(u, u)− π(u)) + tπ(u)

≥ tπ(u) +
1

9ϵ

≥ tπ(u) +
t

216m
.

It follows that

dTV (ν
mtCes(1/4)
u (·),π(·)) = νmtCes(1/4)

u (u)− π(u) ≥ 1

216m
,

which shows that tCes(δ) must in fact grow linearly in 1/δ; in particular,
if m is large enough that 2−m < 1/(216m) then this bound rules out the
inequality

tCes(1/2
k) ≤ ktCes(1/4).

Exercise 3.4. Fix a stopping time τ and writeGτ (u, v) for the expected number
of visits v before time τ , starting from u :

Gτ (u, v) = E#{0 ≤ t < τ : Xt = v} =
∑

t≥0

Pu {Xt = v, t < τ} .

(a) [A Green’s function identity.] Show that ifPu {Xτ = u} = 1 then
for all v,

Gτ (u, v) = π(v) ·Eu {τ} ,
by showing that Gτ (u, ·) is stationary for P .
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(b) Consider a random walk on a connected weighted graph G = (V,E) with
edge weights (ce, e ∈ E). Write cv =

∑
e∋v ce and let c =

∑
v cv =

2
∑

e ce.
With Hv

+ = min(t ≥ 1 : Xt = v), show that Ev
{
Hv

+

}
= c/cv .

(c) [The commute-time identity for non-reversible chains.]
Prove that for any distinct states u and v

Eu {#{0 ≤ t ≤ Hv : Xt = u}} = π(u)(Eu {Hv}+Ev {Hu}).
(d) [The edge-commute inequality.] With the same setup as (b), show

thatEu {Hv}+Ev {Hu} ≤ c/cuv . (Hint: Apply (b) to the Markov chain
(Zt)t≥0 given by Zt = (Xt, Xt+1), using the time τ = min(t ≥ 1 :
Xt = v,Xt+1=u).)

• The separation distance is for those with FOMO (fear of missing out); if the
separation distance from stationarity is small then there are no sites which
are substantially “under-weighted”. Formally,

tsep(ϵ) = min(t : dsep(t) ≤ ϵ),

where

dsep(t) = max
u,v

(
1− P t(u, v)

π(v)

)
.

The next exercise asks you to show that separation and total variationmixing
times are equivalent up to polynomial factors. Recall the definition of d
from (2).

Exercise 3.5. (a) Show that d(t) ≤ s(t) and that s(2t) ≤ 1−(1−d(t))2.
(b) Show that d(t) ≤ exp(−⌊t/tmix(1/e)⌋).
(c) Show that tmix(1/e) ≤ tsep(1/e) ≤ 4tmix(1/e).

D) Mixing and stationary times.
We now discuss the connection between stationary times and mixing times. Mix-

ing times are deterministic times at which the randomwalk is guaranteed to approximate
the invariant distribution. Stationary times are random times at which the chain is
guaranteed to have exactly the stationary distribution. More precisely:

• A stopping time τ is a stationary time if for all states v,

P {Xτ = v} = π(v).

• A stopping time τ is a strong stationary time if for all states v,

P {Xτ = v, τ = t} = π(v) ·P {τ = t} .

It is easy to see that, for irreducible finite Markov chains, stationary times exist;
just let U be a random state with distribution π, and let τ = min(t : Xt = U).
(Exercise: τ is finite with probability 1.)

Strong stationary times need not exist (consider a random walk on a bipartite
graph), but they always exist for aperiodic irreducible chains (see the next exercise).



NICE SUMMER SCHOOL ON RANDOM WALKS AND COMPLEX NETWORKS: PART 1 OF THE COURSE ON RANDOM WALKS AND MARKOV CHAINS15

Exercise 3.6. (a) Let t(1) = tsep(1/e). For each state u, construct a stopping time
τu such that

P
{
Xτu = v, τu = kt(1) | X0 = u

}
= e−(k−1)(1− e−1)π(v).

(b) Use part (a) to show that there exists a strong stationary time τ with

E [τ ] ≤
tsep(1/e)
1− 1/e

.

The next theorem provides a link between stationary times and the Cesaro mix-
ing time.

Theorem 6. For any stationary time τ and any state u,

distTV(ν
t
u(v),π(v)) ≤

1

t
Euτ .

Proof. Note that if τ is stationary then τ + s is also stationary:

P {Xτ+s = v} =
∑

u

P {Xτ = u,Xτ+s = v}

=
∑

u

P {Xτ = u}Pu {Xs = v}

=
∑

u

π(u)Pu {Xs = v}

= Pπ {Xs = v}
= π(v) .

We can therefore rewrite

tπ(v) =
t−1∑

s=0

Pu {Xτ+s = v}

=
∑

r≥0

Pu {Xr = v, τ ≤ r < τ + t}

≥
t−1∑

r=0

Pu {Xr = v, τ ≤ r} .

This gives

tνtu(v)− tπ(v) ≤
t−1∑

r=0

Pu {Xr = v, τ > r} ,
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so

tdistTV(ν
t
u(v),π(v)) =

∑

{v:νtu(v)>π(v)}

(tνtu(v)− tπ(v))

≤
∑

v

t−1∑

r=0

Pu {Xr = v, τ > r}

=
t−1∑

r=0

Pu {τ > r}

≤ Eu {τ} . !

It follows from the above bound that

tCes(1/4) ≤ 4max
u

Eu {τ}+ 1.

We next prove a result similar to the above theorem, for strong stationary times.

Theorem 7. If τ is a strong stationary time then for any state u,

distTV(P
t(u, ·),π(·)) ≤ Pu {τ > t} .

Proof. We have

P t(u, v) = Pu {Xt = v}

= Pu {Xt = v, τ > t}+
∑

0≤s≤t

∑

x

Pu {τ = s,Xτ = x,Xt = v}

≤ Pu {Xt = v, τ > t}+
∑

0≤s≤t

∑

x

Pu {τ = s}π(x)Px {Xt−s = v}

= Pu {Xt = v, τ > t}+
∑

0≤s≤t

Pu {τ = s}Pπ {Xt−s = v}

= Pu {Xt = v, τ > t}+Pu {τ ≤ t}π(v)
= Pu {Xt = v, τ > t}+ (1−Pu {τ > t})π(v) ,

so

|P t(u, v)− π(v)| = |Pu {Xt = v, τ > t}− π(v) ·Pu {τ > t} |
≤ Pu {Xt = v, τ > t}+ π(v) ·Pu {τ > t} .

It follows that

2distTV(P
t(u, ·),π(·)) =

∑

v

|P t(u, v)− π(v)|

≤
∑

v

(Pu {Xt = v, τ > t}+ π(v) ·Pu {τ > t})

= 2P {τ > t} .

Since u was arbitrary, this completes the proof. !
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3.2. Hitting times and cover times. We’ve seen that mixing times are con-
trolled by strong stationary times; in this lecture we restrict our attention to re-
versible Markov chains. You saw reversible Markov chains in Section 1.4; recall
that reversibility means that

∀u, v, π(u)P (u, v) = π(v)P (v, u).

Exercise 3.7. Show that if P is reversible with stationary distribution π, then for all t ≥ 1
and all u, v,

π(u)P t(u, v) = π(v)P t(v, u),

so P t is also reversible with stationary distribution π.

The goal of the section is to show that mixing times are controlled by hitting times
from a random site. In this section we always denote Hu = min(t ≥ 0 : Xt = u) for
the first hitting time of state u.

We say a chain P is lazy if P (u, u) ≥ 1/2 for every state u. Equivalently, P is
lazy if it is possible to write P = (Q+ I)/2 where Q is some transition matrix and
I is the identity matrix. Note that lazy chains are automatically aperiodic.

Theorem 8. If P is reversible and lazy with stationary distribution π then

tmix(1/4) ≤ 2max
u

Eπ {Hu}+ 1 ≤ 2thit + 1.

Here thit := maxu,v Euτv is the worst-case expected hitting time between two
states. The theorem clearly fails if the chain is not reversible; a biased random walk
on a cycle of length n has mixing time Θ(n2) but all hitting times are Θ(n) in
expectation.

The theorem also fails if the chain is reversible but not lazy. For this consider
a complete bipartite graph augmented with self-loops of very low weight. If the
weights are sufficiently small then the random walk will with high probability visit
every site before ever following a loop; but until the walk follows a loop it is behaving
periodically so can not mix.

Our proof follows that given in Chapter 10 of Levin-Peres-Wilmer fairly closely.
We require three lemmas. They do not all need the full assumptions of the theorem.

Lemma 9. Assuming reversibility, for all t ≥ 0 and any state u,

P t2+2(u, u) ≤ P 2t(u, u).

Moreover, if P is lazy, so can be written as P = (Q + I)/2, then P t(u, u) is monotone
decreasing for all u.
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Proof. Begin by decomposing π(u)P 2t+2(u, u) according to the locations of the ran-
dom walk at time t and at time t+ 2:

π(u)P 2t+2(u, u)

=
∑

v,w

π(u)P t(u, v)P 2(v, w)P t(w, u)

=
∑

v,w

π(v)P t(v, u)P 2(v, w)P t(w, u)

=
∑

v,w

[P t(v, u)(π(v)P 2(v, w))1/2] · [(π(w)P 2(w, v))1/2P t(w, u)]

This rewriting uses that π(u)P (u, v) = π(v)P (v, u) and that π(v)P (v, w) =
π(w)P (w, v). The terms in the square brackets are related by exchanging v and
w, so the final line has the form

∑

v,w

avwawv.

By Cauchy-Schwartz, this is bounded by

(
∑

v,w

a2v,w)
1/2(

∑

v,w

a2w,v)
1/2 =

∑

v,w

a2v,w.

Plugging this in above gives

π(u)P 2t+2(u, u)

≤
∑

v,w

P t(v, u)2π(v)P 2(v, w)

=
∑

v

P t(v, u)2π(v)

=
∑

v

π(u)P t(u, v)P t(v, u)

= P 2t(u, u) .

To prove the second assertion, simply note that if P = (Q+ I)/2 then P t(u, u) =
K2t(u, u) for an auxiliary chain K. The chain K can be defined by adding a new
“reflector” vertex ruv along each edge uv of the chain Q. Set

K(u, ruv) = Q(u, v)

K(ru,v, u) = K(ru,v, v) = 1/2 if u ̸= v

K(ru,u, u) = 1

Then K is reversible and has stationary measure πK given by

πK(u) = π(u)/2 for u in the original chain
πK(ruv) = π(u)Q(u, v).

Finally, K2(u, v) = P (u, v), so P t+1(u, u) = K2t+2(u, u) ≤ K2t(u, u) =
P t(u, u). !
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The second lemma is a surprising identity for hitting times starting from a ran-
dom site. It does not require reversibility. The sum on the right is not absolutely
convergent but makes sense when interpreted as a limit.

Lemma 10. If P is irreducible and aperiodic and has stationary distribution π, then for any
state u, writing Hu = min(t ≥ 0 : Xt = u),

π(u)Eπ {Hu} =
∑

t≥0

(P t(u, u)− π(u)) .

Proof. We will use the result from Exercise 3.4 (a), applied to the stopping time τ =
Hu

≥m := min{t ≥ m : Xt = u}. This stopping time has the property that
Pu {Xτ = u} = 1, so that exercise tells us that

π(u) ·Eu {τ}
= Gτ (u, u)

=
∑

t≥0

Pu {Xt = u, t < τ}

=
m−1∑

t=0

Pu {Xt = u}

=
m−1∑

t=0

P t(u, u) ,

since the random walk can not visit u at times t ∈ [m, τ − 1) by definition. Also,

Eu {τ} = m+
∑

v

Pu {Xm = v} ·Eu {τ −m | Xm = v}

= m+
∑

v

Pu {Xm = v}Ev {Hu}

= m+Eµm {Hu} ,

where µm is the distribution of Xm when X0 = u. Multiplying both sides by π(u)
and combining with the previous identity gives

π(u)Eµu {Hu} =
m−1∑

t=0

(P t(u, u)− π(u)).

Since µm tends to π as m → ∞, taking a limit in m proves the lemma. !

The final lemma is essentially a careful application of Cauchy-Schwartz.

Lemma 11. Assuming reversibility, for allm ≥ 0 and any state u,

distTV(P
m(u, ·),π(·)))2 ≤ 1

4

(
P 2m(u, u)

π(u)
− 1

)
.
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Proof. We will show that (2distTV(Pm(u, ·),π(·)))2 ≤ P 2m(u,u)
π(u) − 1. To do so,

write

|Pm(u, v)− π(v)| = π(v)1/2 · |P
m(u, v)− π(v)|

π(v)1/2

and apply Cauchy Schwartz to obtain

(
∑

v

|Pm(u, v)− π(v)|)2 ≤ (
∑

v

π(v)) ·
∑

v

(Pm(u, v)− π(v))2

π(v)

Using reversibility to write Pm(u,v)2

π(v) = Pm(u,v)Pm(v,u)
π(u) , the right-hand side is

∑

v

(
Pm(u, v)Pm(v, u)

π(u)
− 2Pm(u, v) + π(v)

)
=

P 2m(u, u)

π(u)
− 1 .

!
Proof of Theorem 8. Fix any state u. Using the hitting time identity (Lemma 10) and
monotonicity (Lemma 9), for any m ≥ 1 we have

Eπ {Hu} =
1

π(u)

∑

t≥0

(P t(u, u)− π(u))

≥ 1

π(u)

2m∑

t=1

(P t(u, u)− π(u))

≥ 2m

π(u)
(P 2m(u, u)− π(u)) ;

dividing though by 2m and using the Cauchy-Schwartz bound (Lemma 11) then
gives

distTV(P
m(u, ·),π(·)))2 ≤ 1

4

(
P 2m(u, u)

π(u)
− 1

)

≤ Eπ {τu}
8m

.

If m ≥ 2maxv Eπ {τv} then the right-hand side is at most 1/16. Since u was
arbitrary, for such m this yields that

max
u

distTV(P
m(u, ·),π(·))) ≤ 1

4
,

so tmix(1/4) ≤ ⌈2maxv Eπ {τv}⌉ ≤ 2maxv Eπ {τv}+ 1. !

Exercise 3.8. [The random target lemma] Show that in any irreducible chain,
for any states u and v, if

∑

x

π(x)Eu {τx} =
∑

x

π(x)Ev {τx} ,

or in shorthand, Eu {τπ} = Ev {τπ}.
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We close the lecture by briefly discussing the cover time

τcov := min(t ≥ 0 : (Xs, 0 ≤ s ≤ t) has visited all the states) = max
v

Hv.

Writing tcov = maxuEu {τcov}, it’s clear from the second identity that

tcov ≥ max
u,v

Eu {Hu} .

Consider a random walk on a connected weighted graph G = (V,E) with edge
weights (ce, e ∈ E). Recall that cv =

∑
e∋v ce and let c =

∑
v cv = 2

∑
e ce. We

next prove an upper bound on the cover time which uses spanning trees of G.

Theorem 12. It holds that

tcov ≤ c ·min
T

∑

e∈T

1

ce
,

where the minimum is over spanning trees T of G.

Proof. Write n = |V |. Fix any state v and spanning tree T , and a “contour” path
v = v0, v1 . . . , v2n−2 of T ; such a path traverses each edge once in each direction.
Then

Ev {τcov} ≤
2n−3∑

j=0

Evj {Hvj+1}

=
∑

e=uv∈T
(Eu {Hv}+Ev {Hu})

≤
∑

e∈T

c

ce
,

the last bound holding by the edge-commute inequality (Exercise 3.4 (d)). !

3.3. Spectral techniques. This section is based on the books by Aldous and
Fill (Section 3.4) and Levin, Peres andWilmer (Sections 12.1 and 2) In this lecture we
restrict attention to reversible chains. For a function f : V → R and a probability
distribution µ on the state space V , we write

Varµ(f) := E
[
(X −EX)2

]

whereX is a random variable with distribution µ. Also, write P tf for the function

x
P tf1−→

∑

y∈V
P t(x, y)f(y).

The main point of the lecture is to understand the consequences of the spectral
representation of reversible, irreducible finite state Markov chains for the mixing
time.

The spectral representation is the following: there exists an orthonormal basis of
eigenfunctions (fi, 1 ≤ i ≤ |V |) with corresponding eigenvalues 1 = λ1 > λ2 ≥
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. . . ≥ λ|V | ≥ −1 such that for any function f : V → R,

P tf ≡
|V |∑

i=1

⟨f, fi⟩πfiλt
i. (3)

Here
⟨f, g⟩π :=

∑

v∈V
f(v)g(v)π(v).

Moreover, f1 can be taken to be identically 1, f1(v) = 1 for all v; this state-
ment is part of what we mean by “the spectral representation”. The fact that
no eigenvalue is greater than 1 is obvious: fix any function f : V → R, let
∥f∥∞ := maxv∈V |f(v)|, and let u ∈ V be such that |f(u)| = ∥f∥∞. Then

|(Pf)(u)| = |
∑

v

P (u, v)f(v)| ≤ ∥f∥∞
∑

v

P (u, v) = ∥f∥∞ = |f(u)|.

The fact that λ2 < 1 is also obvious: π is a left eigenfunction with eigenvalue 1; a
second such eigenfunction would contradict the uniqueness of π.

The statement that (fi, 1 ≤ i ≤ |V |) is an orthonormal basis means that
⟨fi, fj⟩π = 1[i=j] for all 1 ≤ i, j ≤ |V |. The basis decomposition of a function
then states that any function f : V → R can be written as

f ≡
|V |∑

i=1

⟨f, fj⟩πfi. (4)

Exercise 3.9. The functions fi are “right eigenfunctions”: P tfi = λt
ifi. Show that fiπ,

defined by (fiπ)(u) = fi(u)π(u) is a left eigenfunction of P with eigenvalue λi.

Before proving (3), we develop the link withmixing times. Writeλmax = max{|λi|, 2 ≤
i ≤ |V |} for the largest absolute value of a “non-trivial” eigenvalue. The absolute
spectral gap of the chain is defined to be

γ := 1− λmax

and the relaxation time of the chain is trel := 1/γ.

Theorem 13. Let P be a reversible irreducible Markov chain with finite state space V . Write
πmin = minv∈V π(v). Then

log

(
1

2ϵ

)
(trel − 1) ≤ tmix(ϵ) ≤ log

(
1

2ϵπmin

)
trel .

Lemma 14. For any state u ∈ V ,

π(u)

|V |∑

i=1

fi(u)
2 = 1.

Proof. For any u ∈ V , the Dirac delta δu : V → R,
δu(v) = 1[v=u],
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has the representation

δu ≡
|V |∑

i=1

fj(u)π(u)fj .

(To see this, simply apply the basis decomposition to δu and rearrange.) It follows
that

π(u) = ⟨δu, δu⟩π

= ⟨
|V |∑

i=1

fi(u)π(u)fi,

|V |∑

i=1

fi(u)π(u)fi⟩π

= π(u)2
|V |∑

i=1

fi(v)
2.

For the last equality, we use that (fi, 1 ≤ i ≤ |V |) is an orthonormal basis for
⟨·, ·⟩π. !

Lemma 15. The spectral representation (3) is equivalent to the statement that

P t(u, v) = π(v)

⎛

⎝1 +

|V |∑

i=2

fi(u)fi(v)λ
t
i

⎞

⎠ . (5)

Proof. Note that

(P tδv)(u) =
∑

w∈V
P t(u,w)δv(w) = P t(u, v).

Using the spectral representation,

(P tδv)(u) =

|V |∑

i=1

⟨fi, δv⟩πfi(u)λt
i ≡

|V |∑

i=1

fi(v)π(v)fi(u)λ
t
i = π(v)

|V |∑

i=1

fi(u)fi(v)λ
t
i .



24 LOUIGI ADDARIO-BERRY, ANNA BEN HAMOU, AND PERLA SOUSI

Since f1 is identically 1 and λ1 = 1, this establishes (5). For the converse, simply
write

P tf(u) =
∑

v∈V
P t(u, v)f(v)

=
∑

v∈V

⎛

⎝
|V |∑

i=1

fi(u)fi(v)λ
t
i

⎞

⎠π(v)f(v)

=

|V |∑

i=1

fi(u)λ
t
i

(
∑

v∈V
f(v)fj(v)π(v)

)

=

|V |∑

i=1

fi(u)λ
t
i⟨f, fi⟩π

=

⎛

⎝
|V |∑

i=1

⟨f, fi⟩πλt
ifi

⎞

⎠ (u) . !

Proof of Theorem 13. By Lemma 15 we have

|P t(u, v)− π(v)| ≤ π(v) ·
|V |∑

i=2

|fi(u)fi(v)λt
i|

≤ π(v) ·
|V |∑

i=2

|fi(u)fi(v)|λt
max

≤ π(v)λt
max ·

⎛

⎝
|V |∑

i=2

fi(u)
2 ·

|V |∑

i=2

fi(v)
2

⎞

⎠
1/2

By Lemma 14 we know
∑|V |

i=2 fi(u)
2 ≤ 1/π(u), so the preceding bound gives

|P t(u, v)− π(v)| ≤ λt
maxπ(v)√
π(u)π(v)

≤ λt
maxπ(v)

πmin
.

Summing over v gives that

distTV(P
t(u, ·),π(·)) ≤ λt

max

2πmin
=

(1− γ)t

2πmin
≤ e−γt

2πmin
,

so if t ≥ log(1/2ϵπmin)/γ then distTV(P t(u, ·),π(·)) ≤ ϵ. This gives the upper
bound.

For the lower bound, we actually prove that tmix(ϵ) ≥ log(1/2ϵ)
log γ . This implies the

lower bound since 1/ log γ ≥ γ − 1; the latter inequality is equivalent to the fact
that ex ≥ 1 + x for x ≥ 0.
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Fix any eigenfunction fj with j ̸= 1 Since fj is orthogonal to f1 ≡ 1, we have
∑

v∈V
π(v)fj(v) = ⟨f1, fj⟩π = 0.

Thus, for any t ≥ 0, writing ∥fj∥∞ = maxv∈V |fj(v)|, and let u be such that
|fj(u)| = ∥fj∥∞. Then

|λt
j |∥fj∥∞ = |λt

jfj(u)|
= |(P tfj)(u)|

=

∣∣∣∣∣
∑

v∈V
P t(u, v)fj(v)

∣∣∣∣∣

=

∣∣∣∣∣
∑

v∈V
(P t(u, v)fj(v)− π(v)fj(v))

∣∣∣∣∣

≤ ∥fj∥∞ ·
∑

v∈V
|P t(u, v)− π(v)|

≤ 2∥fj∥∞distTV(P
t(u, ·),π(·)) ,

so |λj |t ≤ 2distTV(P t(u, ·),π(·)). Taking t = tmix(ϵ) and maximizing over j ̸= 1
gives

λtmix(ϵ)
max ≤ 2ϵ.

Taking logs and rearranging gives

tmix(ϵ) ≥
log(1/2ϵ)

log(1/λmax)
=

log(1/2ϵ)

log γ

!

Exercise 3.10. [The Poincaré inequality] Fix a reversible chain with state space
V and stationary distribution π. Prove that for any function f : V → R, for all t ≥ 0,

Varπ(P
tf) ≤

(
1− 1

trel

)2t

Varπ(f).

Exercise 3.11. Prove the first assertion of Lemma 9 using the spectral representation of
reversible transition matrices.

Our proof of (3) is not self-contained; it relies on the spectral theorem for sym-
metric matrices. P is not symmetric, but since it is reversible, if we defineQ(u, v) =

(π(u)π(v) )
1/2P (u, v) thenQ is symmetric. It’s useful to rewrite this asQ = D1/2PD−1/2,

where D = diag(π) is the diagonal matrix with D(u, u) = π(u). This makes it
obvious that (π)1/2 is an eigenvector of Q with eigenvalue 1.

The spectral theorem states that there exists an orthonormalmatrixM = (M(u, v))u,v∈V
such that

Q = M tΛM,
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whereΛ = diag(λi, 1 ≤ i ≤ n) is the diagonal matrix with the eigenvaluesλi along
the diagonals. (The ordering of the λi is achieved simply by indexing appropriately.)
We can think of the columns of M as eigenfunctions (gi, 1 ≤ i ≤ |V |): we have
(Mgi)j = δi(j),

(Qgi)j = (M tΛMgi)j = M tλiδi(j) = λigi.

Orthonormality means ⟨gi, gj⟩ = 1[i=j], where ⟨·, ·⟩ is the usual inner product on
R|V |. Recall we have g1 = (π)1/2.

Defining fi = D−1/2gi, since P = D−1/2QD1/2, we have

Pfi = D−1/2QD1/2fi = D−1/2Qgi = D−1/2λigi = λifi.

We then have

⟨fi, fj⟩π =
∑

v∈V
fi(v)fj(v)π(v) = ⟨D1/2fi, D

1/2fj⟩ = ⟨gi, gj⟩,

so (fi, 1 ≤ i ≤ |V |) are orthogonal for ⟨·, ·⟩π.
Finally, using that

δv ≡
|V |∑

i=1

fi(v)π(v)fi,

we have

P t(u, v) = (P tδv)(u)

=

|V |∑

i=1

fi(v)π(v)(P
tfi)(u)

=

|V |∑

i=1

fi(v)π(v)λ
t
ifi(u)

= π(v)

⎛

⎝1 +

|V |∑

i=2

fi(u)fi(v)λ
t
i

⎞

⎠ ,

which by Lemma 15 is equivalent to (3).

3.4. The Lovász Local Lemma and sampling uniform spanning
trees using random walks. The current section is adapted from the paper
“Uniform sampling through the Lovász local lemma”, by Heng Guo, Mark Jerrum
and Jingcheng Liu. We first describe the framework.

• Let X = (Xi, 1 ≤ i ≤ n) be independent random variables, with Xi

having distribution µi and taking values in some set Si.
• Fix a finite sequence (A1, . . . , Am) of “bad events”. For each 1 ≤ ℓ ≤ m
there is a set var(ℓ) ⊂ [n]; the random variables (Xi, i ∈ var(ℓ) determine
whether Aℓ occurs. In other words, one may think of Aℓ as a function,
Aℓ :

∏n
i=1 Si → {0, 1}, so that

A(x) = A(y)
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whenever (xi, i ∈ var(ℓ)) = (yi, i ∈ var(ℓ)). (The idea being that A(x) =
1 means “A(x)” occurs when X = x.)

• The dependency graph of {A1, . . . , Am} is the graphD = (V,E) with vertices
V = [m] and with {k, ℓ} ∈ E if and only if var(k) ∩ var(ℓ) ̸= ∅.

Theorem 16 (Asymmetric Lovász local lemma). Suppose there exists c ∈ [0, 1)m such
that for all i ∈ [m],

P {Ai} ≤ ci ·
∏

(i,j)∈E

(1− cj).

Then

P {None of the bad events occur} ≥
m∏

i=1

(1− ci) > 0.

We will not prove the local lemma, but instead focus on how to sample good from
“good configurations” (where no bad events occur) in the setting of the LLL.

Example: Uniform spanning trees. Fix a connected graph G = (V,E) and a
“root” node r ∈ V . For each u ̸= r let Xu be a uniformly random neighbour of u
(equivalently, a uniformly random edge incident to u).

A directed cycle inG is a sequenceC = (c0, c1, . . . , cm) of vertices with cm = c0.
For each directed cycleC letAC be the (bad) event thatXcj = cj+1 for 1 ≤ j < m.

Note that no bad events occur precisely if the set of edges {(u,Xu), u ̸= r} forms
the edge set of a spanning tree; in this case, viewing the spanning tree as rooted at
r, all edges are oriented toward the root.

Note also that for any spanning tree T of G

P {{(u,Xu), u ̸= r} = E(T )} =
∏

u ̸=r

1

deg(u)
;

so if {(u,Xu), u ̸= r} happens to comprise the edges of a tree, then it distributed
as a uniform spanning tree of T . If {(u,Xu), u ̸= r} does not form a tree, the next
algorithm will get rid of the cycles for us.

We now describe the “partial rejection sampling” algorithm for resampling bad
events.

Partial Rejection Sampling Algorithm
(1) Draw independent samples of all random variables X1, . . . , Xn from their

respective distributions
(2) While at least one bad event occurs, independently resample all variables in⋃

i:Ai occurs var(Ai).
(3) Output the current assignment.

We say the dependency graph D is extremal if any two events Ai and Aj are either
independent or they are disjoint. In other words, D is extremal if Ai ∩ Aj = ∅ for
all (i, j) ∈ E.
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Theorem 17 (Wilson; Guo and Jerrum and Liu, 2016). IfD is extremal then the output
of the PRS Algorithm is a sample from the product distribution: For any z = (zi, 1 ≤ i ≤ n) ∈∏n

i=1 Si,

P {PRS outputs z} ∝
n∏

i=1

P {Xi = zi} .

The theorem implies that, in the spanning tree example, the output of the PRS
algorithm is a uniform spanning tree.

We analyze the PRS algorithm using stack popping. The idea of stack popping is the
following. The algorithm involves resampling random variables; imagine that we
have pre-computed and stored such samples before running the algorithm. This equips
us with a stack xi = (xi,j , j ≥ 0) of possible values ofXi, for each 1 ≤ i ≤ n. The
initial state of the algorithm is Xi = xi,0 for each i.

At the start of the algorithm (step 1), when we look at the stacks “from above”
we simply see the initial values xi,0 of the random variables. When we resample
a bad event Aℓ, we “pop the stacks” in var(Aℓ), removing the top element of the
stack and throwing it away. Write j(i, t) for the number of times that Xi has been
resampled up to step t of the algorithm. Then the current values at step t are
x(t) := (xi,j(i,t−1), 1 ≤ i ≤ n).

If Aℓ(x(t)) occurs and we choose to resample Aℓ at step k, then we simply in-
crement the number of times variables in var(Aℓ) have been resampled:

j(i, k + 1) =

{
j(i, k) if i /∈ var(Aℓ)

j(i, k + 1) if i ∈ var(Aℓ) .

Let σx = max(t : ∃i, Ai(x(t− 1)) occurs). Write

x∗ = ((xi,j(i,s), 0 ≤ s ≤ σ), 1 ≤ i ≤ n).

We call x∗ the log of the algorithm; it keeps track of all information associated with
running the PRS Algorithm on stacks x. Note that σx∗ = σx, since by the definition
of σx, Ai(x(σx)) = Ai(x∗(σx)) does not occur for any 1 ≤ i ≤ n. We write
σ = σx for the rest of the proof.

Next fix sequences

x′ = ((x′i,j(i,s), 0 ≤ s ≤ σ), 1 ≤ i ≤ n)

which can be obtained from x by only changing the final value in each vector, and
only such that the final assignment is still valid. Formally, we require x′ to satisfy
that

x′i,j(i,s) = xi,j(i,s)

whenever j(i, s) < j(i,σx), and that Ai(x′(σ)) does not occur for all 1 ≤ i ≤ n.
We claim that for all t < σ,

{i : Ai(x
∗(t)) occurs} = {i : Ai(x(t)) occurs} = {i : Ai(x

′(t)) occurs} (6)

The first equality is obvious. We prove the second by contradiction. Suppose there
is t < σ such that {i : Ai(x(t)) occurs} ̸= {i : Ai(x′(t)) occurs}. Let t0 be the
smallest such step, and fix a bad event A such that A(x′(t0)) occurs but A(x(t0))
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does not occur. Then there is i ∈ var(A) such that j(i, t0) = j(i,σ), as this is the
only way for x(i, j(i, t0)) and x′(i, j(i, t0)) to differ.

Let I = {i ∈ var(A) : j(i, t0) = j(i,σ)}. By assumption, A(x′(σ)) does
not occur, so it can not be that I = var(A). Each element k of var(A) \ I has
j(k, t0) < j(k,σ), so is resampled after time t0 when running Algorithm 2 on x.

Let kmin be the index of the first element of var(A) \ I to be resampled after
time t0, and say kmin is resampled at time t1. Let B be the event which causes this
resampling, so B(x(t1)) occurs and kmin ∈ var(B).

Note that if k ∈ var(B) then Xk is resampled at time t1 so j(k, t1) < j(k,σ)
and thus k ̸∈ I . Write J = var(A) ∩ var(B); this is non-empty since in particular
kmin ∈ J . Moreover, J ⊂ var(A) \ I .

We have that j(k, t0) = j(k, t1) for all k ∈ var(A)∩var(B), since kmin was the
first resampling event to affect var(A) \ I after t0. It follows that it is well-defined
to set

yi =

⎧
⎪⎨

⎪⎩

x(i, j(i, t0)), i ∈ var(A)

x(i, j(i, t1)), i ∈ var(B)

x(i, j(i,σ)), i ̸∈ var(A) ∪ var(B).

We have assigned both value x(i, j(i, t0)) and value x(i, j(i, t1)) to elements of
var(A) ∩ var(B), but that is OK since these values are the same. By construc-
tion, A(y) and B(y) both occur, so the events are not disjoint. But also var(A) ∩
var(B) ≠ ∅ so A and B are not independent. This contradicts the assumption of
extremality.

Proof of Theorem 17. Fix points z = (zi, 1 ≤ i ≤ n) and z′ = (z′i, 1 ≤ i ≤ n) with
zi ∈ Si and z′i ⊂ Si for each 1 ≤ i ≤ n, such that no bad events occur for z or
z′ (i.e. Aj(z) and Aj(z′) do not occur for 1 ≤ j ≤ m). Equation (6) implies that
there is a bijection between sequences x yielding a log x∗ with x∗(σx∗) = z and
sequences yielding log x′ with x′(σx′) = z′. It follows that

P {PRS outputs z} =
∑

x∗:x∗(σx∗ )=z

P {PRS has logx∗(σx∗)}

=
n∏

i=1

P {Xi = z′i}
P {Xi = z′i}

∑

x∗:x∗(σx∗ )=z′

P {PRS has logx∗(σx∗)}

=
n∏

i=1

P {Xi = z′i}
P {Xi = z′i}

P
{
PRS outputs z′

}
,

and the result follows. !

Exercise 3.12. Suppose that instead of resampling all bad events simultaneously, we resam-
ple bad events one-at-a-time according to some rule R. Show that for any t ≤ σx and 1 ≤
k ≤ m, if Ak((xi,j(i,t), i ∈ var(k)) occurs and so the entries of (xi,j(i,t), i ∈ var(k))
are resampled, then (xi,j(i,t), i ∈ var(k)) is also resampled when we resample according to
ruleR. This implies that the choice of rule doesn’t change the set of events which are resampled,
or the outcome of the algorithm.
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Analyzing the uniform spanning tree example: Wilson’s algorithmTo an-
alyze the running time of the PRS algorithm on the uniform spanning tree example,
we exploit the Abelian property of the PRS algorithm given by Exercise 3.12. In-
stead of resampling all cycles at once, use the stacks to simulate a simple random
walk on G. A simple random walk has Pu {X1 = v} = 1

deg(v)1[uv∈E], in agree-
ment with the random variables on the stacks.

So fix a starting node u, and let (Xi, 0 ≤ i ≤ Hr) be random walk run starting
from u and run until it hits r, where the values of the random walk steps are taken
from the stack. Each time the random walk “finds a bad event” (its trace forms a
cycle), pop the bad event from the stack and delete the cycle from the trace. This
is “loop-erased random walk. Its result is a path from u to r containing no loops.
Once this path Pu has been formed, choose another starting node v and run loop-
erased random walk from v to Pu, again drawing the random walk steps from the
stack. This builds a path Pv from v to Pu. Repeat in this manner until the union of
the paths covers all the vertices; this is (an alternative description of) the spanning
tree built by the PRS algorithm.

Proposition 18. The expected number of random samples queried by the PRS algorithm for
building a uniform spanning tree of G rooted at r is at most

∑

u ̸=r

π(u)(EuH
r +ErH

u) ≤ 2thit

Proof. Note that the number of random variables queried by the PRS algorithm is
just

∑
u ̸=r j(u,σ), where σ is the halting time of the algorithm. By the Abelian

property, j(u,σ) is the same as the number of times Xu is resampled in the loop-
erased random walk construction started from u at time 0. The latter value is just
the number of returns to u before Hr. By Exercise 3.4 (c), it follows that

E [j(u,σ)] = Eu {#{0 ≤ t ≤ τr : Xt = u}} = π(u)(EuH
r +ErH

u).

The result follows. !


