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1 Cutoff on trees

In this first section, we present a result of Basu, Hermon, and Peres [1] which states that the

product condition is a sufficient condition for cutoff for random walks on trees. This follows

from the characterization of cutoff in terms of concentration of hitting times of “worst” sets,

given in the same paper.

Let us first recall some definitions. Let P be the transition matrix of an irreducible Markov

chain (Xt)t≥0 on a finite state space Ω, with stationary distribution π. The worst-case total

variation distance to equilibrium at time t is defined as

D(t) = max
x∈Ω
Dx(t) , where Dx(t) = ‖Px(Xt ∈ ·)− π‖tv ,

and, for 0 < ε < 1, the ε-mixing time is defined as

tmix(ε) = min{t ≥ 0 , D(t) ≤ ε} .

We set tmix = tmix(1/4). We say that the chain is reversible if, for all x, y ∈ Ω, π(x)P (x, y) =

π(y)P (y, x), and that it is lazy if, for all x ∈ Ω, P (x, x) ≥ 1/2. For an irreducible, reversible,

lazy chain, let

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ 0

be the eigenvalues of P in decreasing order. The relaxation time is defined as

trel =
1

1− λ2
·

Mixing and relaxation times are related by the following inequality (see Levin and Peres [11,

Theorems 12.4 and 12.5]):

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ trel log

(
1

2επmin

)
, (1.1)

where πmin = minx∈Ω π(x).

A sequence of chains (Ωn, Pn, πn) is said to exhibit cutoff if for all 0 < ε < 1,

t
(n)
mix(ε)

t
(n)
mix(1− ε)

−→
n→∞

1 .

Equivalently,

D(n)
(
c t

(n)
mix

)
−→
n→∞

{
1 if c < 1,

0 if c > 1.

We say that the sequence has cutoff window wn if wn = o(tmix) and for any ε ∈]0, 1[, there

exists cε > 0 such that

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn .

From inequality (1.1), one easily deduces that a necessary condition for cutoff is

t
(n)
mix

t
(n)
rel

−→
n→∞

+∞ . (1.2)
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This is known as the product condition and it is conjectured to be sufficient for a “large” class

of Markov chains. In [1], it was shown to be sufficient for lazy weighted nearest-neighbor

random walks on trees.

Theorem 1.1. Let P be the transition matrix of a lazy reversible Markov chain on a tree

T = (V,E), with |V | ≥ 3. Then, for all ε ∈]0, 1/4],

tmix(ε)− tmix(1− ε) ≤ 35
√
ε−1treltmix .

In particular, if (Pn) is a sequence of such chains and if the product condition holds, then the

sequence has a cutoff with window wn =

√
t
(n)
relt

(n)
mix.

This result is a consequence of the relations between mixing times and hitting times,

presented in previous lectures. For A ⊂ Ω, let

τA = min{t ≥ 0 , Xt ∈ A}

be the hitting time of A. For α, ε ∈]0, 1[, let

hitα(ε) = min{t ≥ 0 , max
x∈Ω

max
A⊂Ω, π(A)≥α

Px(τA > t) ≤ ε} .

For any reversible irreducible finite lazy chain and any ε ∈]0, 1/4], we have

hit1/2(3ε/2)− d2trel log(1/ε)e ≤ tmix(ε) ≤ hit1/2(ε/2) + dtrel log(4/ε)e , (1.3)

and

hit1/2(1−ε/2)−d2trel log(1/ε)e ≤ tmix(1−ε) ≤ hit1/2(1−2ε)+1ε>1/18

⌈
1

2
trel log(8)

⌉
. (1.4)

Before proving Theorem 1.1, let us state two results on hitting times that hold for any

finite irreducible reversible chains (actually, the second one does not require reversibility).

Recall that the conductance of A ⊂ Ω, A 6= ∅ is defined as

Φ(A) =
1

π(A)

∑
x∈A

π(x)
∑
y∈Ac

P (x, y) = PπA(X1 6∈ A) ,

where πA is the distribution π conditioned on A, i.e. πA(z) = π(A)−1π(z)1z∈A.

Lemma 1.2. Let (Ω, P, π) be a finite irreducible reversible Markov chain and A ⊂ Ω, A 6= ∅.
Then, for all t ≥ 0,

PπAc (τA > t) ≤
(

1− π(A)

trel

)t
.

Lemma 1.3. Let (Ω, P, π) be a finite irreducible Markov chain and A ⊂ Ω, A 6= ∅. Let ψAc

be the probability measure on Ac given by

∀y ∈ Ac , ψAc(y) = PπA
(
X1 = y

∣∣ X1 ∈ Ac
)
.
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Then, for all t ≥ 1,
PπAc (τA = t)

Φ(Ac)
= PψAc (τA ≥ t) . (1.5)

Consequently,

EψAc [τA] =
1

Φ(Ac)
, (1.6)

and

EψAc [τ
2
A] = EψAc [τA] (2EπAc [τA]− 1) . (1.7)

Proof of Lemma 1.3. First note that for t ≥ 1, π(Ac)PπAc (τA = t) = Pπ(τA = t). Writing

{τA = t} = {X0 6∈ A, . . . ,Xt−1 6∈ A,Xt ∈ A} ,

and using stationarity, we have

Pπ(τA = t) = Pπ (X1 6∈ A, . . . ,Xt 6∈ A,Xt+1 ∈ A)

= Pπ (X1 6∈ A, . . . ,Xt 6∈ A)− Pπ (X1 6∈ A, . . . ,Xt 6∈ A,Xt+1 6∈ A)

= Pπ (X1 6∈ A, . . . ,Xt 6∈ A)− Pπ (X0 6∈ A, . . . ,Xt 6∈ A)

= Pπ (X0 ∈ A,X1 6∈ A, . . . ,Xt 6∈ A)

= π(A)Φ(A)PψAc (X0 6∈ A, . . . ,Xt−1 6∈ A)

= π(A)Φ(A)PψAc (τA ≥ t) .

Equation (1.5) is then established after noticing that

π(A)Φ(A) = π(Ac)Φ(Ac) .

Summing (1.5) over t ≥ 1 yields (1.6), and (1.7) follows from

∑
t≥1

(2t− 1)PψAc (τA ≥ t) = EψAc

∑
t≥1

(2t− 1)1t≤τA

 = EψAc
[
τ2
A

]
.

�

Let us now move to the proof of Theorem 1.1. Let T = (V,E) be a finite tree and let P be

the transition matrix of a lazy chain on T , i.e. such that P (x, y) > 0 iff {x, y} ∈ E or x = y,

in which case P (x, x) ≥ 1/2. Let π be the stationary distribution of P . By Kolmogorov’s

cycle condition, P is reversible with respect to π.

The first step of the proof of Theorem 1.1 consists in showing that hit1/2(ε) is well approximated

by

tρ(ε) = min{t ≥ 0 , max
x∈Ω

Px(τρ > t) ≤ ε} ,

where ρ is a central vertex in tree T , i.e. a vertex v ∈ V such that each connected component

of T \ {v} has stationary probability at most 1/2. There always either one or two central

vertices in a tree. Throughout this section, we fix a central vertex ρ and call it the root of the

tree.

For all v ∈ V \ {ρ}, if (v0 = v, v1, . . . , vk = ρ) is the shortest path from v to ρ in T , we call

p(v) = v1 the parent of v and we write u ≺ v if u = v` for some ` ∈ {0, . . . , k} (inducing a

partial order on V ).
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Lemma 1.4. For all 0 < ε < 1,

tρ(ε) ≤ hit1/2(ε) ≤ tρ(ε/2) +

⌈
4trel log

(
9

2ε

)⌉
.

Proof of Lemma 1.4. By definition of a central vertex, for all x ∈ V \ {ρ}, there exists A with

π(A) ≥ 1/2 such that the chain started at x cannot hit A without first hitting ρ. Hence

tρ(ε) ≤ hit1/2(ε) .

In the other direction, take A ⊂ V with π(A) ≥ 1/2, x ∈ V and sε = d4trel log(9/2ε)e for

0 < ε < 1. By Markov property and definition of τρ(ε/2),

Px (τA > tρ(ε/2) + sε) ≤ Px (τρ > tρ(ε/2)) + Pρ (τA > sε) ≤
ε

2
+ Pρ (τA > sε) .

It remains to show that Pρ (τA > sε) ≤ ε/2. If ρ ∈ A, this is trivially verified. Let us assume

that ρ 6∈ A. Note that T \ {ρ} can be partitioned into T1 ∪ T2 such that both T1 and T2

are unions of components of T \ {ρ} and have stationary mass at most 2/3. Moreover, since

π(A) ≥ 1/2, we may assume without loss of generality that π(A1) ≥ 1/4, where A1 = A ∩ T1.

Let B = T2 ∪ {ρ}. Since the chain started from any vertex in B must hit ρ before hitting A1,

we have

Pρ (τA > sε) ≤ Pρ (τA1 > sε) ≤ PπB (τA1 > sε) .

By Lemma 1.2,

PπB (τA1 > sε) ≤
π(Ac1)

π(B)

(
1− π(A1)

trel

)sε
≤ 3 · 3

4

(
1− 1

4trel

)4trel log(9/2ε)

≤ ε

2
,

where we used that π(B) ≥ 1/3 and that 1/4 ≤ π(A1) ≤ 1/2. �

Lemma 1.5. Let ∆ = maxx∈V Ex[τρ]. For all ε ∈]0, 1/4[,

tρ(ε) ≤ ∆ +
√

4ε−1∆trel and tρ(1− ε) ≥ ∆−
√

4ε−1∆trel

Proof of Lemma 1.5. For all x ∈ V ,

Px
(
τρ > ∆ +

√
4ε−1∆trel

)
≤ Px

(
τρ − Ex[τρ] >

√
4ε−1∆trel

)
≤ εVarx(τρ)

4∆trel
,

where the last inequality is by Chebychev Inequality. Let (v0 = x, v1, . . . , vk = ρ) be the path

from x to ρ. Define τi = τvi − τvi−1 . Note that, under Px, τρ =
∑k

i=1 τi and that τ1, . . . , τk are

independent. Hence

Varx(τρ) =
k∑
i=1

Varvi−1(τvi) ≤
k∑
i=1

Evi−1

[
τ2
vi

]
.

Recall that for u ∈ V \ {ρ}, p(u) denotes the parent of u in T . Applying Lemma 1.3 to Ac =

{v ∈ T, u ≺ v}, noticing that, by the tree structure, ψAc(y) = δu(y) and Eu[τA] = Eu
[
τp(u)

]
,

we obtain

Eu
[
τ2
p(u)

]
= Eu

[
τp(u)

]
(2EπAc [τA]− 1) ≤ 2Eu

[
τp(u)

] trel
π(A)

≤ 4Eu
[
τp(u)

]
trel ,
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where the penultimate inequality uses EπAc [τA] = π(Ac)−1Eπ[τA] ≤ π(A)−1trel by summing

over t ≥ 0 in Lemma 1.2, and the last inequality uses π(A) ≥ 1/2 by centrality of ρ. Hence

Varx(τρ) ≤ 4∆trel , (1.8)

and

Px
(
τρ > ∆ +

√
4ε−1∆trel

)
≤ ε ,

establishing the first inequality of the lemma. For the second one, take x ∈ V such that

Ex[τρ] = ∆. Then, again by Chebychev Inequality and by (1.8),

Px
(
τρ ≤ ∆−

√
4ε−1∆trel

)
≤ ε .

Hence Px(τρ > ∆−
√

4ε−1∆trel) ≥ 1− ε and tρ(1− ε) ≥ ∆−
√

4ε−1∆trel. �

We are now ready to prove Theorem 1.1. Fix ε ∈]0, 1/4]. By (1.3) and (1.4), we have

tmix(ε)− tmix(1− ε) ≤ hit1/2(ε/2)− hit1/2(1− ε/2) +

⌈
trel log

(
4

ε

)⌉
+

⌈
2trel log

(
1

ε

)⌉
.

Using Lemma 1.4 with ε replaced by ε/2, we get

hit1/2(ε/2)− hit1/2(1− ε/2) ≤ tρ(ε/4)− tρ(1− ε/2) +

⌈
4trel log

(
9

ε

)⌉
.

By Lemma 1.5,

tρ(ε/4)− tρ(1− ε/2) ≤ (4 + 2
√

2)
√
ε−1∆trel .

The proof is then concluded (modulo some additional work to get the constant 35, which we

won’t do here) by observing that

∆ ≤ 4tmix .

Indeed, let x ∈ V and let A = V \Cx where Cx is the component of T \ {ρ} which contains x.

Clearly, Ex[τρ] = Ex[τA]. Letting τ̃A = min{k ≥ 0 , Xktmix ∈ A}, we have τA ≤ tmixτ̃A, and, by

definition of tmix and the fact that π(A) ≥ 1/2, the variable τ̃A is stochastically dominated by

a Geometric variable with parameter 1/4, which yields Ex[τρ] ≤ 4tmix.
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2 The configuration model

Given a finite set V of size |V | = n and a function d : V → {2, 3, . . .} such that

N =
∑
v∈V

d(v)

is even, we can construct a graph G with vertex set V and degrees (d(v))v∈V as follows. We

form a set H by “attaching” d(v) half-edges to each vertex v ∈ V :

H = {(v, i) : v ∈ V, 1 ≤ i ≤ d(v)}.

We then choose a pairing η on H (i.e., an involution without fixed points), and interpret every

pair of matched half-edges {x, η(x)} as an edge between the corresponding vertices. Loops

and multiple edges are allowed. The configuration model is the random graph obtained by

choosing η uniformly at random among the (N − 1)!! possible pairings of H. We will say that

w

u

v

w w

u

v

w w

u

v

w

Figure 1: A set of half-edges H, a pairing η and the resulting graph G

two half-edges x = (u, i) and y = (v, j) are neighbors if u = v a,d i 6= j. The degree of a

half-edge x = (u, i) is then defined as its number of neighbors, i.e.

deg(x) = d(u)− 1 .

The non-backtracking random walk (nbrw) on G is the Markov chain on H with transition

matrix

P (x, y) =

{
1

deg(η(x)) if y is a neighbor of η(x),

0 otherwise.

The matrix P is not symmetric. However, it enjoys the following symmetry property with

respect to the pairing η:

∀x, y ∈ H, P (x, y) = P (η(y), η(x)) . (2.1)

The simple random walk (srw) on G is the Markov chain on V with transition matrix

Q(u, v) =

{
1

d(u) if v is a neighbor of u,

0 otherwise.
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u v
x η(x)

y

Figure 2: A non-backtracking move

Matrix P has stationary distribution uniform over H and matrix Q has stationary distribution

given by

∀u ∈ V , π(u) =
d(u)

N
·

Some definitions and notation

• Let ∆ = maxv∈V d(v) be the maximum degree.

• For x ∈ H and k ∈ N, let Bk(x) be the subgraph induced by the half-edges which are at

non-backtracking distance less than or equal to k from x.

• The excess of Bk(x) is the maximum number of edges that can be deleted from Bk(x)

while keeping it connected.

• We call x a k-root if Bk(x) is a tree, i.e. if the excess of Bk(x) is zero.

Let us start with a simple but crucial result, which illustrates the locally tree-like structure of

G in the sparse regime.

Lemma 2.1. Let L =
⌊

1
5 log∆−1(N)

⌋
. For all x ∈ H,

P(ex(BL(x) ≥ 1) = o(1) and P(ex(BL(x) ≥ 2) = o

(
1

N

)
.

In particular, whp, the excess is at most 1 in all L-neighborhoods.

Proof of Lemma 2.1. The ball of radius L around x can be generated sequentially, its half-

edges being paired one after the other with uniformly chosen other unpaired half-edges, until

the whole ball has been paired. Observe that at most k = (∆−1)L pairs are formed. Moreover,

for each of them, the number of unpaired half-edges having an already paired neighbor is at

most (∆− 1)L and hence the conditional chance of hitting such a half-edge (thereby creating

a cycle) is at most p = (∆−1)L−1
N−2k−1 . Thus, the probability that one cycle is formed is at most

kp = O

(
(∆− 1)2L

N

)
= O(N−3/5) ,
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and the probability that more than one cycle is found is at most

(kp)2 = O

(
(∆− 1)4L

N2

)
= O(N−6/5).

�

Lemma 2.2. Assume that d = minv∈V d(v) ≥ 3. Let K =
⌊

1
6 log∆−1(N)

⌋
and let R be the

set of K-roots. Then, for all s ≤ L−K,

max
x∈H

P s(x,H \R) ≤ 2(d− 1)−s + oP(1) .

Proof of Lemma 2.2. By Lemma 2.1, whp, for all x ∈ H, the ball BL(x) has at most one

cycle, with L =
⌊

1
5 log∆−1(N)

⌋
. Fix a graph G with this property. We prove that the nbrw

on G starting from any x ∈ H satisfies

P s(x,H \R) ≤ 2(d− 1)−s, (2.2)

for all s ≤ L−K. The claim is trivial if the ball of radius L around x is acyclic. Otherwise,

it contains a single cycle C, by assumption. Write d(x, C) for the minimum length of a

non-backtracking path from x to some z ∈ C. The non-backtracking property ensures that

if d(Xs, C) < d(Xs+1, C) for some s < L − K, then Xs+1, Xs+2, . . . , XL−K are all K-roots.

Indeed, as soon as the nbrw makes a step away from C on one of the disjoint trees rooted

to C, it can only go further away from it. The conditional chance that d(Xs+1, C) ≤ d(Xs, C)
given the past is at most 1

d−1 (unless d(Xs, C) = 1, which can only happen once). This

shows (2.2). �
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3 Cutoff for NBRW on regular random graphs

Let d ≥ 3 be a fixed integer and let G = Gn,d be the random graph formed by the configuration

model on vertex set V with |V | = n and constant degree sequence: d(v) = d for all v ∈ V .

The number of half-edges is N = dn. We are interested in the asymptotics (in n) of

tmix(ε) = min{t ≥ 0, D(t) ≤ ε} ,

where

D(t) = max
x∈H

∑
y∈H

(
1

N
− P t(x, y)

)
+

.

In a seminal paper, Lubetzky and Sly [13] showed the following.

Theorem 3.1. For d ≥ 3, whp, the nbrw on Gn,d has cutoff at time logd−1(N), with a

window of constant order1. More precisely, for all 0 < ε < 1, whp,

tmix(1− ε) ≥ blogd−1(N)c − dlogd−1(1/ε)e ,

and

tmix(ε) ≤ dlogd−1(N)e+ 3dlogd−1(1/ε)e+ 4 .

Let us start with the lower bound, which comes from a simple counting argument and is

actually valid on any d-regular graph. Fix a starting point x ∈ H. Let t = blogd−1(εN)c, and

let A be the set of half-edges which are reachable by a nbrw of length t started at x. Then,

P t(x,A) = 1 and

π(A) ≤ (d− 1)t

N
≤ ε ,

implying Dx(t) ≥ 1− ε. Hence tmix(1− ε) ≥ t ≥ blogd−1(N)c − dlogd−1(1/ε)e.

Let us now move to the upper bound. The first step is to reduce the maximization over

“nice” starting points. Recall that K =
⌊

1
6 logd−1(N)

⌋
and that R is the set of K-roots. By

Lemma 2.2 applied to s =
⌈
logd−1(2/ε)

⌉
, we have

max
x∈H

P s(x,H \R) ≤ ε+ oP(1) .

Take

t = 2

⌈
1

2
logd−1(N) +

3

2
logd−1(1/ε)

⌉
.

By the inequality

D(t+ s) ≤ max
x∈H

P s(x,H \R) + max
x∈R
Dx(t) ,

we see that we may consider starting points which are K-roots.

1For x, a > 0, loga(x) = log(x)
log(a)

.
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To get the constant order for the window, we have to take advantage of the averaging over

y ∈ H in the definition of the total-variation distance. To do so, choose a partition of H into

bN/Mc blocks of size M = d(logN)2e, and possibly one last block of size strictly less than

M (P are fixed before the graph is formed). Fix x ∈ H. Letting P? be the set of blocks of

size exactly M which do not contain x and bounding the summands by 1/N for y not in the

support of P?, we have

Dx(t) ≤
∑
S∈P?

∑
y∈S

(
1

N
− P t(x, η(y))

)
+

+
2M

N
.

Let S be one of the blocks of size M in this partition. For y ∈ S, observe that, thanks

to (2.1),

P t(x, η(y)) =
∑
u,v∈H

P t/2(x, u)P t/2(y, v)1η(v)=u .

We consider an exploration process which generates the paring η along with M + 1 disjoint

trees Tx and (Ty)y∈S , rooted at x and y ∈ S respectively. Initially, all half-edges are unpaired,

Tx is reduced to x and for all y ∈ S, Ty is reduced to y. Then at each time step,

1. An unpaired half-edge z of
⋃
r∈S∪{x} Tr is chosen, provided its distance to the corre-

sponding root is strictly less than t/2.

2. The chosen half-edge z is then paired to a uniformly chosen other unpaired half-edge z′.

3. If z′ was not already in
⋃
r∈S∪{x} Tr and is not a neighbor of either x or y ∈ S, then the

neighbors of z′ are added to
⋃
r∈S∪{x} Tr as children of z. Otherwise, both z and z′ are

marked with the color red.

4. This process continues until no unpaired half-edge in
⋃
r∈S∪{x} Tr is at distance strictly

less than t/2 from its root. For r ∈ S ∪ {x}, we denote by ∂Tr the set of leaves of

Tr (including the red half-edges), and by Fr the subset of leaves of ∂Tr which are at

distance t/2 of r (i.e., those that are not red).

5. Then finally, for each y ∈ S and each z ∈ Fy, we draw a Bernoulli random variable to

decide whether η(z) ∈
⋃
r∈S Fr or not. If it is, then we choose z′ = η(z) uniformly at

random in
⋃
r∈S Fr \ {z} and we mark both z and z′ with the color green. We let F̃y

be set of half-edges in Fy that are not green.

The pairing η is then completed to form the graph G.

Note that, at the end of the exploration stage, at most (M + 1)(d− 1)t/2 = O(log2(N)
√
N)

half-edges have been revealed.

Retaining only those paths that remain in Tx ∪ Ty, we have

P t(x, η(y)) ≥
∑
u∈Fx
v∈F̃y

1

(d− 1)t
1η(v)=u =

1

(d− 1)t

∑
v∈F̃y

1η(v)∈Fx .

12



A key observation is that, conditionally on the exploration stage, the variables (1η(v)∈Fx)
v∈F̃y

enjoy a strong negative dependence property known as negative association.

Definition 3.2. Real-valued random variables X1, . . . , XK are said to be negatively associated

if, for any two disjoint subsets A and B of {1, . . . ,K}, and any two real-valued functions

f : R|A| 7→ R and g : R|B| 7→ R that are both coordinate-wise increasing, we have

E [f(XA) · g(XB)] ≤ E [f(XA)] · E [g(XB)] .

Conditionally on the exploration stage, the whole sequence
(
1η(v)∈Fx

)
v∈∪y∈S F̃y

is negatively

associated. To see this, compare that sequence to a sequence recording draws of black balls when

sampling without replacement in a urn containing |Fx| black balls and |I| − |Fx| −
∑

y∈S |F̃y|
white balls, where I is the set of half-edges that have not been paired during the exploration

stage. Negative association implies that the Laplace transform of the sum can be bounded

by the product of the Laplace transforms of each Bernoulli variable. In this sense, “ a sum

of negatively associated variables can only concentrate better than a sum of independent

variables with the same marginal distributions”. More precisely, for all λ > 0, denoting by P

and E the conditional probability and expectation given the exploration stage, and letting

My =
∑
v∈F̃y

1η(v)∈Fx ,

we have

E
[
e−λ(My−EMy)

]
≤
∏
v∈F̃y

E
[
e−λ(1η(v)∈Fx−E1η(v)∈Fx )

]
≤ exp

 λ2|Fx| |F̃y|

2
(
|I| −

∑
z∈S |F̃z|

)
 ,

where the last inequality is from Bennett Inequality. This entails that

P

(
My <

|Fx| |F̃y|
N

− ε(d− 1)t

N

)
≤ exp

{
− 1

2ε

}
(3.1)

where we used that |I| −
∑

z∈S |F̃z| ≤ N , that |Fx| |F̃y| ≤ (d− 1)t and that (d− 1)t ≥ ε−3N .

Let us now use averaging on S to get a smaller error probability. Let

Z =
∑
y∈S

Zy where Zy = 1{
My <

|Fx| |F̃y|
N

− ε(d− 1)t

N

} .

Negative association also holds for (Zy)y∈S , since the functions Zy are coordinate-wise de-

creasing functions of
(
1η(v)∈Fx

)
v∈F̃y

.

This implies that for all λ > 0,

E
[
eλ(Z−EZ)

]
≤
∏
y∈S

E
[
eλ(Zy−EZy)

]
≤ e

λ2M
8 ,

13



where the last bound comes from Hoeffding Inequality. By (3.1), EZ ≤Me−
1
2ε < εM , hence

P (Z > εM) ≤ P
(
Z −EZ > (ε− e−

1
2ε )M

)
≤ exp

(
−2(ε− e−

1
2ε )2M

)
.

Taking expectation, we get

P (Z > εM) = o

(
1

N2

)
.

Taking a union bound over all x and over blocks of P?, we obtain that whp, for all x ∈ H,

Dx(t) ≤ 1

N

∑
S∈P?

∑
y∈S

(
1− |Fx| |F̃y|

(d− 1)t

)
+

+ ε+
2M

N
· (3.2)

It remains to control the sizes |Fx| and |F̃y| for y ∈ S. To do so, let us first bound the number

of red half-edges in Tr. We will then need to show that those red half-edges do not arrive

too early in the trees.

Lemma 3.3. Let |red| be the number of red half-edges at the end of the exploration stage.

P
(
|red| > log5N

)
= o

(
1

N2

)
Proof of Lemma 3.3. When looking at the exploration process sequentially, we see that the

total number of red half-edges is stochastically dominated by

X = Bin

(
(M + 1)(d− 1)t/2,

(M + 1)(d− 1)t/2

N − 2(M + 1)(d− 1)t/2

)
.

By Bennett’s Inequality, for all a > 0,

P (X − EX > a) ≤ exp

(
− a2

2(EX + a)

)
.

Taking a = log4N and observing that EX = O(log4N), we obtain

P
(
X − EX > log4N

)
= exp

(
−Ω(log4N)

)
,

and we obtain the desired result, after taking some room to compensate for the constant that

depends on ε in EX. �

Lemma 3.4. Let |green| be the number of green half-edges at the end of the exploration

stage.

P
(
|green| > log5N

)
= o

(
1

N2

)
Proof of Lemma 3.4. When looking at the last step of the exploration stage, we see that the

total number of green half-edges is stochastically dominated by

Y = Bin

(
M(d− 1)t/2,

M(d− 1)t/2

N − 2(M + 1)(d− 1)t/2

)
.

By the same argument as in the previous proof, we obtain the desired result. �
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Lemma 3.5. Let E = E(S) be the event that all r ∈ S ∪ {x} are K-roots and that all pairwise

distances in S ∪ {x} are larger than 2K. Then

P
(
E ∩

{
min{|Fx|,min

y∈S
|F̃y|} ≤ (d− 1)t/2

(
1−N−1/7

)})
= o

(
1

N2

)
.

Proof of Lemma 3.5. By Lemma 3.3 and 3.4, with probability 1− o(1/N2), both |red| and

|green| are smaller than log5N . On the event E , no red half-edges can occur before level K,

hence

min
r∈S∪{x}

|Fr| ≥ (d− 1)t/2
(

1− log5N

(d− 1)K

)
,

and

min
y∈S
|F̃y| ≥ (d− 1)t/2

(
1− log5N

(d− 1)K

)
− log5(N) ,

which gives the desired result. �

Plugging those bounds into (3.2) and bounding the summands by 1 when S does not

satifies E , we obtain that whp, for all x ∈ H,

Dx(t) ≤ M

N

∑
S∈P?

1E(S)c + ε+
2M

N
+ 2N−1/7 .

To conclude the proof, observe that

max
x∈R

∑
S∈P?

1E(S)c ≤ |H \ R|+
∑
S∈P

∑
z∈S
|B2K(z) ∩ S| = oP(N/M) ,

and recall that by Lemma 2.2, we can restrict to x ∈ R. We have shown that, whp

max
x∈R
Dx(t) ≤ 2ε ,

which gives

max
x∈H
Dx(t+ s) ≤ 3ε .
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4 Cutoff for SRW on random regular graphs

Let us now move to the srw. In the same paper [13], Lubetzky and Sly showed the following

result.

Theorem 4.1. For d ≥ 3, whp, the srw on Gn,d has cutoff at time d
d−2 logd−1(n), with a

window of order
√

log n. Moreover, for all 0 < ε < 1,

tmix(ε) =
d

d− 2
logd−1(n) + (Λ + oP(1))Φ

−1
(ε)
√

log n ,

where Λ =
2
√
d(d−1)

(d−2)3/2 and Φ
−1

(ε) is the (1− ε)-quantile of the standard Gaussian distribution.

On regular graphs, cutoff for srw can actually be deduced from cutoff for nbrw as follows.

If G = (V,E) is a d-regular graph and if Td denotes a d-regular tree rooted at ρ, then the

cover tree of G at x ∈ V is defined as a map ϕ : Td → V satisfying{
ϕ(ρ) = x ,

∀γ ∈ Td , {ϕ(ζ), ζ ∼Td γ} = {z ∼G ϕ(γ)} .

In other words, the root of Td is mapped to x and ϕ preserves 1-neighborhoods.

Observe that if Xt is a srw on Td started at ρ, then Xt = ϕ(Xt) is a srw on G started at

x. Similarly, if Yt = (Y−t ,Y
+
t ) is a nbrw on Td started at (ρ, ζ), then Yt = (ϕ(Y−t ), ϕ(Y+

t )) is

a nbrw on G started at (x, ϕ(ζ))2. By symmetry, we have

Px
(
Xt ∈ ·

∣∣ dist(ρ,Xt) = `
)

=
1

d

∑
ζ∼Td ρ

P(x,ϕ(ζ))

(
Y +
`−1 ∈ ·

)
.

As projections can not increase total-variation distance, taking ` = tnbrwmix (ε), we get

‖Px(Xt ∈ ·)− π‖tv ≤ ε+ P (dist(ρ,Xt) < `) .

Maximizing over x ∈ V ,

Dsrw(t) ≤ ε+ P (dist(ρ,Xt) < `) .

Now the srw on Td is transient (for d ≥ 3) and, for Xt 6= ρ,

dist(ρ,Xt+1)− dist(ρ,Xt) =

{
1 with probability d−1

d ,

−1 with probability 1
d .

By the Central Limit Theorem,

dist(ρ,Xt)− d−2
d t√

4(d−1)
d2 t

L−→ N (0, 1) .

2Here, it is more convenient to define the nbrw on directed edges rather than on half-edges, which is

completely equivalent.

16



We obtain that for all s > 0,

lim sup
n→+∞

Dsrw

(
d

d− 2
`+ s

√
`

)
≤ ε+ P

(
N (0, 1) > Λ−1s

)
. (4.1)

Conversely, the number of vertices at distance ` from x is at most d(d− 1)`. So on the event

dist(ρ,Xt) < logd−1(εn/d), the srw Xt is confined to a set of at most εn vertices, and the

total-variation distance is at leat 1− ε. This implies that for all s > 0,

lim inf
n→+∞

Dsrw

(
d

d− 2
logd−1(εn/d)− s

√
logd−1(n)

)
≥ 1− ε− P

(
N (0, 1) > Λ−1s

)
. (4.2)

Combining (4.1) and (4.2), and the fact that ` = logd−1(n) + o(
√

log n), we obtain the desired

result.
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5 Cutoff for NBRW on random graphs with given degrees

We now consider the nbrw on the configuration model with a given degree sequence. We will

assume that

∆ = max
v∈V

d(v) = O(1) and min
v∈V

d(v) ≥ 3 . (5.1)

Remarkably enough, the asymptotics in this regime depends on the degrees through two simple

statistics: the mean logarithmic degree of an half-edge and the corresponding variance

µ =
1

N

∑
x∈H

log deg(x) , σ2 =
1

N

∑
x∈H

(log deg(x)− µ)2 .

We further assume that

lim inf
n→+∞

σ2 > 0 . (5.2)

In [2], the following result was shown (under much weaker degree assumptions).

Theorem 5.1. For every 0 < ε < 1,

tmix(ε) =
logN

µ
+ (1 + oP(1))Φ

−1
(ε)

√
σ2 logN

µ3
·

Let us first establish the lower bound. Let x ∈ H be a fixed starting point and let

t =
logN

µ
+ (λ+ o(1))

√
σ2

µ3
logN .

For θ = logN
N , let Aθ be the set of y ∈ H such that there exists a path from x to y which has

probability larger than θ to be seen by a nbrw of length t. Since, for all y ∈ Aθ, we have

P t(x, y) ≥ θ, and since P t(x, ·) is a probability, the set Aθ has size less than 1/θ, hence

Dx(t) ≥ P t(x,Aθ)− π(Aθ) ≥ P t(x,Aθ)−
1

θN
·

Taking expectation with respect to the pairing, we have

EP t(x,Aθ) ≥ Px

(
t∏

s=1

1

deg(Xs)
> θ

)
.

A useful property of the uniform pairing is that it can be constructed sequentially, the pairs

being revealed along the way, as we need them. We exploit this degree of freedom to generate

the walk {Xk}k≥0 and the pairing simultaneously, as follows. Initially, all half-edges are

unpaired and X0 = x; then at each time k ≥ 1,

1. if Xk−1 is unpaired, we pair it with a uniformly chosen other unpaired half-edge; otherwise,

η(Xk−1) is already defined and no new pair is formed.

2. in both cases, we let Xk be a uniformly chosen neighbour of η(Xk−1).
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The sequence {Xk}k≥0 is then exactly distributed according to the annealed law. Now, if we

sample uniformly from H instead of restricting the random choice made at (i) to unpaired

half-edges, then the uniform neighbour chosen at step (ii) also has the uniform law on H. This

creates a coupling between the process {Xk}k≥1 and a sequence {X?
k}k≥1 of iid samples from

H, valid until the first time T where the uniformly chosen half-edge or its uniformly chosen

neighbour is already paired. As there are less than 2k paired half-edges by step k, a crude

union-bound yields

P (T ≤ t) ≤ 2t2

N
· (5.3)

Consequently,

EP t(x,Aθ) ≥ Px

(
t∏

s=1

1

deg(X?
s )
> θ

)
+ o(1) .

Taking the logarithm and using Berry-Esseen Inequality, we have

Px

(
t∏

s=1

1

deg(X?
s )
> θ

)
≥ Φ(λ) + o(1) ,

entailing

min
x∈H

EDx(t) ≥ Φ(λ) + o(1) .

Let us now move to the upper bound. The first step is the same as in the regular case:

reducing to starting points which are roots. Letting as before K =
⌊

1
6 log∆−1(N)

⌋
and R the

set of K-roots, we have, by Lemma 2.2 applied to s = blog logNc,

max
x∈H

P s(x,H \R) = oP(1) .

By the triangle inequality,

D(t+ s) ≤ max
x∈H

P s (x,H \R) + max
x∈R
Dx(t) .

The first term is oP(1). For the second one, we write

Dx(t) =
∑

y∈R\BK(x)

(
1

N
− P t(x, η(y))

)
+

+
∑

y∈BK(x)∪(H\R)

(
1

N
− P t(x, η(y))

)
+

.

The second sum is oP(1) uniformly in x ∈ R. Indeed, it suffices to bound its summands by

1/N and observe that |BK(x)| ≤ ∆K = o(N), while |H \ R| = oP(N) by Lemma 2.1.

The remainder of this section is devoted to establishing that, for t = logN
µ + (λ +

o(1))
√

σ2 logN
µ3

min
x∈R

min
y∈R\BK(x)

P t(x, η(y)) ≥ 1− Φ(λ)− oP(1)

N
. (5.4)

We start by writing

P t(x, η(y)) =
∑
u,v

P t/2(x, u)P t/2(y, v)1{η(u)=v} . (5.5)
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One problem that arises here (and that did not exist in the regular case) is that we really can

not afford to reveal the whole neighborhoods of radius t/2 around x and y. We have to adapt

our exploration process so that not too many half-edges are revealed. We proceed as follows.

Initially, all half-edges are unpaired and no type has been revealed. Tree Tx is reduced to x

and tree Ty is reduced to y. Then at each time step,

1. An unpaired half-edge z of Tx ∪ Ty is chosen, provided it satisfies

w(z) ≥ wmin = N
− 1

2
− log(2)

16 log(∆) and h(z) < t/2 , (5.6)

where w(z) and h(z) correspond to the weight and height of z,defined as follows: if

z ∈ Tr for r ∈ {x, y}, there is a unique path (z0, . . . , zh) from r to z, with z0 = r and

zh = z. The value h is then called the height of z, denoted h(z), and its weight is

w(z) =
h∏
i=1

1

deg(zi)
·

2. z is paired with a uniformly chosen other unpaired half-edge.

3. If z′ was not already in Tx ∪Ty and is not a neighbor of either x or y, then the neighbors

of z′ are added to Tx ∪ Ty as children of z. Otherwise, both z and z′ are marked with

the color red.

This exploration process continues until no unpaired half-edge in Tx ∪ Ty satisfies (5.6). The

pairing η is then completed to form the graph G. For r ∈ {x, y}, we denote by ∂Tr the set of

leaves of Tr, and by Fr the subset of leaves of ∂Tr which are at distance t/2 of r.

Note that, by (5.6), for r ∈ {x, y},

t

2
≥

t/2∑
k=1

∑
z∈Tr

1{h(z)=k}w(z) ≥ (|Tr| − 1)
wmin

∆
,

which, together with (5.1), implies

|Tx ∪ Ty| = O

(
N

1
2

+
log(2)

16 log(∆) logN

)
= O

(
N

1
2

+
log(2)

15 log(∆)

)
. (5.7)

In particular,

|Tx ∪ Ty| = O
(
N5/8

)
. (5.8)

Retaining only those paths of length t/2 which remain in Tx ∪ Ty and which have weight less

than

θ =
1

N(logN)3
,

we have

P t(x, η(y)) ≥
∑
u∈Fx
v∈Fy

w(u)w(v)1{w(u)w(v)≤θ}1{η(u)=v} .

Conditionally on the exploration stage, the quantity above writes as a weighted sum of

Bernoulli variables which are (weakly) dependent. The following lemma (which will be proved

in the exercise session) allows us to obtain a strong concentration bound for such variables.
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Lemma 5.2. Let I be an even set, {ωi,j}(i,j)∈I×I an array of non-negative weights, and η a

uniform random pairing on I. Then for all a > 0,

P

(∑
i∈I

ωi,η(i) < m− a

)
≤ exp

{
− a2

4θm

}
.

where m = 1
|I|−1

∑
i∈I
∑

j 6=i ωi,j and θ = maxi 6=j(ωi,j + ωj,i).

Applying Lemma 5.2 conditionally on the exploration stage, with I being the set of

half-edges that did not get paired, and

ωu,v = w(u)w(v)1{w(u)w(v)≤θ}1u∈Fx1v∈Fy , θ =
1

N(logN)3
, and a =

ε

|I| − 1
,

we obtain, using that |I| − 1 ≤ N and that m ≤ 1
|I|−1 ,

P

NP t(x, η(y)) <
∑
u∈Fx
v∈Fy

w(u)w(v)1{w(u)w(v)≤θ} − ε

 ≤ exp

{
−ε

2(logN)3

4

}
= o

(
1

N2

)
.

(5.9)

where P is the conditional expectation given the exploration stage.

Let us now show that, if x ∈ R and y ∈ R \ BK(x), then whp the total weight of paths of

length t/2 that end in Fr is at least 1− ε.

Lemma 5.3. For all ε > 0, with probability 1− o(1), for all x ∈ R and y ∈ R \ BK(x), we

have ∑
u∈∂Tx\Fx

w(u) +
∑

v∈∂Ty\Fy

w(v) ≤ ε .

Proof of Lemma 5.3. The trees’ exploration can be stopped before height t/2 for two reasons:

either the weight of the half-edge is too small, or it has been colored red, namely, for r ∈ {x, y},∑
u∈∂Tr\Fr

w(u) =
∑
u∈∂Tr

w(u)1{w(u)<wmin} +
∑
u∈∂Tr

w(u)1{u is red} .

Let us first control the weight of red half-edges. For x ∈ R and y ∈ R \ BK(x), all red half-

edges are at distance at least K from r, and thus have weight smaller than 2−K ≤ N−
log(2)

6 log(∆−1)

by our assumption that vertex degrees are at least 3. Moreover, using the upper bound (5.7),

the total number of red half-edges in Tr is stochastically dominated by twice a binomial

random variable Bin(k, q) where k = O(N
1
2

+
log(2)

15 log(∆) ) and q = O(N
− 1

2
+

log(2)
15 log(∆) ). By Bennett’s

Inequality,

P

 ∑
u∈∂Tr

1{u is red} > N
log(2)

7 log(∆)

 ≤ exp

(
−Ω

(
N

log(2)
7 log(∆)

))
.

Hence, for all ε > 0,

P

∃x ∈ R, y ∈ R \ Bx, r ∈ {x, y}, ∑
u∈∂Tr

w(u)1{u is red} > ε

 = o(1) .
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Let us now control the weight of paths with weight smaller than wmin. To this end, consider

m = blogNc independent nbrws on G starting at r, each being stopped as soon as its weight

falls below wmin, and let A be the event that their trajectories form a tree of height less than

t/2. Clearly,

P
(
A
∣∣ G) ≥

 ∑
u∈∂Tr

w(u)1{w(u)<wmin}

m

.

Taking expectation and using Markov inequality, we deduce that

P

 ∑
u∈∂Tr

w(u)1{w(u)<wmin} > ε

 ≤ P (A)

εm
,

where the average is now taken over both the walks and the graph. To prove that the above

probability is o(1/N2), it is enough to show that P(A) = o(1)m. To do so, we generate the m

stopped nbrws one after the other, revealing pairs along the way, as described in the proof

of the lower bound. Given that the first `− 1 walks form a tree of height less than t/2, the

conditional probability that the `th walk also fulfills the requirement is o(1), uniformly in

1 ≤ ` ≤ m. Indeed,

• either it attains length s = d4 log logNe before leaving the graph spanned by the first

`− 1 trajectories and reaching an unpaired half-edge: thanks to the tree structure, there

are at most `− 1 < m possible trajectories to follow, each having weight at most 2−s, so

the conditional probability is at most m2−s = o(1).

• or the remainder of its trajectory after the first unpaired half-edge has weight less than

∆swmin: this part consists of at most t/2 half-edges which can be coupled with (X?
k)
t/2
k=1

for a total-variation cost of O(mt2/N), and for N large enough

P

 t/2∏
k=1

1

deg(X?
k)
≤ ∆swmin

 ≤ P
(
St/2 −

µt

2
≥ log(2)

18 log(∆)
logN

)
,

which is o(1) by Chebychev Inequality.

�

Combining Lemma 5.3 and inequality 5.9, we obtain that

max
x∈R

max
y∈R\BK(x)

{
1−NP t(x, η(y))

}
≤
∑
u∈Fx
v∈Fy

w(u)w(v)1{w(u)w(v)>θ} + oP(1) .

The proof of (5.4) will then be concluded by the following Lemma.

Lemma 5.4. For all ε > 0,

P

∑
u∈Fx
v∈Fy

w(u)w(v)1{w(u)w(v)>θ} > Φ(λ) + ε

 = o

(
1

N2

)
.
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Proof of Lemma 5.4. Set m = d(logN)2e. Let X(1), . . . , X(m) and Y (1), . . . , Y (m) be 2m

independent nbrws of length t/2 starting at x and y respectively. Let B denote the event

that their trajectories form two disjoint trees and that for all 1 ≤ k ≤ m,

t/2∏
`=1

1

deg(X
(k)
` )

t/2∏
`=1

1

deg(Y
(k)
` )

> θ.

Then clearly,

P
(
B
∣∣ G) ≥

∑
u∈Fx
v∈Fy

w(u)w(v)1{w(u)w(v)>θ}


m

.

Averaging w.r.t. the graph, we see that

P

∑
u∈Fx
v∈Fy

w(u)w(v)1{w(u)w(v)>θ} > Φ(λ) + ε

 ≤ P (B)

(Φ(λ) + ε)m
.

Thus, it is enough to establish that P(B) ≤
(
Φ(λ) + o(1)

)m
. We do so by generating the

2m walks X(1), Y (1), . . . , X(m), Y (m) one after the other along with the underlying pairing,

as above. Given that X(1), Y (1), . . . , X(`−1), Y (`−1) already satisfy the desired property, the

conditional chance that X(`), Y (`) also does is at most Φ(λ) + o(1), uniformly in 1 ≤ ` ≤ m.

Indeed,

• either one of the two walks attains length s = d4 log logNe before leaving the graph

spanned by the first 2(`− 1) trajectories and reaching an unpaired half-edge: thanks to

the tree structure, there are at most `− 1 < m possible trajectories to follow for each

walk, each having weight at most 2−s, so the conditional chance is at most 2m2−s = o(1).

• or at least t− 2s unpaired half-edges are encountered, and the product of their degrees

falls below 1
θ with conditional probability at most

4mt2

N
+ P

(
t−2s∏
k=1

deg(X?
k) <

1

θ

)
= Φ(λ) + o(1),

by the same coupling as above and Berry-Essen’s inequality.

�
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6 Comparing NBRW and SRW: entropies on Galton-Watson

trees

In previous sections, we have seen that a crucial property of sparse random graphs generated

by the configuration model is their locally tree-like structure (see for instance Lemma 2.1).

Roughly put, if one sits at a random vertex chosen with probability proportional to its degree

and looks around in a neighborhood of “small” radius, then one would see a tree. In the

regular case, this would simply be a d-regular tree. For the configuration model with degree

sequence (d(v))v∈V , the law of this tree would be close to the law of a Galton–Watson tree

whose offspring distribution is directly related to the degree sequence in the following manner.

Let p = (p1,p2, . . . ) be the vector of degree frequencies, i.e.

pk =
1

n

∑
v∈V

1d(v)=k .

Since the root is chosen with probability proportional to its degree, the probability that the

root vertex has degree k is p?(k) = n
N kpk. Then, at subsequent steps, the pairing procedure

entails that, provided “not too many” half-edges have been paired already, the probability

that a given half-edge is paired to a half-edge attached to a vertex of degree k can also be

approximated by p?(k). The law p? is called the size-biased distribution of p.

The graph G is then locally approximated by a random tree (T, ρ), which is called an

augmented Galton–Watson tree with degree distribution p?, or equivalently with offspring

distribution q? given by q?(k) = p?(k + 1). It has the same law as a tree formed by joining

by an edge the roots of two independent Galton–Watson trees with offspring distribution q?,

one of those two roots being ρ.

Typically, if ∆ = O(1), then the total variation distance between the law of the neigh-

borhood of radius L = 1
5 log∆−1(N) around a random vertex in G chosen with probability

proportional to its degree and the law of (T, ρ) tends to 0 as n→ +∞.

Let now (T, ρ) be an augmented Galton–Watson tree with offspring variable Z, such that

Z ≥ 2 and EZ <∞. For k ≥ 1, let Tk = {z ∈ T, dist(ρ, z) = k} and use the notation y � x

to denote that y is a child of x and Zx to be the number of children of x in T . Note that

Zρ ∼ Z + 1 and for all x 6= ρ, Zx ∼ Z. Let (Xt) and (Yt) be respectively a nbrw and a srw

on T started at ρ3. Conditionally on the environment (T, ρ), let HT
ρ (Xt) the entropy of Xt:

HT
ρ (Xt) =

∑
x∈T

PTρ (Xt = x) log
1

PTρ (Xt = x)
and hXt = E[HT

ρ (Xt)] .

Similarly, let HT
ρ (Yt) the entropy of Yt conditionally on (T, ρ):

HT
ρ (Yt) =

∑
x∈T

PTρ (Yt = x) log
1

PTρ (Yt = x)
and hYt = E[HT

ρ (Yt)] .

3On a rooted tree, there is no problem with defining the nbrw on vertices.
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We have

HT
ρ (X1) = HT

ρ (Y1) = logZρ ,

hence

hX1 = hY1 = E[log(Z + 1)] .

For the nbrw, observe that for all t ≥ 2,

HT
ρ (Yt) =

∑
y∈Tt−1

∑
x�y

PTρ (Yt−1 = y)
1

Zy
log

(
Zy

PTρ (Yt−1 = y)

)
= HT

ρ (Yt−1) +
∑

y∈Tt−1

PTρ (Yt−1 = y) log(Zy) ,

hence

E
[
HT
ρ (Yt)

∣∣ Ft−1

]
= HT

ρ (Yt−1) + E[logZ] ,

where (Ft) is the filtration corresponding to the successive levels of the tree. The sequence(
HT
ρ (Yt)− E[log(Z + 1)]− (t− 1)E[logZ]

)
t≥1

is a centered martingale, and by the Martingale

Convergence Theorem
HT
ρ (Yt)

t
−→
t→+∞

hY = E[logZ] a.s. .

As for the srw, it was shown by Lyons, Pemantle, and Peres [14, Theorem 9.7] that there is

hX > 0 such that
HT
ρ (Xt)

t
−→
t→+∞

hX a.s. .

Taking expectations, we thus have

lim
t→∞

hXt
t

= hX , and lim
t→∞

hYt
t

= hY . (6.1)

If Z ∼ q? with q? defined as above from the degree distribution, then hY = µ, with µ as

defined in Section 5. Theorem 5.1 then states that whp, the nbrw on G generated by the

configuration model with degree sequence (d(v))v∈V has cutoff at time logN
hY

with window√
logN .

Cutoff for the srw on G has been established by Berestycki, Lubetzky, Peres, and Sly [6]

from a given starting vertex. The result has then been extended to the worst starting point

by B., Lubetzky and Peres [3].

Theorem 6.1. Let G = (V,E) be a random graph on n vertices with vertex set V and

degree distribution (pk)k≥1; that is, the degree sequence (d(v))v∈V is i.i.d. with distribution

P(d(v) = k) = pk, conditioned on
∑

v∈V d(v) being even, and G is thereafter generated by the

configuration model. Let Z be a random variable with distribution

∀k ≥ 1 , P(Z = k) ∝ (k + 1)pk+1 .

Assume that

P(Z = 0) = P(Z = 1) = 0 , EZ <∞ , and P (Z > ∆n) = o

(
1

n

)
,
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where ∆n = exp
{

(log n)1/2−δ} for some fixed δ > 0. Then whp, the srw on G has cutoff at

time logn
hX

with window
√

log n.

Remark 6.2. Both for nbrw and srw, the mixing time on G can be expressed in terms of

the entropy on the Galton–Watson tree which approximates G locally. Roughly put, since the

entropy of Xt grows like hXt and the entropy of Yt like hY t, the mixing time of both walks

can be interpreted as the time when the entropy becomes asymptotics to log n (or logN for

nbrw), which, in the sparse regime is equivalent to the entropy of the stationary distribution.

This cutoff phenomenon at the “entropic time” was also observed for other models of Markov

chains in random environment. Let us mention the result of Bordenave, Caputo, and Salez

[7]. For i ∈ [n], let pi = (pi,j)
n
j=1 be a probability distribution over [n]. From those vectors,

generate a random transition matrix as follows: choose n independent uniform permutation

over [n], denoted σ1, . . . , σn, and let P be the n× n matrix with entries

P (i, j) = pi,σ−1
i (j) .

Let h be the average row entropy:

h =
1

n

n∑
i,j=1

pi,j log

(
1

pi,j

)
.

Assume that h = O(1), that

max
i∈[n]

n∑
j=1

pi,j (log pi,j)
2 = o(log n) ,

and that

lim sup
n→+∞

 1

n

∑
i,j

1pi,j>1−ε

 −→
ε→0+

0 .

Then whp, the Markov chain with transition matrix P has cutoff at time logN
h .

Given Theorem 6.1, a natural question to ask is: which walk mixes faster? Can we

compare hX and hY ? In the regular case, the answer is straightforward: as seen in Section 3

and 4, the mixing time on a random d-regular graph coincides with the time t at which this

distance from the starting point is about logd−1 n (so as to contain almost all vertices in its

range). This corresponds to t = logd−1 n+O(1) for the nbrw, and a slowdown of the srw

by a factor of d/(d− 2) due to the reduced speed of random walk on a tree (with a coarser

O(
√

log n)-window due to the normal fluctuations of its height). The walks are mixed once

they reach distance logd−1(n), which is the typical distance in G. The srw is slowed down by

its reduced speed and the nbrw mixes faster. In the non-regular case, this interpretation in

terms of reaching the typical distance falls apart. For the nbrw, hY = E logZ, which satisfies

hY < logEZ whenever Z is not a constant by Jensen’s inequality. Hence, the nbrw mixes

well after the time at which its range covers most vertices, unlike the regular setting. The

same phenomenon occurs for thesrw: denoting by ν the limiting speed of the srw on T , then
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hX/ν < logEZ whenever Z is not a constant (the “dimension drop” of harmonic measure,

as shown in [14]). In the non-regular case, the distribution of the walk on a given level is no

longer uniform, and different paths with equal length can have very different weights. Mixing

occurs not only when almost all vertices are in the support of the walk, but when all paths

have “reasonable” probability to be seen by the walk. To compare mixing times, comparing

speeds is not sufficient anymore. One will have to take another effect into account: how well

the walk is mixed conditioned on a given level.

To do so, let us introduce the notion of harmonic measure. Since Z ≥ 2, the srw (Xt) on

T is transient. It escapes with asymptotic speed

ν
p.s.
= lim

t→∞

dist(ρ,Xt)

t
.

As shown in [14], ν = E
[
Z−1
Z+1

]
. Knowing that the walk escapes (at linear speed), we now want

to understand where it escapes. The loop-erasure of Xt defines a unique infinite ray ξ = (ξt),

whose distribution is called the harmonic measure of the walk. If ∂T denotes the boundary

of T , i.e. the set of infinite rays from ρ, one can endow ∂T with the following metric d: for

all β, η ∈ ∂T , d(β, η) = e−|β∧η|, where |β ∧ η| is the length of the longest common prefix of β

and η. With this metric, the Hölder exponent of the harmonic measure at ξ, which is also the

Hausdorff dimension, is

d
a.s.
= lim

t→∞
−1

t
log PT

ρ (ξt) , (6.2)

where PT
ρ (·) = PTρ (· ∈ ξ). As shown in [14], letting ηt be the location of the first visit of the

walk to Tt and QT
ρ (·) = PTρ (· ∈ η), we have

d
a.s.
= lim

t→∞
−1

t
log QT

ρ (ηt) .

With this characterization, we see that d captures a notion of asymptotic entropy of the walk

when it hits a given level. The asymptotic entropy of (Xt) can be decomposed into

hX = νd .

Clearly ν, the speed of X, is less than 1, the speed of Y . On the other hand, as soon as Z is

not constant, d > E[logZ]: the Hausdorff dimension of the harmonic measure of X is larger

than the one of Y . This inequality was conjectured since [14] and was recently proved by Lin

[12]. The two effects thus go in opposite direction and comparing entropies is not as direct as

in the regular case.

Proposition 6.3. Assume Z ≥ 2 and EZ <∞. Then hX < hY .

Proof of Proposition 6.3. We will prove Proposition 6.3 under the stronger assumption that

Z ≥ 3. We first need the following result (cf., e.g., the proof of Theorem 3.2 in [4] and

Corollary 10 in [5]), which was first observed in the case of random walks on groups by [10].

(Entropy of random walks on random stationary environments were thereafter studied in [9]).

Lemma 6.4. The map t 7→ (hXt − hXt−1) is decreasing.
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Proof of Lemma 6.4. Consider the joint entropy of X1 and Xt given T :

HT
ρ (X1, Xt) =

∑
x,y∈T

PTρ (X1 = x,Xt = y) log
1

PTρ (X1 = x,Xt = y)
,

and let hX1,t = E[HT
ρ (X1, Xt)]. We have

HT
ρ (X1, Xt) = HT

ρ (X1) +
∑
x∈T

PTρ (X1 = x)
∑
y∈T

PTx (Xt−1 = y) log
1

PTx (Xt−1 = y)
.

and taking expectation gives

hX1,t = hX1 + E[HT
X1

(Xt−1)] = hX1 + hXt−1 ,

where the last equality is due to the fact that the environment (T, ρ) is stationary for the srw,

i.e. (T, ρ) and (T,X1) have the same distribution. Therefore,

hXt − hXt−1 = hXt − hX1,t + hX1 = E[HT
ρ (Xt)−HT

ρ (X1, Xt)] + hX1 .

Conditioned on T , the term HT
ρ (X1, Xt)−HT

ρ (Xt) is the conditional entropy of X1 given Xt,

denoted by HT
ρ (X1

∣∣ Xt). Since X1, Xt+1 are conditionally independent given Xt, and extra

information cannot increase entropy, we have

HT
ρ (X1

∣∣ Xt) = HT
ρ (X1

∣∣ Xt, Xt+1) ≤ HT
ρ (X1

∣∣ Xt+1) .

Hence the sequence
(
HT
ρ (Xt)−HT

ρ (X1, Xt)
)
t≥1

is decreasing, and so is its expectation. �

The fact that (hXt − hXt−1) is decreasing in t implies that, for every t,

hXt − hX1 ≤ (t− 1)(hX2 − hX1 ) ,

from which we see that it suffices to show that hX2 < hY2 = E[log(Z + 1)] + E[logZ] in order

to conclude that hX < hY
4. We have

HT
ρ (X2) = Pρ(X2 = ρ) log

1

Pρ(X2 = ρ)
+
∑
y∈T2

Pρ(X2 = y) log
1

Pρ(X2 = y)
. (6.3)

Let A and B denote respectively the first and second terms in the right-hand side of (6.3).

By concavity of the logarithm,

A = −
∑
x∈T1

1

Zρ(Zx + 1)
log

∑
y∈T1

1

Zρ(Zy + 1)


≤ 1

(Zρ)2

∑
x,y∈T1

log(Zy + 1)

Zx + 1
.

4To prove the result under the weaker assumption Z ≥ 2, looking at the entropy at time 2 is not sufficient,

one needs to look at the entropy at time 3 and calculations are (way) more involved.

28



Hence

E[A] ≤ E
[

1

Z + 1

]
E
[

log(Z + 1)

Z + 1

]
+ E

[
Z

Z + 1

]
E
[

1

Z + 1

]
E [log(Z + 1)]

≤ E
[

1

Z + 1

]
E [log(Z + 1)] ,

where the last inequality comes from the fact that Cov
(

Z
Z+1 , log(Z + 1)

)
≥ 0. As for B, we

have

B =
∑
x∈T1

∑
y�x

1

Zρ(Zx + 1)
log (Zρ(Zx + 1)) =

∑
x∈T1

Zx
Zρ(Zx + 1)

log (Zρ(Zx + 1)) ,

which entails

E[B] = E
[

Z

Z + 1

]
E [log(Z + 1)] + E

[
Z

Z + 1
log(Z + 1)

]
.

We obtain

hX2 ≤ E[log(Z + 1)] + E
[

Z

Z + 1
log(Z + 1)

]
,

and we conclude by noticing that the function x 7→ log x − x
x+1 log(x + 1) is positive for

x ≥ 3. �
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7 Exercises

7.1 The product condition is not sufficient for cutoff for reversible chains

1. Show that, for a sequence of irreducible, aperiodic, reversible chains, the condition
t
(n)
mix

t
(n)
rel

−→
n→∞

+∞ is a necessary condition for cutoff.

2. Let P be an irreducible, aperiodic, reversible transition matrix, with stationary distri-

bution π. For θ ∈]0, 1[, let P̂ = (1− θ)P + θΠ, where Π whose rows are given by the

stationary probability vector π.

(a) Show that P̂ is still reversible with respect to π.

(b) Show that D̂(t) = (1− θ)tD(t).

(c) Deduce that

t̂rel =
trel

θtrel + 1− θ
·

3. Let (Pn) be a sequence of irreducible, aperiodic, reversible transition matrices, with

stationary distribution πn, and assume that it has cutoff. For θn ∈]0, 1[, let P̂n =

(1− θn)Pn + θnΠn, where Πn whose rows are given by the stationary probability vector

πn. Assume that

t
(n)
rel �

1

θn
� t

(n)
mix .

(a) Show that, for all α > 0,

D̂n
(
α

θn

)
−→
n→∞

e−α .

(b) Show that (P̂n) still satisfies the product condition.

7.2 Cutoff for the lazy RW on the hypercube

Let Ω = {0, 1}n be the n-dimensional cube and let (Xt) be the lazy srw on Ω: at each step,

choose a coordinate uniformly at random in {1, . . . , n} and refresh the bit on this coordinate

(set it to 0 with probability 1/2, or 1 with probability 1/2). Since the hypercube is transitive,

D(t) = ‖P0(Xt ∈ ·)− π‖tv, where 0 = (0, . . . , 0) and π is uniform over Ω.

1. Lower bound.

(a) Let Wt = H(Xt) be the Hamming weight of Xt (the number of ones in Xt). Show

that

E0[Wt] =
n

2

(
1−

(
1− 1

n

)t)
.

(b) Writing Wt =
∑n

i=1 ξi, with

ξi =

{
1 if i has been actually updated an odd number of times before t,

0 otherwise.
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show that

Var0(Wt) ≤
n∑
i=1

Var(ξi) ≤
n

2
.

(c) Letting A =
{
x ∈ Ω, H(x) ≤ n

2 −
n
4

(
1− 1

n

)t}
, show that, if t = c

2n log n with

c < 1,

P0(Xt ∈ A)→ 1 and π(A)→ 0 .

2. Upper bound.

(a) Show that

4D(t)2 ≤ 2nP 2t(0,0)− 1 =
2n∑
j=2

λ2t
j ,

where 1 > λ2 ≥ . . . λ2n ≥ 0 are the eigenvalues of P .

(b) Determine the spectrum of P .

(c) Conclude by showing that if c > 1, D
(
c
2n log n

)
→ 0 as n→ +∞.

7.3 Cutoff for the top-to-random shuffle

Consider the following method for shuffling a deck of n cards: at each step, take the card

which is on the top of the deck, and relocate it uniformly at random in one of the n possible

locations. This defines a Markov chain (Xt) on the symmetric group Sn, with uniform

stationary distribution. Since it is transitive, we may assume without loss of generality that

we start at the identity permutation (card 1 is at the top, card n at the bottom).

1. Upper bound.

(a) Let τ be the time following the first time when card n is on the top of the desk.

Show that τ is a strong stationary time.

(b) Show that, for all λ > 0, Pid (τ > n log n+ λn) ≤ e−λ.

Hint: you may view τ as a sum of independent Geometric random variables, as in

the coupon collector problem.

2. Lower bound.

(a) Consider the event Ar that the r ≥ 1 cards that were originally at the bottom of the

deck are still in the same relative order. Notice that Pid(Xt ∈ Ar) ≥ Pid(τr ≥ t),

where τr is the first time when card number n− r+ 1 arrives at the top. Show that,

for t = n log n− λn, and r =
⌊
eλ/2

⌋
,

Pid(τr ≥ t) ≥ 1− ε(λ) ,

where ε(λ)→ 0 as λ→ +∞.

(b) Show that, for r =
⌊
eλ/2

⌋
, π(Ar) ≤ ε(λ), where ε(λ)→ 0 as λ→ +∞.
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7.4 Carne-Varopoulos upper bound

The goal of this exercise is to prove Carne-Varopoulos inequality, which states that for a

reversible chain P ,

P t(x, y) ≤ 2

√
π(y)

π(x)
exp

{
−d(x, y)2

2t

}
,

where d(x, y) is the length of the minimal path from x to y.

Recall that Chebychev polynomials are defined by the recurrence relation

Qk+1(z) = 2zQk(z)−Qk−1(z) ,

and that we have Qk(cos θ) = cos(kθ).

1. Show that zt =
∑t

k=0 P(|St| = k)Qk(z). where St is a simple random walk on Z started

at the origin.

2. Deduce that P t(x, y) =
∑t

k=d(x,y) P(|St| = k)Qk(P )(x, y).

3. Show that the spectrum of Qk(P ) is included in [−1, 1]. In particular, for all f, g ∈ `2(π),

| < Qk(P )f, g >π | ≤ ‖f‖π‖g‖π.

4. Show that Qk(P )(x, y) ≤
√

π(y)
π(x) .

5. Conclude with Hoeffding Inequality.

6. Show that Carne-Varopoulos upper bound implies the following lower bound on the

mixing time of a simple random walk on a graph with n vertices and diameter D: for all

ε ∈]0, 1/2[,

tmix(ε) ≥ D2

13 log n
·

7.5 Typical distance in random regular graphs

Let Gn be a random d-regular graph on n vertices, with d ≥ 3 fixed. Show that Dn
logd−1 n

P−→ 1,

where Dn is the distance between two uniformly chosen vertices in Gn.

7.6 Concentration with exchangeable pairs (proof of Lemma 5.2)

A pair of real-valued random variables (W,W ′) is called exchangeable of (W,W ′)
d
= (W ′,W )∗.

If in addition, it satisfies E[W ′ −W
∣∣ W ] = −λW , for some 0 < λ < 1, then it is called an

λ-Stein pair. The following theorem is due to Chatterjee [8].

Theorem 7.1. Let (W,W ′) be an λ-Stein pair with Var(W ) = σ2 <∞. Assume that there

exist a, b ≥ 0 such that

E
[
(W ′ −W )2

∣∣W ] ≤ 2λ (bW + c) .

33



Then, for all a > 0,

P (W > a) ≤ exp

{
− a2

2c+ 2ba

}
and P (W < −a) ≤ exp

{
−a

2

2c

}
.

Part A. The goal of this first part is to prove Theorem 7.1.

1. Let m(θ) = E
[
eθW

]
. Show that

m′(θ) =
E
[
(W ′ −W )(eθW

′ − eθW )
]

2λ
·

2. Using that for all x > y, e
x−ey
x−y ≤

ex+ey

2 , show that for all θ ∈ R,|m′(θ)| ≤ |θ| (bm′(θ) + cm(θ)).

3. Show that for 0 < θ < 1/b,

logm(θ) ≤
∫ θ

0

cu

1− bu
du ≤ cθ2

2(1− bθ)
·

4. Using the Markov bound P(W > a) ≤ e−θam(θ) with θ > 0, conclude for the upper tail.

5. For θ < 0, use the fact that m′(θ) < 0 to obtain logm(θ) ≤ cθ2

2 .

6. Using the Markov bound P(W < −a) ≤ eθam(θ) for θ < 0, conclude with the bound on

the lower tail.

Part B. The goal of this second part is to prove Lemma 5.2 using Theorem 7.1.

Let I be an even set, (ωi,j)(i,j)∈I2 an array of non-negative weights, and η a uniform

random pairing on I. Consider the centered variable

W =
∑
i∈I

ωi,η(i) −m,

where m = 1
|I|−1

∑
i∈I
∑

j 6=i ωi,j . We want to show that for all a > 0,

P (W > a) ≤ exp

{
− a2

4θm+ 2θa

}
and P (W < −a) ≤ exp

{
− a2

4θm

}
,

where θ = maxi 6=j(ωi,j + ωj,i).

To this end, let W ′ be the corresponding quantity for the pairing η′ obtained from η by

performing a random switch: two indices i, j are sampled uniformly at random from I without

replacement, and the pairs {i, η(i)}, {j, η(j)} are replaced with the pairs {i, j}, {η(i), η(j)}.
Note that if ∆i,j is the induced change in the total weight when i, j are chosen, then

∆i,j = ωi,j + ωj,i + ωη(i),η(j) + ωη(j),η(i) − ωi,η(i) − ωη(i),i − ωj,η(j) − ωη(j),j .

1. Show that (W,W ′) is a λ-Stein pair, with λ = 4
|I| .

2. Regarding the square ∆2
i,j = |∆i,j ||∆i,j |, bounding the first copy of |∆i,j | by 2θ and the

second by changing all minus signs to plus signs, show that

E
[
(W ′ −W )2

∣∣W ] ≤ 8θ

|I|
(2m+W ) .

and conclude.
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8 Exercises: correction

8.1 The product condition is not sufficient for cutoff for reversible chains

1. Assume that the chain has cutoff, i.e. tmix(ε)
tmix

→ 1 as n → +∞ Using the inequality

tmix(ε) ≥ (trel − 1) log(1/2ε), we have, for all ε ∈ (0, 1),

tmix
trel

∼
n→∞

tmix(ε)

trel
≥
(

1− 1

trel

)
log

(
1

2ε

)
.

Since the right-hand side can be arbitrarily large by taking ε small enough, this shows

that tmix
trel
→ +∞.

2. (a) Since P is reversible w.r.t. π,

π(x)P̂ (x, y) = (1−θ)π(x)P (x, y)+θπ(x)π(y) = (1−θ)π(y)P (y, x)+θπ(x)π(y) = π(y)P̂ (y, x) .

(b) As soon as the chain makes a transition according to π, it remains stationary from

then on. Hence P̂ t(x, ·) = (1− θ)tP t(x, ·) +
(
1− (1− θ)t

)
π(·) and

D̂(t) =
∑
y

(
(1− θ)tP t(x, y)− (1− θ)tπ(y)

)
+

= (1− θ)tD(t) .

(c) Let us denote by λ? and λ̂? the the second largest eigenvalue in absolute value of

the patrix P and P̂ respectively. Using that D(t)1/t → λ? and D̂(t)1/t → λ̂?, we

have

λ̂? = (1− θ)λ? .

Writing λ? = 1− 1
trel

and λ̂? = 1− 1
t̂rel

and rearranging, we obtain

t̂rel =
trel

θtrel + 1− θ
·

3. (a) Using question 2.(b), we have D̂n
(
α
θn

)
= (1− θn)α/θnDn

(
α
θn

)
. Since 1/θn � t

(n)
mix,

we have Dn
(
α
θn

)
→ 1, which yields D̂n

(
α
θn

)
→ e−α. In particular, the mixing time

of (P̂n) is of order 1
θn

and there is no cutoff.

(b) By question 2.(c) and the assumptions on θn, we have t̂rel
(n) ∼ t(n)

rel and t̂mix
(n) �

1
θn
� t

(n)
rel. Hence the sequence of chains (P̂n) still satisfies the product condition.

8.2 Cutoff for the lazy RW on the hypercube

1. Lower bound.

(a) Let us define Zt = H(Xt)− n
2 . Conditionally on Xt, we have

Zt+1 − Zt =


1 with probability 1

2

(
1
2 −

Zt
n

)
,

−1 with probability 1
2

(
1
2 + Zt

n

)
,

0 otherwise.
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Taking expectation, we have E0[Zt+1] =
(
1− 1

n

)
E0[Zt]. By induction and using

Z0 = −n
2 , we obtain E0[Zt] = −n

2

(
1− 1

n

)t
, i.e. E0[Wt] = n

2

(
1−

(
1− 1

n

)t)
.

(b) For 1 ≤ i ≤ n, let Ni be the number of times coordinate i is chosen between times

1 and t. Since each time coordinate i is chosen, it is independently flipped with

probability 1/2, we have

P(ξi = 1) =

t∑
k=1

P(Ni = k)P (Bin(k, 1/2) is odd) =
1

2
P(Ni > 0) =

1

2

(
1−

(
1− 1

n

)t)
.

Now, let us show that, for i 6= j, the variables ξi and ξj are negatively correlated.

We have

P(ξi = 1, ξj = 1) =
1

4
P(Ni > 0, Nj > 0) =

1

4

(
1− 2

(
1− 1

n

)t
+

(
1− 2

n

)t)
.

Since
(
1− 2

n

)t ≤ (1− 1
n

)2t
, we have P(ξi = 1, ξj = 1) ≤ P(ξi = 1)P(ξj = 1). Hence

Var0(Wt) ≤
n∑
i=1

Var(ξi) ≤
n∑
i=1

P(ξi = 1) ≤ n

2
·

(c) Let t = c
2n log n with c < 1. Since E0[Wt] = n

2

(
1−

(
1− 1

n

)t)
, and by Chebyshev

Inequality,

P0(Xt 6∈ A) = P0

(
Wt − E0[Wt] >

n

4

(
1− 1

n

)t)
≤ 16 Var0(Wt)

n2
(
1− 1

n

)2t ≤ 8

n
(
1− 1

n

)cn logn
,

which tends to 0 as n→ +∞ since c < 1. On the other hand, again by Chebyshev

Inequality,

π(A) = P

(
Bin(n, 1/2) ≤ n

2
− n

4

(
1− 1

n

)t)
≤ 4

n
(
1− 1

n

)cn logn
−→ 0 .

This shows that, for c < 1, Dn
(
cn logn

2

)
→ 1.

2. Upper bound.

(a) By Cauchy-Schwarz Inequality and symmetry of P t,

4D(t)2 =

∑
y∈Ω

∣∣∣∣P t(0, y)− 1

2n

∣∣∣∣
2

≤ 2n
∑
y∈Ω

P t(0, y)2 − 1 = 2nP 2t(0,0)− 1 .

Since the hypercube is transitive, the return probability P 2t(x, x) does not depend

on x and we can write

2nP 2t(0,0) =
∑
x∈Ω

P 2t(x, x) .
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Using the spectral representation with (ϕj) an orthonormal basis of eigenvectors,

we have ∑
x∈Ω

P 2t(x, x)− 1 =
∑
x∈Ω

2−n
2n∑
j=2

λ2t
j ϕj(x)2 =

2n∑
j=2

λ2t
j .

(b) For n ≥ 1 and A ⊂ [n], let fA be defined by

∀x ∈ {0, 1}n, fA(x) = (−1)
∑
i∈A xi .

Note that PfA =
(

1− |A|n
)
fA and that the family (fA)A⊂[n] is independent. Hence,

for all 0 ≤ k ≤ n, 1− k
n is an eigenvalue of P with multiplicity

(
n
k

)
.

(c) Let t = c
2n log n, with c > 1.

2n∑
j=2

λ2t
j =

n∑
k=1

(
n

k

)(
1− k

n

)2t

≤
n∑
k=1

(
n

k

)(
1

nc

)k
=

(
1 +

1

nc

)n
− 1 −→ 0 .

Hence, for c > 1, Dn
(
cn logn

2

)
→ 0.

8.3 Cutoff for the top-to-random shuffle

1. Upper bound.

(a) Given that at time t there are k cards under card n, each of the k! possible orderings

of those k cards are equally likely (this can be seen by induction). Hence at time

τ − 1, all (n − 1)! orderings of cards 1, . . . , n − 1 under card n are equally likely,

and one step after that, the distribution is uniform over Sn.

(b) Note that τ can be decomposed as

τ = Gn−1 + · · ·+G1 + 1 ,

where Gi is the time taken by card n to go from position i+ 1 to position i. The

variables (Gi) are independent and Gi ∼ Geom
(
n−i
n

)
. The variable τ has exactly

the same distribution as the first time all items have been sampled at least once

when sampling with replacement in a set of n items. By a union bound,

Pid (τ > n log n+ λn) ≤ n
(

1− 1

n

)n logn+λn

≤ e−λ .

2. Lower bound.

(a) As above the variable τr can be decomposed as

τr = Gn−r + · · ·+G1 ,

where Gi is the time taken by card n− r+ 1 to go from position i+ 1 to position i.

Since Gi ∼ Geom
(
n−i
n

)
, we have

Eτr = n
n−1∑
i=r

1

i
≥ n (log(n)− log(r − 1)− 1) ≥ n log n− λn

2
− n ,
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for r =
⌊
eλ/2

⌋
. Hence by Chebyshev Inequality,

Pid(τr < n log n− λn) ≤ Pid

(
τr − Eτr < −

λn

2
+ n

)
≤ Var(τr)

(λ/2 + 1)2n2
.

Since Var(τr) ≤ n2
∑n−1

i=r
1
i2

= O(n2), this yields the desired result.

(b) We have π(Ar) = 1
r! .

8.4 Carne-Varopoulos upper bound

1. For θ ∈ R, we have

(cos θ)t =

(
eiθ + e−iθ

2

)t
= E

[
eiθSt

]
= E [cos (θ|St|)]

=
t∑

k=0

P(|St| = k) cos(kθ) =
t∑

k=0

P(|St| = k)Qk(cos θ) .

Taking z = cos θ, we get the desired identity.

2. Applying the above identity to the matrix P and taking entry (x, y), we have

P t(x, y) =

t∑
k=0

P(|St| = k)Qk(P )(x, y) .

Since Qk is of degree k and since P k(x, y) = 0 for all k < d(x, y), we may start the sum

above at k = d(x, y).

3. The spectrum of Qk(P ) is given by {Qk(λ), λ ∈ Sp(P )}. Since Sp(P ) ⊂ [−1, 1], and

since Qk([−1, 1]) ⊂ [−1, 1] (recall that Qk(cos θ) = cos(kθ)), the spectrum of Qk(P ) is

included in [−1, 1]. In particular, Qk(P ) is a contraction.

4. By the contracting property of Qk(P ) applied to the functions δy and δx, we have

|< Qk(P )δy, δx >π| ≤ ‖δx‖π‖δy‖π =
√
π(x)π(y) .

Now

< Qk(P )δy, δx >π= π(x)Qk(P )δy(x) = π(x)Qk(P )(x, y) .

5. We obtain

P t(x, y) ≤

√
π(y)

π(x)
P (|St| ≥ d(x, y)) ≤ 2

√
π(y)

π(x)
exp

{
−d(x, y)2

2t

}
,

where the last inequality is by Hoeffding Inequality.
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6. Let d = dD/2e. Since D > 2(d− 1), one may find two disjoint balls of radius d− 1, so

that there exists x such that π (Bd−1(x)) ≤ 1/2. On the other hand, we have

P t(x,Bd−1(x)c) ≤ 2
∑

y 6∈Bd−1(x)

√
π(y)

π(x)
exp

{
−d(x, y)2

2t

}
≤ 2n3/2e−

d2

2t ≤ 2n3/2e−
D2

8t ,

where we used that |Bd−1(x)c| ≤ n and π(y)
π(x) = deg(y)

deg(x) ≤ n. For t = D2

13 logn , we have

D(t) ≥ 1

2
− 2n−

1
8 .

8.5 Typical distance in random regular graphs

The idea is to sequentially generate the levels around two given vertices x and y and to show

that for all ε > 0, with high probability, if the level is less than (1−ε)
2 logd−1 n, then the two

balls are disjoint, and if it is greater than (1+ε)
2 logd−1 n, then they have intersected.

Lower bound.

Let ε > 0 and k = (1−ε)
2 logd−1 n. Then (roughly...) the probability P(Bk(x) ∩ Bk(y) 6= ∅)

can be upper-bounded by the probability than a Binomial random variable with parameters

(d− 1)k and (d−1)k

n is non-zero. By Markov Inequality, this is less than (d−1)2k

n = n−ε → 0.

Upper bound.

Let as before k = (1−ε)
2 logd−1 n, and K = (1+ε)

2 logd−1 n. By the same reasoning, we

can actually show that, with high probability, Bk(x) and Bk(y) are not only disjoint but are

both d-regular trees of depth k. On the other hand, when growing from Bk(x) to BK(x), the

total number of “bad events” (matching a half-edge with a previously revealed half-edge) is

stochastically dominated by a Binomial r.v. with parameters (d− 1)K and (d−1)K

n . By Markov

Inequality, with high probability it is less than n2ε. Hence, with high probability, there are

at least (d − 1)K − n2ε(d − 1)K−k = n
1+ε

2 − n3ε half-edges at distance K from x, and the

same holds for y. Hence, assuming BK(x) and BK(y) have not yet intersected, the probability

that they do at the next level tends to one since the probability that a Binomial r.v. with

parameters n
1+ε

2 and n
1+ε

2

n is equal to 0 tends to 0.

8.6 Concentration with exchangeable pairs (proof of Lemma 5.2)

Part A.

See Nathan Ross, Fundamentals of Stein’s method, Theorem 7.4: http://emis.ams.org/

journals/PS/images/getdoc402e.pdf?id=729.

Part B.

See Ben-Hamou and Salez [2][Lemma 6.1]: https://projecteuclid.org/download/

pdfview_1/euclid.aop/1494835230.
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