
1. Components Sizes for Gn,p

We discuss the size of the components in Gn,p for p bounded away from 1
n
. Our main

result, proven by Erdos and Renyi in 1960, is that for any ε > 0 there is a δ > 0

such that (i) if p < 1−ε
n

then almost surely the largest component of Gn,p has size

O(log n) while if p > 1+ε
n

then almost surely Gn,p has a component of size at least

δn, and all other components have size O(log n). We also discuss the probability

that Gn,p is connected for various values of p.

We use a probabilistic approach which we will generalize and apply to random regu-

lar graphs on a fixed degree sequence. Our focus is on presenting simple arguments.

We do not attempt to obtain the strongest possible results, nor will we mention

much about the history of the subject. We also do not attempt to treat p = 1+o(1)
n

.

See for an extensive study of the situation there. That paper considers a stochastic

process where we add the edges to G one at a time, and study the random graph

Gn,m which is chosen uniformly from those with n vertices and m edges. This allows

for much more precise results but we will not need such precision.

We let Ys be the number of components of Gn,p which have s vertices. Every such

component contains at least one tree which spans s vertices such that no edges of

Gn,p links the tree to the remaining vertices. So, the expected number of such trees

is an upper bound on E(YS).

Since there are
(
n
s

)
ways of choosing the vertices of such a tree, and ss−2 ways of

choosing the s− 1 edges of a tree on a chosen set of vertices, this yields:

E(Ys) 6

(
n

s

)
ss−2ps−1(1− p)s(n−s).

Since s! > ss

es
, we have

E(Ys) 6
(epn(1− p)n−s)s

ps2
.

Now, letting Zs be the number of components with S vertices which induce trees, a

similar computation shows:

E(Ys) > E(Zs) >

(
n

s

)
ss−2ps−1(1− p)s(n−s)+

(s−2)(s−1)
2 .

Very soon, we will restrict our attention to s which are O(logn) and p which are

O( logn
n

). In this situation our two bounds determine E(Ys) to within a 1 + o(1)

factor.

1.1. The Connectivity Threshold.

As discussed in the background notes for the Markov Chain course, we can couple

Gn,p and Gn,p′ for p < p′ by assigning a uniform [0..1] variable to each edge, and

putting an edge into Gn,p (respectively p′) if this real is less than p (resp p′). This
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couples any choice of Gn,p with a choice of Gn,p′ of which it is a subgraph. Hence the

probability that Gn,p is connected cannot decrease when p increases. Furthermore,

the expected value of Y1 strictly decreases as p increases.

We note that a graph is disconnected precisely if it has a component which contains

at most half of its vertices. So, P (Gn,p is not connected) = P (Σ
bn/2c
s=1 Ys > 0).

Consider now any positive f going to infinity with n with f(n) < log n and p =
log n+f(n)

n
. Then E(Y1) is o(1) and E(Y2) is o( log n

n
). Moreover for s between 3 and n

2

and any p with log n
n
6 p 6 2log n

n
, we have (1−p)n−s 6

√
n thus E(Ys) 6

(2elog n/
√
n)s

ps2
.

So, for any positive f which goes to to infinity with n and satisfies f(n) < log n and

corresponding p = logn+f(n)
n

, we have

E(Σ
n
2
i=1Ys) 6 o(1) +O(

logn

n
) +

bn
2
c∑

s=3

(2elog n√
n

)s

ps2
= o(1).

Thus applying Markov’s Inequality for any such f and p we know that P (Gn,p is connected) =

1−o(1). Since the probability Gn,p is connected is nondecreasing this is true for any

p such that pn− logn = ω(1).

On the other hand, for any positive f going to infinity with n and p = logn−f(n)
n

,

E(Y1) = n(1− p)n−1 = ω(1). Further,

E(Y1
2) = n(1− p)n−1 + n(n− 1)(1− p)2n−3 6 E(Y1) + (1− p)−1E(Y1)2.

So, E(Y 2
1 )− E(Y1)2 = o(1)E(Y1)2, and applying Chebbyshev, we obtain:

P (Y1 = 0) 6 P (|Y1 − E(Y1)| > E(Y1)) = o(1).

1.2. The Existence of A Giant Component.

To begin we show;

Theorem 1.1. For all ε > 0 ∃Aε, bε > 0 such that for all p with | p
n
− 1| > ε,

P (
∑

Aεlogn<s<bεn

Ys > 0) = o(1).

Proof. We can assume that for d = pn, we have d 6 2logn
n

as we showed in the last

section that otherwise Gn,p is connected with probability 1-o(1). I.e. the desired

result is true even if we sum over s from 1 to n
2
. Furthermore, we can assume that

p > n−3 as otherwise with probability 1− o(1) there are no edges and hence Ys = 0

for all s > 1.

As noted above,

E(Ys) 6
(epn(1− p)n−s)s

ps2
. 6 n3(epn(1− p)n−s)s
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Since d 6 2log n, for s 6 n
2

this is O(n3((1 + o(1))ede−d/2)s). So we need only

consider d 6 100 as otherwise E(Ys) 6 n310−s and we are done by applying Markov’s

Inequality.

Now the derivative f of p(1−p)n−1 is (1−p)n−1−p(n−1)(1−p)n−2 = (1−p)n−2(1−
pn). The only zero of f between 0 and 1 is at p = 1

n
which is a maximum of p(1−p)n−1

in this range. Furthermore (1− 1
n
)n−1 lies between e−1 and (1+ 2

n−1
)e−1, so at p = 1

n
,

(epn(1 − p)n−1) lies between 1 and 1 + 2
n−1

. Finally letting ε′ = min(ε, 1
2
), we see

that for x with |xn − 1| lying between ε′

2
and ε′ and large n, |f(x)| is at least ε′

2e2n
.

Integrating f we see that for p with |pn− 1| > ε > ε′:

epn(1− p)n−1 6 (1 +
2

n− 1
− (ε′)2

4e2
) 6 1− (ε′)2

5e2
.

Now, since d 6 100, if we take bε > 0 sufficiently small in terms of ε for s 6 bεn,

we can ensure (1 − p)s−1 > (1 − 100
n

)bεn >
√

(1− (ε′)2

5e2
). So for such s, E(Ys) 6

n3(1− (ε′)2

5e2
)−s/2. So we can choose Ae for which the theorem holds. �

We now show(slightly differently than in the powerpoints):

Theorem 1.2. For all ε > 0 there is a bε > 0 and an Aε such that:

(i) If pn − 1 > ε then with probability 1 − o(1), Gn,p has a component of size

exceeding bεn,

(ii) If pn− 1 < ε then with probability 1− o(1) every component of Gn,p has size

at most Aelog n.

Proof. We note that Theorem 1.1 implies that to prove (i) it is enough to show that

if pn− 1 > ε then with probability 1− o(1), Gn,p has a component of size exceeding

Aelog n and to prove (ii) it is enough to show that for pn − 1 < ε the probability

Gn,p has a component of size exceeding ben = o(1).

To do so we consider an iterative exploration process which runs for i = d
√
n−log2ne

steps. where at the start of iteration i we have a set Oi of discovered but as yet

unexplored vertices and a set Ei of explored vertices. We intialize O1 = v1 and

E1 = ∅.
In iteration i, we take the lowest indexed vertex v in Oi, we expose the edges from

it to V −Ei−Oi. We set Ei+1 = Ei + v and Oi+1 = Oi− v∪ (N(v)∩ (V −Ei−Oi)).

If Oi > (logn)2 we terminate.

(*) If Oi = 0 we add the lowest indexed vertex not in Ei to Oi.

Ignoring the vertices added in (*), the number of vertices added to Oi in iteration i

is Bin(n− |Oi| − |Ei|, p). Now, n− |Oi| − |Ei| lies between n−
√
n− 1 and n.

If the component containing v1 has at least
√
n vertices then we never added vertices

in (*), and we had to add at least
√
n− 1− (log n)2 vertices to Oi. The probability
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this occurs is at most the probability that Bin(n′ = d
√
n − (log n)2en, p) >

√
n −

(log n)2 − 1. For pn < 1 − ε the expectation of Bin(n′, p) < (1 − ε)
√
n and an

application of the Chernoff bound shows that for large n, the probability that v1 is in

a component with greater than
√
n vertices is less than e

ε2
√
n

12 = o( 1
n
). By symmetry

each vi has the same probability of being in a component of size exceeding
√
n, so

the expected number of such vertices is o(1) and almost surely no such component

exists.

Now, if Gn,p has no component of size greater than (log n)2 then we never terminate,

and the the total number of vertices added to Oi (not counting those added in

(*)) is at most
√
n + 1. This is at most the probability that Bin(n′′ = d

√
n −

(log n)2e(n −
√
n − 1), p) 6

√
n + 1. For pn > 1 + ε and large n, the expectation

of Bin(n′′, p) > (1 + ε
2
)
√
n. An application of Chernoff’s Bounds shows that the

probability Bin(n′′, p) 6
√
n + 1 = o(1). Hence with probability 1− o(1), Gn,p has

a component of size exceeding (log n)2.

�

2. Some Results on Random Regular graphs

2.1. Switchings.

By a switching in a graph or multigraph G, we mean the deletion of two disjoint

edges xy and wv, and the addition of the edges xw and yv. We note that given two

disjoint edges in a graph there are two possible switchings using these edges.

Our interest in this operation is that it does not change the degree sequence of the

graph. We will use it to bound the probability of specific events with respect to the

multigraph HD created by the configuration model given a degree sequence D, and

the random graph GD chosen uniformly from those with this degree sequence.

We note that if A and B are two families of graphs and for every graph in A there

are at most ∆ switching which yield a graph in B and for every graph in B there

are at least δ switchings which yield a graph in A then we have:

δ|B| 6 # of switchings between A and B 6 ∆|A|.

Hence |B| 6 ∆
δ
|A|. So, if A and B are families of graphs with degree distribution D

then P (GD ∈ B) 6 ∆
δ
P (GD ∈ A).

In the same vein if A and B are families of matchings on the vertex set of MD then

P (MD ∈ B) 6 ∆
δ
P (MD ∈ A).

2.2. The Largest Component of a Uniform 2-Factor. We let D be the degree

sequence consisting of n twos. Then GD is a uniformly chosen 2-factor from those

with n vertices.
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Now for any constant ε 0 and 1, the expected number of cycles of length at least εn

in GD is

Σn
i=dεne

n!

2i((n− i)!)
2i−1

Πi
j=12n− 2j + 1

> Σn
i=dεne

1

4i
u
ln1

ε

4
.

Since a 2 factor with n vertices can have at most 1
ε

cycles which have length at least

εn, it follows that the probability GD has a cycle of length at least εn is essentially

> ε
ln 1
ε

4
.

We now upper bound the probability that GD has a cycle of length at least εn. To

do so we let Ai (resp. Bi) be the set of 2-factors on n vertices which have at least

one (resp. no) cycle of length at least εn and i cycles of length strictly between εn
3

and εn.

We note that Ai and Bi are empty for i > b3
ε
c. We claim that for large n∑b 3

ε
c

i=1 P (Bi) >
(4ε−2+1)

−ε
3

3
ε
+2

, which is a lower bound on the probability that a uni-

form random 2-factor has no cycle of length at least εn.

To prove our claim we assume the contrary and obtain a contradiction. We note

that for every 2-factor in Ai, if we swap two edges of its longest cycle which are

at distance exceeding εn
3

then we obtain a two factor in Ai+1 ∪ Bi+1. For large n,

there are at least ε2n2

4
switches involving such a pair of edges (each pair yields two

switches). There are at most 2
(
n
2

)
switches from a 2-factor in Ai+1 ∪ Bi+1 to a 2-

factor in Ai. Thus, we have |Ai| 6 4ε−2(|Ai+1| + |Bi+1|). Inductively, we have that

for j from b3
ε
c to 0:

P (Aj ∪Bj) 6 (4ε−2 + 1)b
3
ε
c−j (4ε−2 + 1)

−ε
3

3
ε

+ 2
6

1
3
ε

+ 2

.

But this contradicts the fact that
∑b 3

ε
c

j=0 P (Aj ∪Bj) = 1

2.3. The Probability That HD is simple.

For a fixed integer d, we consider the degree sequence D where all degrees are d, a

random matching MD and corresponding multigraph HD.

The probablity two specific copies of a vertex v are joined by an edge of MD is 1
dn−1

,

so the expected number of loops in HD is
(d2)n
dn−1

6 d
2
.

In the same vein, for every copy of a vertex, given a choice for the other endpoint of

the edge of MD containing it which does not create a loop, the probability that this

edge is parallel to some other edge is at most (d−1)2

dn−3
. Hence the expected number of

edges parallel to another edge is at most dn(d−1)2

2(dn−3)
which is less than d2−d

2
for large n.
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Finally the expected number of triples of edges all joining the same two points is
(n2)(

d
3)

2
3!

(dn−1)(dn−3)(dn−5)
= o(1).

Letting l(H) be the number of loops in H. we have that E(l(HD)) 6 d
2

So Markov’s

Inequality tells us that P (l(HD) > 2d) 6 1
4
. Letting p(H) be the the number of

parallel edges in H, we have that E(p(HD)) 6 d2−d
2

so P (p(HD) > 2d2 − 2d) 6 1
4
.

So letting Aj,r be the set of those matchings on V (MD) corresponding to a choice

of HD with l(HD) = j, p(HD) = r and such that HD contains no triple of parallel

edges, we know that for large n,

Σ2d
j=0Σd2−d

k=0 P (GD in Aj,2k) >
1

3
.

We note that to switch from Aj,2k to Aj−1,2k, we can pick any of the l loops as one

of the edges and then pick any of the at least nd
2
− (d − 2)d − j − 2k edges which

are not a loop, not a parallel edge, and not incident to any neighbour of the vertex

which is the endpoint of this loop. To switch from Aj−1,2k to Aj,2k the two edges

we switch on must have a common endpoint so we have at most 2n
(
d
2

)
choices. It

follows that for k 6 d2 − d, j 6 2d and n large, |Aj−1,2k| >
j(nd

2
−(d−2)d−2d2)

nd(d−1))
|Aj,2k| >

j
2d
|Aj,2k|. Thus, inductively, |A0,2k| > |Aj,2k| 1

2dj
for all such j and k, This implies

that |A0,2k| > 1
(d+1)2d2d

∑2d
j=0 |Aj,2k|. Hence

∑d2−d
k=1 P (MD ∈ A0,2k) > 1

6(d+1)d2d
.

Now, to switch from A0,2k to A0,2k−2 we can pick any of the 2k parallel edges and

any of the at least nd
2
− 2(d− 1)d− 2k edges which are not parallel with any other

edge, and do not have an endpoint incident to a neighbour of the first edge picked.

To switch from A0,2k−2 to A0.2k we must pick two edges, two of whose endpoints

are joined by a third edge. There are at most dn
2
d(d − 1) such pairs. It follows

that for k between 1 and d2 − d and large n, |A0,2k−2| > 1
d2
|A0,2k|. It follows that

|A0,0| > 1

(d2−d+1)d2d2−2d

∑d2−d
k=0 |A0,2k|. Hence,

P (HD simple) = P (MD inA0,0) >
1

6(d+ 1)d2d

1

(d2 − d+ 1)d2d2−2d
=

1

6(d+ 1)(d2 − d+ 1)d2d2
.
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3. Exercises

(1) Consider the degree sequence D all of whose entries are d. Show that if d > 5

then the expected number of partitions of V into two sets with no edges between

them is o(1) and hence almost surely GD is connected. Harder: do this for d = 4.

Hardest: do this for d = 3.

(2) Consider the degree sequence D which has n = 2k elements, k of which are some

fixed d > 1 and k of which are 1. Show that the probability that GD is connected is

o(1).

(3) Show that for d > 10, there is an Ad > 0 and a bd > 0 such that the probability

that the GD of question (2) contains a component of size between Adlog n and bdn

is o(1). Hint: you will need to split the proof into two parts. You should start

by showing the probability there is such a component for which the proportion of

vertices of degree d exceeds 1+ε
d−1

for some ε > 0 is o(1).

(4) Show that for d > 10, there is a cdn such that the probability the GD of Question

2 contains a component of size exceeding cdn is 1-o(1).

4. Further Reading

https://www.math.uwaterloo.ca/ nwormald/papers/regsurvey.pdf

https://arxiv.org/pdf/math/9310236.pdf
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