1. The Existence of Giant Components in $G_{\mathcal{D}}$

We consider a degree sequence $\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ such that $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{n}$. We let $M=M_{\mathcal{D}}=\sum_{i=1}^{n} d_{i}$ and insist: $d_{1}>0$ and no $d_{i}=2$. We let $j_{\mathcal{D}}=$ $\min \left(n \cup\left\{j \mid \sum_{i=1}^{j} d_{i}\left(d_{i}-2\right)>0\right\}\right)$ and $R=R_{\mathcal{D}}=\sum_{i=j_{\mathcal{D}}}^{n} d_{i}\left(d_{i}-2\right)$. We let $F=F_{\mathcal{D}}$ be the number of edges in the largest component of $G=G_{\mathcal{D}}$. We prove:

Theorem 1.1. For any sufficiently small $\omega>0$, if M is sufficiently large in terms of ω and if $R_{D}<\omega D$ then

$$
P\left(F>\omega^{1 / 9} M\right)=o(1)
$$

Theorem 1.2. For every $\epsilon>0$ there is a $\delta>0$ such that if M is sufficently large in terms of epsilon, $d_{n} \leqslant \frac{\sqrt{M}}{\log M}$, and $R>\epsilon M$ then:

$$
P(F>\delta M)=1-o(1)
$$

In proving these theorems we explore a random object consisting of G and a uniformly chosen permutation of the adjacency list of v for each vertex of G.

We start with some set S_{0} of vertices, and expose the edges in $G\left[S_{0}\right]$ and where they appear on the adjacency lists of their endpoints. In each iteration t, we add a vertex w_{t} to S_{t-1} to obtain S_{t} and expose the edges from w_{t} to S_{t-1} and where they appear on the adjacency lists of their endpoints. If there are no edges of G between S_{t} and $V-S_{t}, w_{t}$ is a random vertex of $V-S_{t}$ chosen proportional to its degree. Otherwise we let v_{t} be the lowest indexed vertex of S_{t} which has a neighbour in V_{t} and make a random choice of w_{t}, its neighbour in $V-S_{t}$ appearing first on its adjacency list, and the edges from w_{t} to S_{t-1} and where they appear on the adjacency lists of their endpoints. Our choice is conditioned by the part of the random object we have already exposed.
We will track X_{t}, the number of edges between S_{t} and $V-S_{t}$. We will also track $X_{t}^{\prime}=\Sigma_{x \in S_{t}} d(x)-2 t$. Now, $X_{0} \leqslant X_{0}^{\prime}, X_{t}^{\prime}=X_{t-1}^{\prime}+d\left(w_{t}\right)-2$ and unless $X_{t-1}=0$, we have $X_{t}=X_{t-1}+d\left(w_{t}\right)-2$. So, until $X_{t}=0$ we have $X_{t} \leqslant X_{t}^{\prime}$, and if $X_{t}^{\prime}=0$ then for some $t^{\prime} \leqslant t$ we have $X_{t^{\prime}}=0$.

1.1. The Proof of Theorem 1.1.

To prove Theorem 1.1, we actually show that under its hypotheses, for any vertex v of G we have:
(*) $P\left(v\right.$ is in a component with more than $\omega^{-1 / 9} M$ edges $)=o\left(\frac{1}{m}\right)$.
Summing over all v yields Theorem 1.1.
To prove $\left(^{*}\right)$ for a specific vertex v we actually analyze our exploration process starting with a set S_{0} which contains v and prove:

$$
\text { (**) } P\left(\exists t \leqslant \frac{\omega^{1 / 9} M}{2} \text { s.t. } X_{t}=0 \& X_{t}^{\prime} \leqslant \omega^{1 / 5} M\right)=1-o\left(\frac{1}{m}\right) .
$$

Now if $\exists t \leqslant \frac{\omega^{1 / 9} M}{2}$ such that $X_{t}=0$ and $X_{t}^{\prime} \leqslant \omega^{1 / 5} M$. then the sum of the degrees of the vertices in the component containing v is less than the sum of the degrees of the vertices in S_{t} which is $X_{t}^{\prime}+2 t \leqslant \omega^{1 / 5} M+\frac{\omega^{1 / 9} M}{2}$. So this implies that the number of edges in the component containing v is less than $\omega^{1 / 9} M$.
So to prove Theorem 1.1 it remains to prove $\left({ }^{* *}\right)$ for a set S_{0} which contains v.
We choose the minimum j such that $\sum_{i=j}^{n} d_{i} \geqslant 5 \omega^{-1 / 4} M$. We set $S=\left\{v_{j}, \ldots, v_{n}\right\}$ and set $S_{0}=S \cup\{v\}$.
It is straightforward to prove, as we do below, the following results about the initial situation:

Claim 1:

(i) There is a $u \in S$ such that $d(u) \leqslant \omega^{-1 / 4}$ and hence for all $u \in V-S_{0}$, $d(u) \leqslant \omega^{-1 / 4}$.
(ii) $\Sigma_{u \in V-S} d(u)(d(u)-2) \leqslant-4 \omega^{1 / 4} M$.
(iii) $X_{0}^{\prime} \leqslant 7 \omega^{1 / 4} M$.

We will need to show that as time goes on, X_{t}^{\prime} tracks its expectation. The difference between X_{t}^{\prime} and X_{t-1}^{\prime} is $d(w)-2$ so we will focus on the following variable: $Y_{t}=$ $d(w)-2-E(d(w)-2)$. Now, the expectation of each Y_{t} is 0 and by (i), each Y_{t} is at most $\omega^{-1 / 4}$. This allows us to apply Azuma's Inequality to prove:
Claim 2: The probability that there is a t for which $\sum_{t^{\prime} \leqslant t} Y_{t} \geqslant M^{2 / 3}$ is $o\left(\frac{1}{m}\right)$.
Finally we show that provided X_{t}^{\prime} does track its expectation, if the process does not die out then the expected step size becomes more and more negative.
Claim 3: For any t with $t \leqslant \tau=\min \left(\left\{t \mid X_{t}=0\right\} \cup\left\{t \mid \Sigma_{t^{\prime} \leqslant t} Y_{t} \geqslant M^{2 / 3}\right\} \cup\left\{\left\lfloor\frac{\omega^{1 / 9} M}{2}\right\rfloor\right\}\right)$, we have:

$$
E\left(d\left(w_{t}\right)-2\right) \leqslant \frac{-t}{M}+19 \omega^{1 / 5}
$$

With these three claims in hand, we can prove $\left({ }^{* *}\right)$ as follows.

$$
\begin{gathered}
X_{\tau}^{\prime}=X_{0}^{\prime}+\sum_{t=1}^{\tau}\left(E\left(d\left(w_{t}\right)-2\right)\right)+\sum_{t<\tau} Y_{t} \leqslant 7 \omega^{1 / 4} M-\frac{1}{M} \sum_{t=1}^{t^{*}} t+19 \omega^{1 / 5} t^{*}+M^{2 / 3} \\
\leqslant 7 \omega^{1 / 4} M-\frac{\tau^{2}}{3}+19 \omega^{14 / 45} M+M^{2 / 3}<\omega^{1 / 5} M
\end{gathered}
$$

. Furthermore, if $\tau=\left\lfloor\frac{\omega^{1 / 9} M}{2}\right\rfloor$ then $X_{\tau}^{\prime}<0$ so $X_{t}^{\prime}=0$ for some $t<\tau$. Hence $X_{t^{\prime}}=0$ for some $t^{\prime}<\tau$. This contradicts the definition of τ. So it always holds that $\tau<\left\lfloor\frac{\omega^{1 / 9} M}{2}\right\rfloor$. Since the probability there is a t such that $\sum_{t^{\prime} \leqslant t} Y_{t} \geqslant M^{2 / 3}$ is $o\left(\frac{1}{m}\right)$,
we see that with probability $1-o\left(\frac{1}{m}\right)$ there is a $t=\tau<\left\lfloor\frac{\omega^{1 / 9} M}{2}\right\rfloor$ with $X_{t}=0$ and $X_{t}^{\prime} \leqslant \omega^{1 / 5} M$.

