
1. The Existence of Giant Components in GD

We consider a degree sequence D = {d1, d2, ..., dn} such that d1 6 d2 6 ... 6 dn.

We let M = MD =
∑n

i=1 di and insist: d1 > 0 and no di = 2. We let jD =

min(n ∪ {j|
∑j

i=1 di(di − 2) > 0}) and R = RD =
∑n

i=jD
di(di − 2). We let F = FD

be the number of edges in the largest component of G = GD. We prove:

Theorem 1.1. For any sufficiently small ω > 0, if M is sufficiently large in terms

of ω and if RD < ωD then

P (F > ω1/9M) = o(1).

Theorem 1.2. For every ε > 0 there is a δ > 0 such that if M is sufficently large

in terms of epsilon, dn 6
√
M

log M
, and R > εM then:

P (F > δM) = 1− o(1).

In proving these theorems we explore a random object consisting of G and a uni-

formly chosen permutation of the adjacency list of v for each vertex of G.

We start with some set S0 of vertices, and expose the edges in G[S0] and where they

appear on the adjacency lists of their endpoints. In each iteration t, we add a vertex

wt to St−1 to obtain St and expose the edges from wt to St−1 and where they appear

on the adjacency lists of their endpoints. If there are no edges of G between St and

V −St, wt is a random vertex of V −St chosen proportional to its degree. Otherwise

we let vt be the lowest indexed vertex of St which has a neighbour in Vt and make

a random choice of wt, its neighbour in V − St appearing first on its adjacency list,

and the edges from wt to St−1 and where they appear on the adjacency lists of their

endpoints. Our choice is conditioned by the part of the random object we have

already exposed.

We will track Xt, the number of edges between St and V − St. We will also track

X ′t = Σx∈Std(x) − 2t. Now, X0 6 X ′0, X
′
t = X ′t−1 + d(wt) − 2 and unless Xt−1 = 0,

we have Xt = Xt−1 + d(wt) − 2. So, until Xt = 0 we have Xt 6 X ′t, and if X ′t = 0

then for some t′ 6 t we have Xt′ = 0.

1.1. The Proof of Theorem 1.1.

To prove Theorem 1.1, we actually show that under its hypotheses, for any vertex

v of G we have:

(∗) P (v is in a component with more than ω−1/9M edges) = o(
1

m
).

Summing over all v yields Theorem 1.1.

To prove (*) for a specific vertex v we actually analyze our exploration process

starting with a set S0 which contains v and prove:
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(∗∗) P (∃t 6 ω1/9M

2
s.t. Xt = 0 & X ′t 6 ω1/5M) = 1− o( 1

m
).

Now if ∃t 6 ω1/9M
2

such that Xt = 0 and X ′t 6 ω1/5M . then the sum of the degrees

of the vertices in the component containing v is less than the sum of the degrees of

the vertices in St which is X ′t+2t 6 ω1/5M+ ω1/9M
2

. So this implies that the number

of edges in the component containing v is less than ω1/9M .

So to prove Theorem 1.1 it remains to prove (**) for a set S0 which contains v.

We choose the minimum j such that Σn
i=jdi > 5ω−1/4M . We set S = {vj, ..., vn}

and set S0 = S ∪ {v}.
It is straightforward to prove, as we do below, the following results about the initial

situation:

Claim 1:

(i) There is a u ∈ S such that d(u) 6 ω−1/4 and hence for all u ∈ V − S0,

d(u) 6 ω−1/4.

(ii) Σu∈V−Sd(u)(d(u)− 2) 6 −4ω1/4M .

(iii) X ′0 6 7ω1/4M .

We will need to show that as time goes on, X ′t tracks its expectation. The difference

between X ′t and X ′t−1 is d(w) − 2 so we will focus on the following variable: Yt =

d(w)− 2− E(d(w)− 2). Now, the expectation of each Yt is 0 and by (i), each Yt is

at most ω−1/4. This allows us to apply Azuma’s Inequality to prove:

Claim 2: The probability that there is a t for which
∑

t′6t Yt >M2/3 is o( 1
m

).

Finally we show that provided X ′t does track its expectation, if the process does not

die out then the expected step size becomes more and more negative.

Claim 3: For any t with t 6 τ = min({t|Xt = 0}∪{t|Σt′6tYt >M2/3}∪{bω1/9M
2
c}),

we have:

E(d(wt)− 2) 6
−t
M

+ 19ω1/5.

With these three claims in hand, we can prove (**)as follows.

X ′τ = X ′0 +
τ∑
t=1

(E(d(wt)− 2)) +
∑
t<τ

Yt 6 7ω1/4M − 1

M

t∗∑
t=1

t+ 19ω1/5t∗ +M2/3

6 7ω1/4M − τ 2

3
+ 19ω14/45M +M2/3 < ω1/5M

. Furthermore, if τ = bω1/9M
2
c then X ′τ < 0 so X ′t = 0 for some t < τ . Hence

Xt′ = 0 for some t′ < τ . This contradicts the definition of τ . So it always holds that

τ < bω1/9M
2
c. Since the probability there is a t such that

∑
t′6t Yt > M2/3 is o( 1

m
),
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we see that with probability 1 − o( 1
m

) there is a t = τ < bω1/9M
2
c with Xt = 0 and

X ′t 6 ω1/5M .
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